

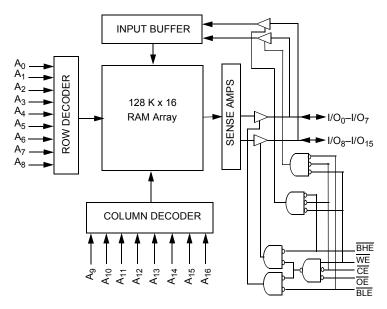
2-Mbit (128 K × 16) Static RAM

Features

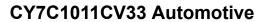
- Temperature ranges
 □ Automotive-E: -40 °C to 125 °C
- High speed

 □ t_{AA} = 10 ns
- Low active power □ 468 mW (max)
- 2.0 V data retention
- Automatic power down when deselected
- Independent control of upper and lower bits
- Easy memory expansion with Chip Enable (CE) and Output Enable (OE) features
- Available in Pb-free 48-ball grid array (BGA) package

Functional Description


The CY7C1011CV33 Automotive is a high performance complementary metal oxide semiconductor (CMOS) static RAM organized as 131,072 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected.

To write to the device, take $\overline{\text{CE}}$ and Write Enable ($\overline{\text{WE}}$) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₆).

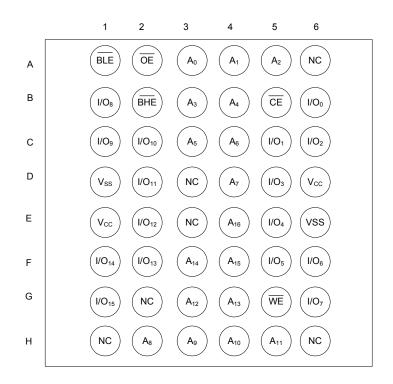

To read from the device, take $\overline{\text{CE}}$ and $\overline{\text{OE}}$ LOW while forcing the Write Enable (WE) HIGH. If BLE is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. For more information, see the Truth Table on page 10 for a complete description of Read and Write modes.

The input and output pins (I/O $_0$ through I/O $_{15}$) are <u>placed</u> in a high impedance state when the device is des<u>elected</u> (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

Logic Block Diagram

Cypress Semiconductor Corporation
Document Number: 001-86374 Rev. *B

Contents


Pin Configuration	3
Selection Guide	
Maximum Ratings	
Operating Range	4
Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	
Switching Characteristics	
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	12
Acronyms	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	15
PSoC® Solutions	15
Cypress Developer Community	15
Technical Support	15

Pin Configuration

Figure 1. 48 ball BGA pinout [1]

Selection Guide

Description			Unit
Maximum access time		10	ns
Maximum operating current	Automotive-E	130	mA
Maximum CMOS standby current	Automotive-E	15	mA

Note

^{1.} NC pins are not connected on the die.

Maximum Ratings

DC voltage applied to outputs in High Z state $^{[2]}$ -0.5 V to V $_{CC}\text{+}$ 0.5 V

DC input voltage [2]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, method 3015)	> 2001 V
Latch up current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{CC}
Automotive-E	–40 °C to +125 °C	$3.3~V\pm10\%$

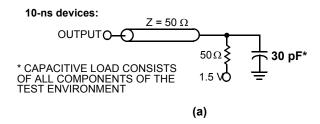
Electrical Characteristics

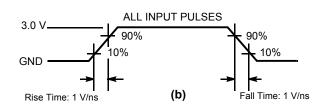
Over the Operating Range

Doromotor	Description	Toot Condition	Test Conditions			Unit
Parameter	Description	S	Min	Max	Oilit	
V _{OH}	Output HIGH voltage	V_{CC} = Min, I_{OH} = -4.0 mA		2.4	-	V
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA		_	0.4	V
V _{IH}	Input HIGH voltage			2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW voltage ^[2]			-0.3	0.8	V
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$	Automotive-E	-20	+20	μΑ
I _{OZ}	Output leakage current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ & \text{Output disabled} \end{aligned}$	Automotive-E	-20	+20	μА
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, I_{OUT} = 0 mA, f = f_{MAX} = 1/ t_{RC}	Automotive-E		130	mA
I _{SB1}	Automatic CE power down current – TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f = f}_{\text{MAX}} \end{aligned}$	Automotive-E		45	mA
I _{SB2}	Automatic CE power down current – CMOS inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \ \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \text{ or} \\ &\text{V}_{\text{IN}} \leq 0.3 \text{ V}, \text{ f} = 0 \end{aligned}$	Automotive-E		15	mA

^{2.} V_{IL} (min) = -2.0 V for pulse durations of less than 20 ns.

Capacitance


Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	8	pF
C _{OUT}	Output capacitance		8	pF


Thermal Resistance

Parameter [3]	Description	Test Conditions	48-pin BGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	38.15	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		9.15	°C/W

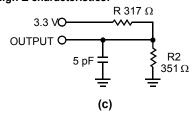

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms [4]

High-Z characteristics:

Notes

- 3. Tested initially and after any design or process changes that may affect these parameters.
- 4. AC characteristics (except High Z) for 10-ns parts are tested using the load conditions shown in Figure 2 (a). High Z characteristics are tested for all speeds using the test load shown in Figure 2 (b).

