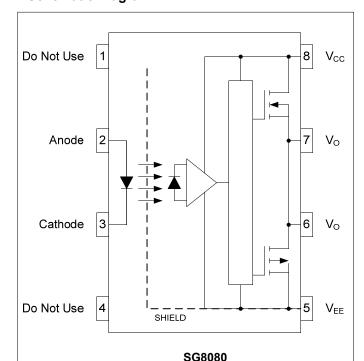


IGBT Gate Drive Optocoupler


Description

The SG8080 is an optically coupled 2A Output Current Gate Driver, designed to drive most 1200V / 100A IGBTs and MOSFETs. It is intended for driving high power IGBTs and MOSFETs used in motor control inverter applications.

The circuit consists of an infrared input LED optically coupled to an integrated circuit which utilizes a high speed driver.

The SG8080 comes standard in a miniature 8 pin DIP package.

Schematic Diagram

Truth Table (Positive Logic)

LED	V _{CC} -V _{EE} ("Positive Going") Turn On	V _{CC} -V _{EE} ("Negative Going") Turn Off	Vo
OFF	0 – 30V	0 – 30V	LOW
ON	0 – 11.5V	0 – 10V	LOW
ON	11.5 – 13.5V	10 – 12V	TRANSITION
ON	13.5 – 20V	12 – 20V	HIGH

^{**} A 0.1µF bypass Capacitor must be connected between pins 5 & 8 (GND & V_{cc})

Applications

- IGBT / MOSFET Gate Drives
- AC & Brushless DC Motor Drives
- **Industrial Inverters**
- Uninterruptable Power Supplies (UPS)
- Switch Mode Power Supplies

Features

- High Common Mode Rejection: 10kV/µS minimum @ V_{CM} = 1500V
- 2A Maximum Peak Output Current
- Fast Switching Speeds
 - o 200nS Maximum Propagation Delay
- I_{CC}=5mA Maximum Supply Current
- Wide Supply Voltage Range (10V to 20V)
- Under Voltage Lockout Protection (UVLO) with Hysteresis
- **Broad Temperature Performance Range** (-40°C to 100°C)
- Low Power Dissipation ($R_{ON} \le 1\Omega$)
- Rail-to-Rail Output Voltage
- High Input to Output Isolation (5kV_{RMS})
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

- UL/C-UL approved to UL1577
- VDE approved to EN60747-5-5

Ordering Information

Part Number	Description
SG8080	8 pin DIP, (50/Tube)
SG8080-H	0.40" (10.16mm) Wide Lead Spacing (VDE0884)
SG8080-S	8 pin SMD, (50/Tube)
SG8080-STR	8 pin SMD, Tape and Reel (1000/Reel)

NOTE: Suffixes listed above are not included in marking on device for part number identification

Absolute Maximum Ratings, T_A = 25°C (unless otherwise specified)

The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Notes
General Maximum Ratings								
Storage Temperature	T _{ST}	-55	-	125	°C			
Operating Temperature	T _A	-40	-	100	°C			
Isolation Voltage	V _{ISO}	5000	-	-	V _{RMS}			
Supply Voltage	V _{CC}	0	-	25	V			
Solder Temperature – Wave (10 sec)	T _{SOL}	-	-	260	°C			8
Total Power Dissipation	P _T	-	-	295	mW			
Input Maximum Ratings								
Average Forward Input Current	I _{F(AVG)}	-	-	25	mA			
Reverse Input Voltage	V _R	-	-	5	V			
Peak Transient Input Current	I _{F(TRAN)}	-	-	1	Α	<1μS pulse width, 300pps		
Input Current (Rise / Fall Time)	t _{r(IN)} / t _{f(IN)}	-	-	200	nS			
Input Power Dissipation	Pı	-	-	45	mW			9
Output Maximum Ratings								
"High" Peak Output Current	I _{OH(PEAK)}	-	-	2	Α			1
"Low" Peak Output Current	I _{OL(PEAK)}	-	-	2	Α			1
Output Voltage	Vo	-	-	V_{CC}	V			
Output Power Dissipation	Po	-	-	250	mW			10

