

BIPOLAR ANALOG INTEGRATED CIRCUITS $\mu PC2709TB$

5 V, SUPER MINIMOLD SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER

DESCRIPTION

The μ PC2709TB is a silicon monolithic integrated circuits designed as 1st IF amplifier for DBS tuners. This IC is packaged in super minimold package which is smaller than conventional minimold.

The μ PC2709TB has compatible pin connections and performance to μ PC2709T of conventional minimold version. So, in the case of reducing your system size, μ PC2709TB is suitable to replace from μ PC2709T.

These IC is manufactured using NEC's 20 GHz f⊤ NESAT[™]III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- High-density surface mounting : 6-pin super minimold package (2.0 × 1.25 × 0.9 mm)
- Wideband response : fu = 2.3 GHz TYP. @3 dB bandwidth
- Medium output power : Po (sat) = +11.5 dBm@f = 1 GHz with external inductor
- Supply voltage : Vcc = 4.5 to 5.5 V
- Power gain : GP = 23 dB TYP. @f = 1 GHz
- Port impedance : input/output 50 Ω

APPLICATIONS

- 1st IF amplifiers in DBS converters
- RF stage buffer in DBS tuners, etc.

ORDERING INFORMATION (PB-Free)

Part Number	Package	Marking	Supplying Form
μРС2709ТВ-ЕЗ-А	6-pin super minimold	C1E	Embossed tape 8 mm wide. 1, 2, 3 pins face the perforation side of the tape. Qty 3 kpcs/reel.

Remark To order evaluation samples, please contact your local sales office (Part number for sample order: μ PC2709TB-A).

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

Pin No.	Pin Name	
1	INPUT	
2	GND	
3	GND	
4	OUTPUT	
5	GND	
6	Vcc	

* PRODUCT LINE-UP OF 5 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER $(T_A = +25^{\circ}C, V_{CC} = V_{out} = 5.0 \text{ V}, Z_S = Z_L = 50 \Omega)$

Part No.	f _u (GHz)	Po _(sat) (dBm)	G⊦ (dB)	NF (dB)	lcc (mA)	Package	Marking
μPC2708T	2.0	. 10.0	15	6.5	06	6-pin minimold	C1D
μPC2708TB	2.9	+10.0	15	@f = 1 GHz	20	6-pin super minimold	CID
μPC2709T	0.0	. 11 5	00	5	05	6-pin minimold	015
μPC2709TB	2.3	+11.5	23	@f = 1 GHz	25	6-pin super minimold	OIE
μPC2710T	1.0	19.5	22	3.5	22	6-pin minimold	C1E
μPC2710TB	1.0	+13.5		@f = 0.5 GHz	22	6-pin super minimold	CIF
μPC2776T	0.7	. 9 5	00	6.0	05	6-pin minimold	C01
μPC2776TB	2.7	+6.5	23	@f = 1 GHz	20	6-pin super minimold	U2L

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

Caution The package size distinguishes between minimold and super minimold.

SYSTEM APPLICATION EXAMPLE

EXAMPLE OF DBS CONVERTERS

EXAMPLE OF 900 MHz BAND, 1.5 GHz BAND DIGITAL CELLULAR TELEPHONE

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
1	INPUT	_	1.05	Signal input pin. A internal matching circuit, configured with resistors, enables 50Ω connection over a wide band. A multi-feedback circuit is designed to cancel the deviations of hre and resistance. This pin must be coupled to signal source with capacitor for DC cut.	© Vcc
4	OUTPUT	Voltage as same as Vcc through external inductor	_	Signal output pin. The inductor must be attached between Vcc and output pins to supply current to the internal output transistors.	
6	Vcc	4.5 to 5.5	-	Power supply pin, which biases the internal input transistor. This pin should be externally equipped with bypass capacitor to minimize its impedance.	
2 3 5	GND	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be con- nected together with wide ground pattern to decrease impedance defference.	