Switching Characteristics

Over the Operating Range

Parameter [5]	Description	-	-10		
Parameter [9]	Description	Min	Max	Unit	
Read Cycle		'			
t _{power} ^[6]	V _{CC} (typical) to the first access	1	_	μS	
t _{RC}	Read cycle time	10	_	ns	
t _{AA}	Address to data valid	_	10	ns	
t _{OHA}	Data hold from address change	3	-	ns	
t _{ACE}	CE LOW to data valid	_	10	ns	
t _{DOE}	OE LOW to data valid	_	6	ns	
t _{LZOE}	OE LOW to Low Z [7]	0	_	ns	
t _{HZOE}	OE HIGH to High Z [7, 8]	_	5	ns	
t _{LZCE}	CE LOW to Low Z [7]	3	-	ns	
t _{HZCE}	CE HIGH to High Z [7, 8]	_	5	ns	
t _{PU}	CE LOW to power up	0	-	ns	
t _{PD}	CE HIGH to power down	_	10	ns	
t _{DBE}	Byte enable to data valid	_	6	ns	
t _{LZBE}	Byte enable to Low Z	0	-	ns	
t _{HZBE}	Byte disable to High Z	_	6	ns	
Write Cycle [9,	10]		•		
t _{WC}	Write cycle time	10	_	ns	
t _{SCE}	CE LOW to write end	7	-	ns	
t _{AW}	Address setup to write end	7	_	ns	
t _{HA}	Address hold from write end	0	-	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	7	-	ns	
t _{SD}	Data setup to write end	5	-	ns	
t _{HD}	Data hold from write end	0	-	ns	
t _{LZWE}	WE HIGH to Low Z [7]	3	-	ns	
t _{HZWE}	WE LOW to High Z [7, 8]	-	5	ns	
t _{BW}	Byte enable to end of write	7	_	ns	

- Notes

 Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

 test conditions assume signal transition time of the provided to the first memory access is performed.

 test conditions assume signal transition is nearly to the first memory access is performed.

 test conditions assume signal transition is performed.

 The input data setup part (c) of Figure 2 on page 5. Transition is measured ±500 mV from steady state voltage.

 The internal virte time of the memory is defined by the overlap of CE LOW, WE LOW, and BHE/BLE LOW. CE, WE, and BHE/BLE acceptance to the level of the setup page 5. Transition is measured ±500 mV from steady state voltage.

 The internal virte time of the memory is defined by the overlap of CE LOW, WE LOW, and BHE

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) [11, 12]

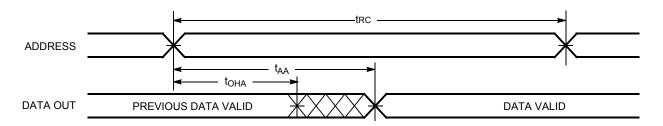
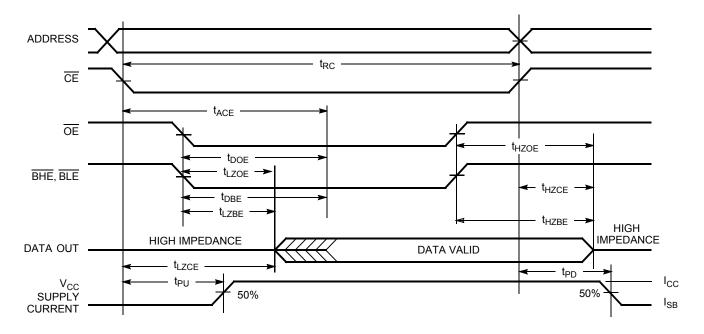



Figure 4. Read Cycle No. 2 (OE Controlled) [12, 13]

^{11. &}lt;u>Devi</u>ce is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u>, and/or <u>BLE</u> = V_{IL}. 12. <u>WE</u> is HIGH for read cycle.

^{13.} Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 (CE Controlled) [14, 15]