Recommended Operating Conditions

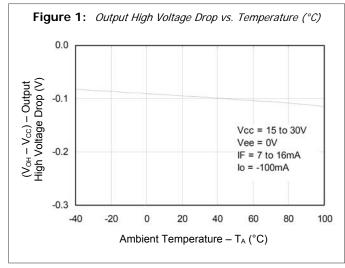
 $The \ values \ indicated \ are \ recommended \ for \ steady, \ consistent \ operation \ with \ optimal \ performance \ across \ the \ operating \ temperature \ range.$

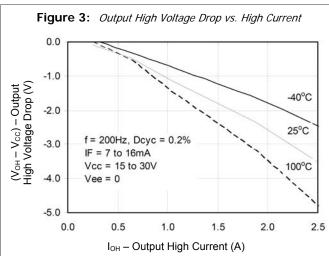
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Notes
Recommended Specifications								
Operating Temperature	T _A	-40	-	100	°C			
Supply Voltage	Vcc	10	-	20	٧			
Input Current (ON)	I _{FL(ON)}	10	-	16	mA			
Input Voltage (OFF)	$V_{F(OFF)}$	-3.0	-	0.8	V			

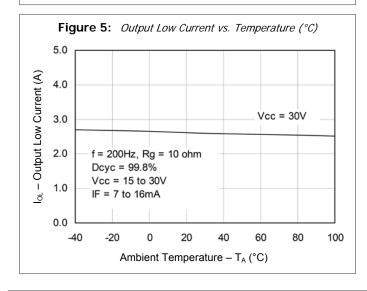
Electrical Characteristics, $T_A = 25$ °C, $V_{EE} = Ground$ and $V_{CC} = 30$ V (unless otherwise specified)

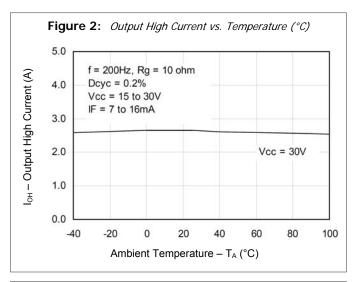
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Notes
Input Specifications								
LED Forward Voltage	V _F	1.2	1.4	1.8	V	I _F = 10mA	15	
LED Forward Voltage Temperature Coefficient	ΔV _F / ΔT	-	-1.24	-	mV/°C	I _F = 10mA		
LED Reverse Voltage	BV _R	5	-	-	V	I _R = 10μA		
Input Threshold Current (Low to High)	I _{FLH}	-	2.9	5	mA	V _O > 5V, I _O = 0A	9,16,21	
Input Threshold Voltage (High to Low)	V_{FHL}	0.8	-	-	٧	V _O < 5V, I _O = 0A		
Input Capacitance	C _{IN}	-	33	-	pF	f = 1MHz, V _F = 0V		
Output Specifications								
High Level Supply Current	Іссн	-	1	5	mA	Open V _O , I _F = 10 to 16mA	7,8	
Low Level Supply Current	I _{CCL}	-	1	5	mA	Open V_0 , $V_F = -3$ to $+0.8V$	7,8	
High Level Output Current	I _{OH}	-2	-	-	А	$V_{\rm O} = (V_{\rm CC} - 6V)$	2,13,19	1
Low Level Output Current	I _{OL}	2	-	-	Α	V _O = (V _{CC} + 6V)	5,6,20	1
High Level Output Voltage	V _{OH}	V _{CC} - 0.4	V _{CC} -0.2	-	٧	I _F = 10mA, I _O = -100mA	1,3,17	
Low Level Output Voltage	V _{OL}	-	V _{EE} +0.2	V _{EE} +0.4	V	I _F = 0mA, I _O = 100mA	4,16,18	
Under Voltage Lockout Threshold	V _{UVLO+}	-	8.3	-	٧	V _O > 5V, I _F = 10mA	22	
	V _{UVLO-}	-	7.7	-	V	V _O < 5V, I _F = 10mA	22	
Under Voltage Lockout Hysteresis	UVLO _{HYS}	-	0.6	-	V		22	
Isolation Specifications	1		1		l		"	
Withstand Insulation Test	V _{ISO}	5000	-	-	V	RH ≤ 40-60%, t = 1 min		2,3
Input-Output Resistance	R _{I-O}	-	10 ¹²	-	Ω	V _{I-O} = 500V _{DC}		2
Input-Output Capacitance	C _{I-O}	-	0.9	-	pF	f=1MHz		2
Input-Output Capacitance	C _{I-O}	-	0.9	-	pF	f =1MHz		