Note Pin voltage is measured at Vcc = 5.0 V

×

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	$T_{A} = +25^{\circ}C$, Pin 4 and 6	6	V
Total Circuit Current	Icc	T _A = +25°C	60	mA
Power Dissipation	Po	Mounted on double copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85°C)	270	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin	T _A = +25°C	+10	dBm

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Supply Voltage	Vcc	4.5	5.0	5.5	V	The same voltage should be applied to pin 4 and 6.
Operating Ambient Temperature	TA	-40	+25	+85	°C	

ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No input signal	19	25	32	mA
Power Gain	G₽	f = 1 GHz	21.0	23.0	26.5	dB
Saturated Output Power	Po (sat)	f = 1 GHz, P _{in} = 0 dBm	+9.0	+11.5	-	dBm
Noise Figure	NF	f = 1 GHz	-	5.0	6.5	dB
Upper Limit Operating Frequency	fu	3 dB down below flat gain at f = 0.1 GHz	2.0	2.3	-	GHz
Isolation	ISL	f = 1 GHz	26	31	-	dB
Input Return Loss	RLin	f = 1 GHz	7	10	-	dB
Output Return Loss	RLout	f = 1 GHz	7	10	-	dB
Gain Flatness	ΔGp	f = 0.1 to 1.8 GHz	_	±1.0	-	dB

TEST CIRCUIT

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS EXAMPLE OF ACTURAL APPLICATION COMPONENTS

	Туре	Value
C1 to C2	Bias Tee	1 000 pF
C₃	Capacitor	1 000 pF
L	Bias Tee	1 000 nH

	Туре	Value	Operating Frequency
C1 to C3	Chip capacitor	1 000 pF	100 MHz or higher
L	Chip inductor	300 nH	10 MHz or higher
		100 nH	100 MHz or higher
		10 nH	1.0 GHz or higher

INDUCTOR FOR THE OUTPUT PIN

The internal output transistor of this IC consumes 20 mA, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select large value inductance, as listed above.

The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor make output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable.

CAPACITORS FOR THE Vcc, INPUT, AND OUTPUT PINS

Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitance are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

To obtain a flat gain from 100 MHz upwards, 1 000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are determined by equation, $C = 1/(2 \pi Rfc)$.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	Value
С	1 000 pF
L	300 nH

Notes

- 1. $30 \times 30 \times 0.4$ mm double sided copper clad polyimide board.
- 2. Back side: GND pattern
- 3. Solder plated on pattern
- 4. O (): Through holes

For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATION OF SILICON MEDIUM-POWER HIGH-FREQUENCY AMPLIFIER MMIC (P12152E).

3.0

3.0

Frequency f (GHz)

CIRCUIT CURRENT vs. CIRCUIT CURRENT vs. SUPPLY VOLTAGE **OPERATING AMBIENT TEMPERATURE** 40 40 No input signal Vcc = 5.0 V No input signal 35 35 30 30 Circuit Current loc (mA) Circuit Current Icc (mA) 25 25 20 20 15 15 10 10 5 5 <u>0</u> 60 0 5 -40 -20 +20 +40 +60 +80 +100 3 4 6 0 Supply Voltage Vcc (V) Operating Ambient Temperature T_A (°C) NOISE FIGURE, POWER GAIN POWER GAIN vs. FREQUENCY vs. FREQUENCY 8 I 30 30 Vcc = 5.0 V -40°C 5.0 V Vcc = 5.5 TA = +25°C 25 (dB) Noise Figure NF (dB) 25 (dB) . 4.5 V GP ģ Ą ģ +85°C Power Gain Gain 20 6 20 5.5 V Vcc = 5.0 V Power NF 15 15 4.5 10L 0.1 10L 0.1 4 0.3 3.0 0.3 1.0 1.0 Frequency f (GHz) Frequency f (GHz) INPUT RETURN LOSS, OUTPUT **ISOLATION vs. FREQUENCY RETURN LOSS vs. FREQUENCY** 0 0 Vcc = 5.0 VVcc = 5.0 VInput Return Loss RLin (dB) Output Return Loss RLout (dB) -10 A | Isolation ISL (dB) RI in RLou -20 -20 -30 -30 -40 -40 -50L -50 L 0.1 0.3 3.0 0.3 1.0 1.0

Frequency f (GHz)

TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°C)

Remark The graphs indicate nominal characteristics.