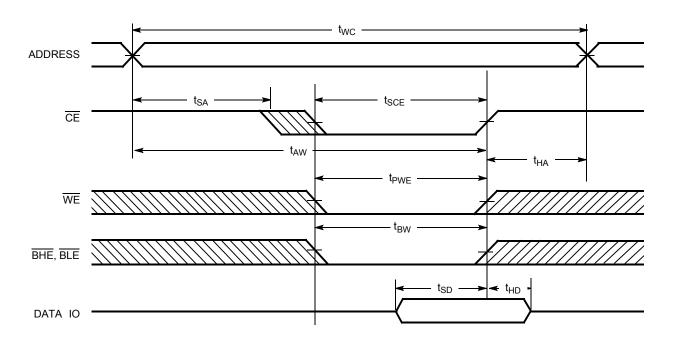
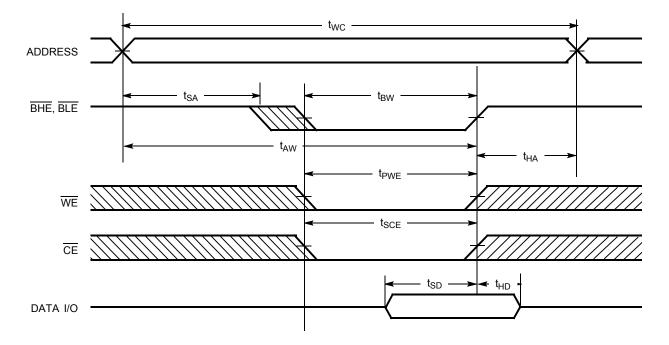
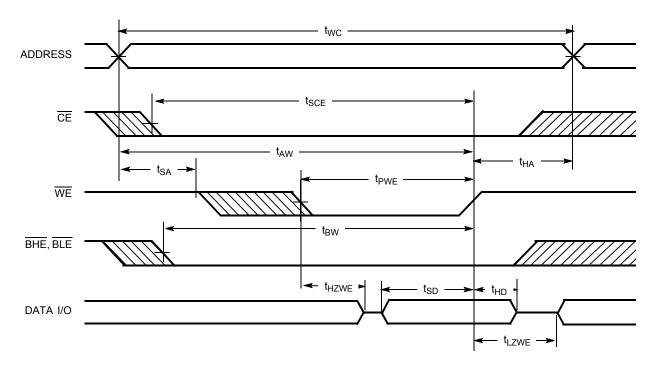



Figure 6. Write Cycle No. 2 (BLE or BHE Controlled)

Notes

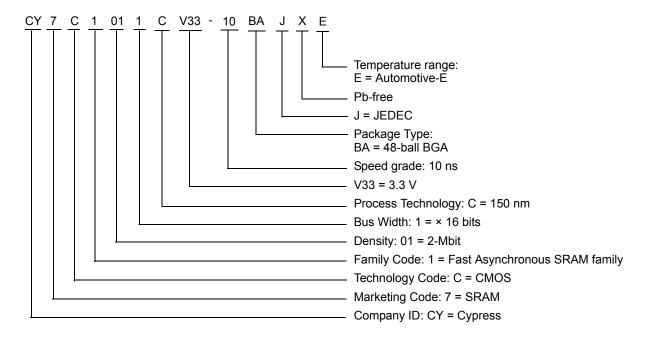

14. Data I/O is high impedance if \overline{OE} , \overline{BHE} , and/or \overline{BLE} = V_{IH} .

15. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

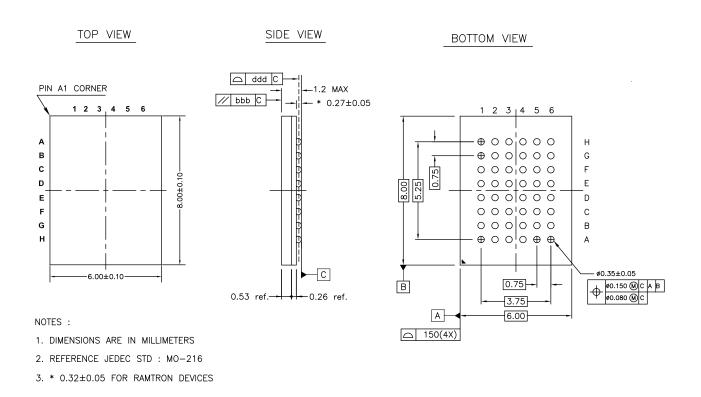
Figure 7. Write Cycle No. 3 (WE Controlled, LOW)

Truth Table


CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – all bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read – lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read – upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – all bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write – lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write – upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1011CV33-10BAJXE	001-85259	48-ball BGA (Pb-free)	Automotive-E


Ordering Code Definitions

Package Diagrams

Figure 8. 48-ball FBGA (6 × 8 × 1.2 mm) BA48M/BK48M (0.35 mm Ball Diameter) Package Outline, 001-85259

001-85259 *A

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CMOS	Complementary Metal Oxide Semiconductor
CE	Chip Enable
I/O	Input/Output
ŌĒ	Output Enable
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
mm	millimeter			
ms	millisecond			
mV	millivolt			
mW	milliwatt			
ns	nanosecond			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C1011CV33 Automotive, 2-Mbit (128 K × 16) Static RAM Document Number: 001-86374					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	3924592	TAVA	03/12/2013	New data sheet.	
*A	4055409	MEMJ	07/10/2013	Changed status from Preliminary to Final. Updated Package Diagrams: spec 001-85259 – Changed revision from ** to *A. Updated in new template.	
*B	4075559	MEMJ	07/24/2013	Updated Ordering Information: No change in part numbers. Changed package diagram spec number from "51-85087" to "001-85259" in "Package Diagram" column.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.