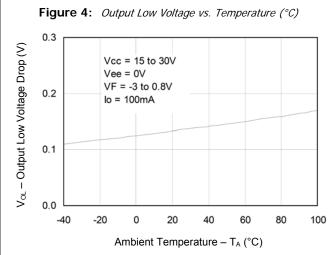
Electrical Characteristics, continued... $T_A = 25$ °C, $V_{EE} = Ground$ and $V_{CC} = 30$ V (unless otherwise specified)

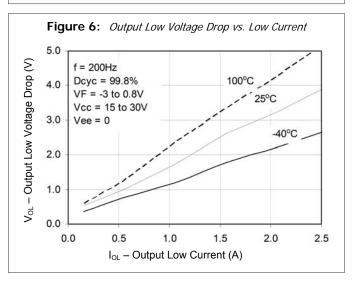

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Notes
Switching Specifications								
Propagation Delay Time to High Output Level	t _{PLH}	100	150	200				
Propagation Delay Time to Low Output Level	t _{PHL}	100	150	200			10 11 12	
Pulse Width Distortion	PWD	-	-	65		I_F = 7 to 16mA V_{CC} = 15 to 30V V_{EE} = Ground Rg = 10 Ω Cg = 10nF f = 10kHz Duty Cycle = 50%	13 14 23	7
Propagation Delay Difference Between Any Two Parts	PDD	-	-	90	nS			4
Output Rise Time (10 to 90%)	t _r	-	25	-		Buty Oyole = 30 %	23	
Output Fall Time (90 – 10%)	t _f	-	25	-				
UVLO Turn On Delay	t _{UVLO ON}	-	2	-	μS	I _F = 10mA, V _O > 5V		
UVLO Turn Off Delay	t _{UVLO OFF}	-	0.3	-	μS	I _F = 10mA, V _O < 5V		
Common Mode Transient Immunity at HIGH Level Output	CM _H	10	-	-	kV/μS	$I_F = 7 \text{ to } 16\text{mA}$ $V_{CM} = 1500\text{V}$ $T_A = 25^{\circ}\text{C}$ $V_{CC} = 30\text{V}$	24	5
Common Mode Transient Immunity at LOW Level Output	CM _L	10	-	-	kV/μS	$V_F = 0V$ $V_{CM} = 1500V$ $T_A = 25^{\circ}C$ $V_{CC} = 30V$	24	6

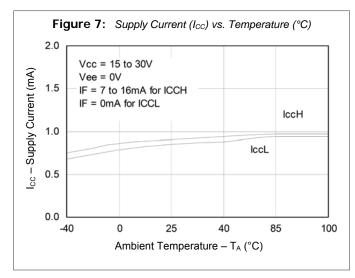

Notes

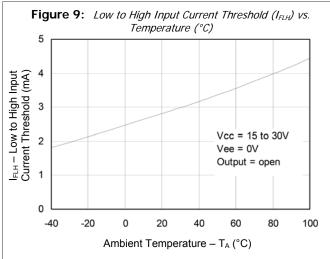

- 1. Maximum pulse width = 10μ S, maximum duty cycle = 0.2%
- 2. Device is considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together
- 3. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V_{RMS} for one second (leakage current less than 5 μA)
- $4. \hspace{0.5cm} \text{The difference between T_{PHL} and T_{PLH} between any two $SG8080$ devices under the same test conditions} \\$
- Common mode transient immunity in HIGH stage is the maximum tolerable negative dV_{CM}/dt on the trailing edge of the common mode impulse signal, V_{CM}, to assure that the output will remain HIGH
- 6. Common mode transient immunity in LOW stage is the maximum tolerable positive dV_{CM}/dt on the leading edge of the common mode impulse signal, V_{CM}, to assure that the output will remain LOW
- 7. Pulse Width Distortion is defined as $|T_{PHL} T_{PLH}|$ for any given device
- 8. 260°C for 10 seconds. Refer to the lead free solder reflow profile for more information
- 9. Derate linearly above 70°C free air temperature at a rate of 0.47mW / °C
- 10. Derate linearly above 70°C free air temperature at a rate of 4.8mW / °C