S-PARAMETERS (TA = +25°C, Vcc = Vout = 5.0 V)

S11-FREQUENCY

S22-FREQUENCY

TYPICAL S-PARAMETER VALUES ($T_A = +25^{\circ}C$)

Vcc = Vout = 5.0 V, Icc = 26 mA

Frequency	S	511	5	S 21	S	12	S	S22	К
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	
100.0000	0.227	0.2	13.698	-4.5	0.027	-1.0	0.196	0.9	1.37
200.0000	0.239	1.0	13.724	-9.6	0.027	3.1	0.207	2.2	1.36
300.0000	0.245	2.9	13.830	-14.5	0.026	4.7	0.212	4.1	1.38
400.0000	0.244	2.5	13.998	-19.9	0.027	7.8	0.223	3.4	1.32
500.0000	0.243	1.5	14.109	-25.0	0.026	9.8	0.234	2.1	1.33
600.0000	0.247	-1.5	14.246	-30.4	0.027	11.9	0.252	-0.4	1.26
700.0000	0.265	-3.2	14.538	-35.5	0.028	13.6	0.270	-2.3	1.20
800.0000	0.284	-3.6	14.703	-41.3	0.028	14.9	0.287	-4.6	1.15
900.0000	0.301	-3.3	15.051	-47.0	0.028	17.2	0.298	-7.4	1.10
1000.0000	0.305	-2.4	15.331	-53.5	0.029	18.8	0.309	-11.9	1.05
1100.0000	0.299	-3.2	15.605	-60.0	0.029	20.9	0.322	-17.1	1.04
1200.0000	0.300	-6.3	15.773	-66.7	0.029	22.5	0.336	-21.5	1.01
1300.0000	0.314	-10.3	16.152	-74.0	0.030	23.8	0.353	-24.8	0.95
1400.0000	0.328	-14.4	16.282	-81.0	0.030	26.1	0.353	-28.8	0.93
1500.0000	0.354	-17.3	16.337	-89.3	0.032	25.6	0.368	-35.5	0.86
1600.0000	0.359	-19.5	16.370	-96.5	0.031	26.8	0.370	-41.8	0.86
1700.0000	0.373	-22.1	16.256	-104.5	0.033	28.0	0.382	-46.9	0.81
1800.0000	0.371	-26.8	15.977	-112.7	0.032	29.3	0.381	-52.8	0.83
1900.0000	0.379	-31.1	15.529	-120.5	0.033	31.3	0.378	-57.8	0.83
2000.0000	0.386	-36.0	15.307	-128.1	0.034	31.0	0.373	-64.1	0.82
2100.0000	0.387	-39.5	14.745	-135.9	0.033	32.2	0.366	-70.8	0.85
2200.0000	0.374	-43.8	14.212	-143.7	0.033	30.5	0.363	-78.1	0.90
2300.0000	0.360	-48.7	13.633	-151.3	0.033	33.9	0.353	-83.0	0.94
2400.0000	0.339	-55.4	12.846	-158.7	0.032	35.5	0.331	-90.0	1.06
2500.0000	0.338	-62.0	11.990	-165.5	0.033	38.0	0.318	-95.6	1.11
2600.0000	0.334	-66.0	11.265	-172.1	0.033	39.1	0.304	-102.5	1.20
2700.0000	0.330	-69.0	10.560	-177.8	0.033	40.8	0.295	-108.3	1.25
2800.0000	0.311	-69.9	9.942	176.2	0.033	43.5	0.282	-113.7	1.36
2900.0000	0.291	-72.5	9.432	171.3	0.035	44.9	0.267	-118.6	1.40
3000.0000	0.258	-76.5	8.818	166.5	0.035	47.4	0.246	-125.1	1.55
3100.0000	0.240	-80.6	8.353	161.9	0.035	53.4	0.225	-131.2	1.64

***** PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the $V{\rm cc}$ pin.
- (4) The inductor (L) must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
- (5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL** (C10535E).