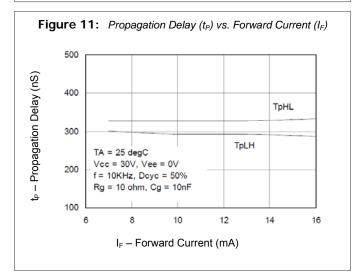


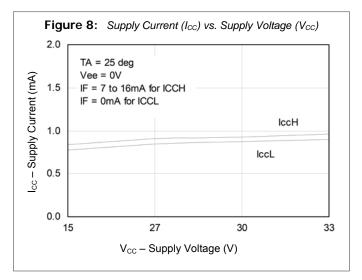

SG8080 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)

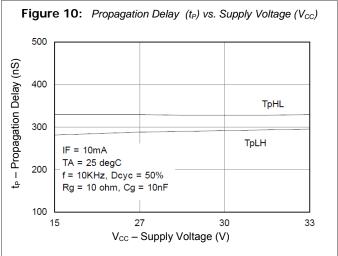


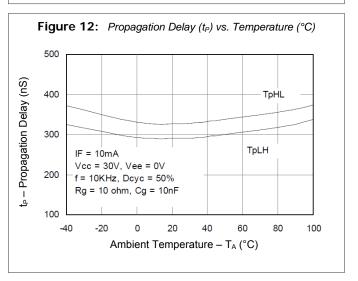


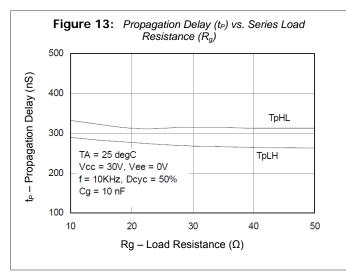


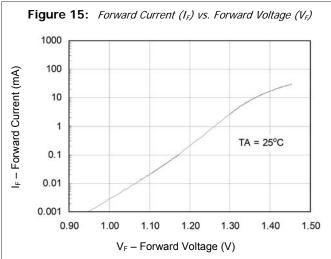


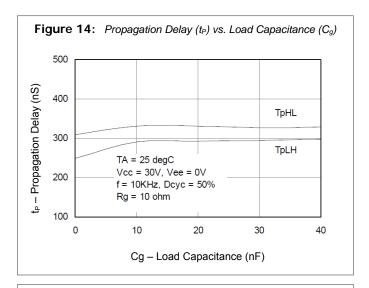


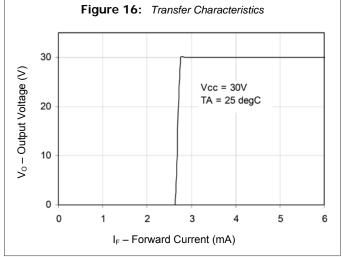

SG8080 Performance & Characteristics Plots, continued... T_A = 25°C (unless otherwise specified)



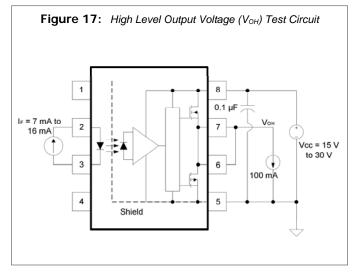


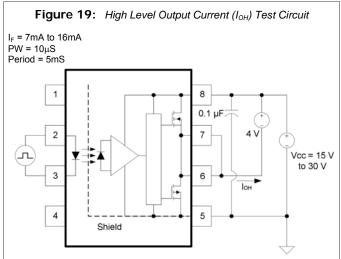


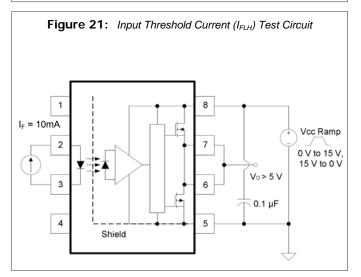


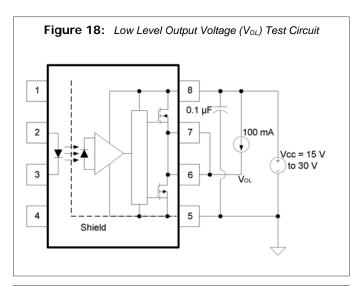


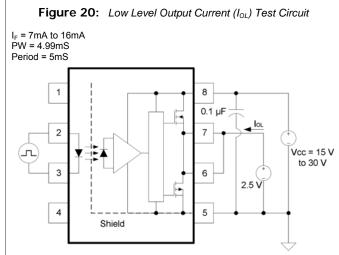
SG8080 Performance & Characteristics Plots, continued... T_A = 25°C (unless otherwise specified)

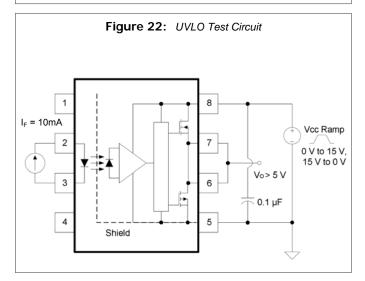


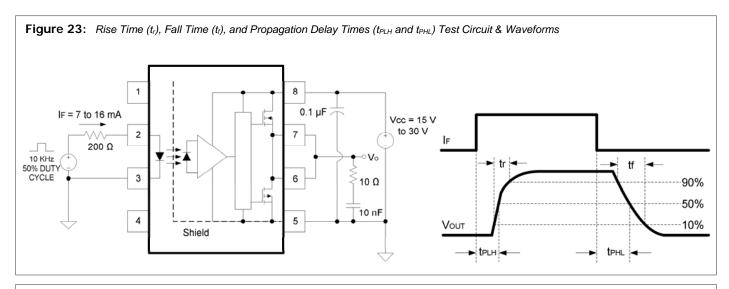


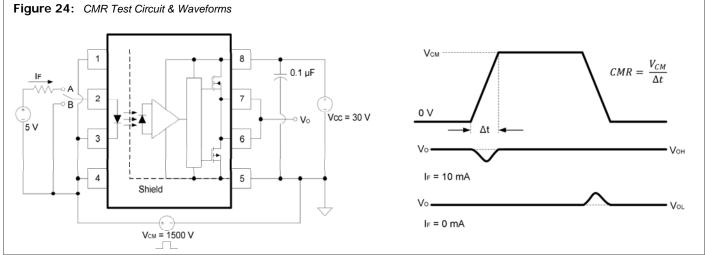




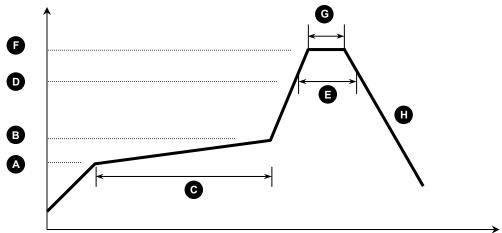

SG8080 Electrical Test Circuits







SG8080 Electrical Test Circuits, continued...



SG8080 Solder Reflow Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

Process Step	Description	Parameter	
Α	Preheat Start Temperature (°C)	150°C	
В	Preheat Finish Temperature (°C)	180°C	
С	Preheat Time (s)	90 - 120s	
D	Melting Temperature (°C)	230°C	
E	Time above Melting Temperature (s)	30s	
F	Peak Temperature, at Terminal (°C)	260°C	
G	Dwell Time at Peak Temperature (s)	10s	
Н	Cool-down (°C/s)	<6°C/s	

(2) Wave Solder:

Maximum Temperature: 260°C (at terminal)

Maximum Time: 10s

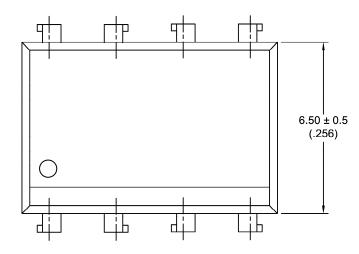
Pre-heating: 100 - 150°C (30 - 90s)

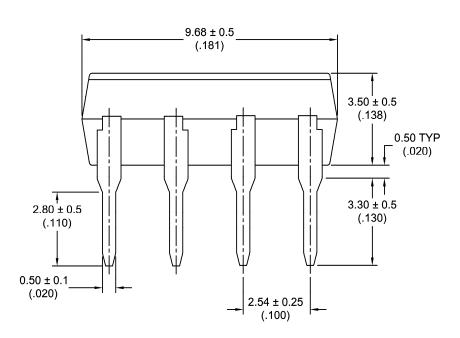
Single Occurrence

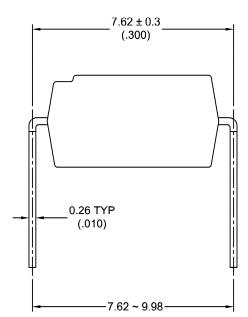
(3) Hand Solder:

Maximum Temperature: 350°C (at tip of soldering iron)

3s

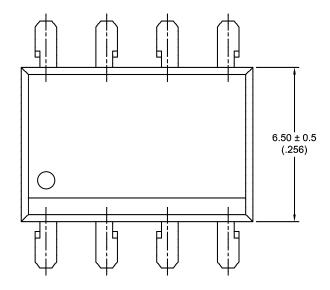

Maximum Time:

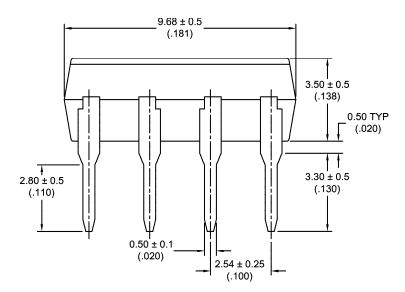

Single Occurrence

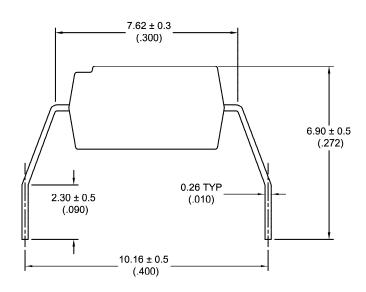


SG8080 Package Dimensions

8 PIN DIP Package

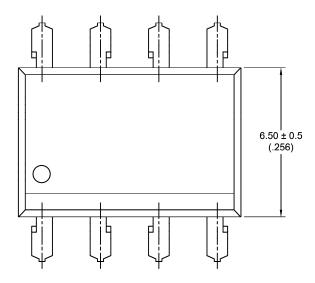


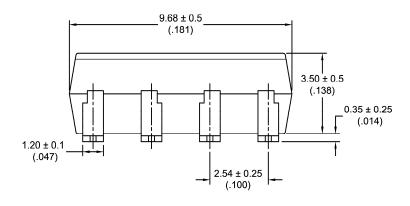


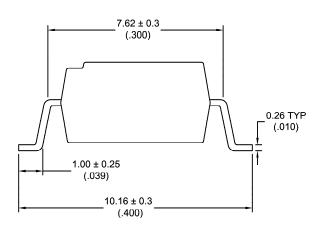


SG8080 Package Dimensions

8 PIN WIDE Lead Space Package (-H)

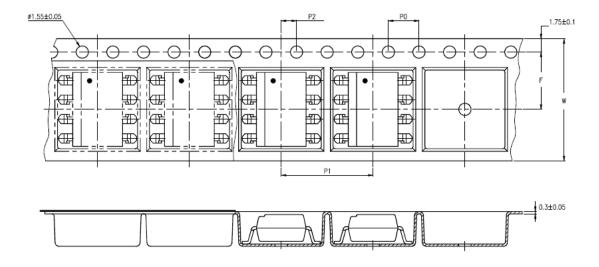




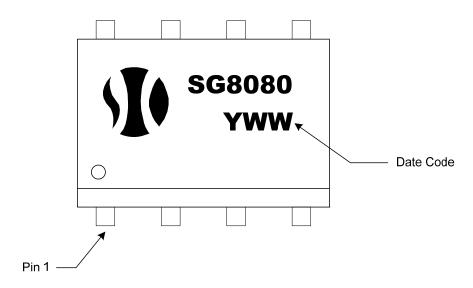


SG8080 Package Dimensions

8 PIN SMD Surface Mount Package (-S)



SG8080 Packaging Specifications


Tape & Reel Specifications (T&R)

Specification	Symbol	Dimensions, mm (inches)
Tape Width	W	16 ± 0.3 (0.63)
Sprocket Hole Pitch	P0	4 ± 0.1 (0.15)
Compartment Location	F P2	7.5 ± 0.1 (0.295) 2 ± 0.1 (0.079)
Compartment Pitch	P1	12 ± 0.1 (0.472)

SG8080 Packaging Marking

SG8080 Package Weights

Device	Single Unit	Full Tube (50pcs)	Full Pouch (10 tubes)	Full Reel (1000pcs)
SG8080	0.54	48	490	-
SG8080-S	0.53	46	470	-
SG8080-H	0.55	49	500	-
SG8080-STR	0.53	-	-	480

Note: All weights above are in GRAMS, and include packaging materials where applicable

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices. SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.