MB90895 Series

(Continued)

- Instruction system best suited to controller
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator
- Instruction system compatible with high-level language (C language) and multitask
- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions
- Increased processing speed
- 4-byte instruction queue
- Powerful interrupt function with 8 levels and 34 factors
- Automatic data transfer function independent of CPU
- Extended intelligent l/O service function ($\mathrm{El}^{2} \mathrm{OS}$): Maximum of 16 channels

- Low power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU intermittent operation mode

- Process

- CMOS technology
- I/O port
- General-purpose input/output port (CMOS output) :

MB90F897/Y	$: 34$ ports (including 4 high-current output ports)
MB90F897S/YS $: 36$ ports (including 4 high-current output ports)	

- Timer
- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16 -bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
- 16-bit free run timer: 1 channel
- 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16-bit free run timer by detection of an edge on pin input.

- CAN controller: 1 channel
- Complied with Ver 2.0A and Ver 2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up
- UART0 (SCI), UART1(SCI): 2 channels
- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.
- DTP/External interrupt: 4 channels, CAN wake-up: 1channel
- Module for activation of extended intelligent I/O service (EI²OS), and generation of external interrupt.

- Delay interrupt generator module

- Generates interrupt request for task switching.
- 8/10-bit A/D converter: 8 channels
- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: $6.125 \mu \mathrm{~s}$ (at $16-\mathrm{MHz}$ machine clock, including sampling time)

- Program patch function

- Address matching detection for 2 address pointers.

MB90895 Series

(Continued)

	MB90F897 MB90F897S MB90V495G MB90F897Y (Under development) MB90F897YS (Under development)
DTP/External interrupt	Number of inputs: 4 Activated by rising edge, falling edge, " H " level or " L " level input. External interrupt or extended intelligent I/O service (EI ${ }^{2} O S$) is available.
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: $6.125 \mu \mathrm{~s}$ (at 16-MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode : Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode : Conversion of selected channel is stopped and activated alternately.
UART0 (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 1,202 bps to 62,500 bps Communication is allowed by bi-directional serial communication function and master/slave type connection.
UART1 (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps to 2 Mbps Clock-asynchronous transfer: 9,615 bps to 500 kbps Communication is allowed by bi-directional serial communication function and master/slave type connection.
CAN	Complied with Ver 2.0A and Ver 2.0B CAN specifications. 8 built-in message buffers. Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock) CAN wake-up

*1 : Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).
*2 : MB90F897S/YS

PACKAGES AND PRODUCT MODELS

Package	MB90F897/S/Y/YS
FPT-48P-M26	\bigcirc

: Yes, \times : No
Note : Refer to "■ PACKAGE DIMENSION" for details of the package.

MB90895 Series

PRODUCT COMPARISON

Memory space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000н to FFFFFFF is viewed on 00 bank and an image of FE0000н to FF3FFFH is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F897/S/Y/YS, an image from FF4000н to FFFFFFн is viewed on 00 bank and an image of FF0000н to FF3FFFH is viewed only on FF bank.

MB90895 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-48P-M26)
*: MB90F897/Y : X1A, X0A
MB90F897S/YS : P36, P35

MB90895 Series

PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
1	AVcc	-	Vcc power input pin for A/D converter.
2	AVR	-	Power (Vreft) input pin for A/D converter. Use as input for Vcc or lower.
3 to 10	P50 to P57	E	General-purpose input/output ports.
	AN0 to AN7		Functions as analog input pin for A/D converter. Valid when analog input setting is "enabled."
11	P37	D	General-purpose input/output ports.
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.
12	P20	D	General-purpose input/output ports.
	TIN0		Function as an event input pin for reload timer 0 . Use the pin by setting as input port.
13	P21	D	General-purpose input/output ports.
	TOT0		Function as an event output pin for reload timer 0 . Valid only when output setting is "enabled."
14	P22	D	General-purpose input/output ports.
	TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.
15	P23	D	General-purpose input/output ports.
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."
16 to 19	P24 to P27	D	General-purpose input/output ports.
	INT4 to INT7		Functions as external interrupt input pin. Use the pin by setting as input port.
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.
21	MD1	C	Input pin for specifying operation mode. Connect directly to Vcc.
22	MD0	C	Input pin for specifying operation mode. Connect directly to Vcc.
23	$\overline{\mathrm{RST}}$	B	External reset input pin.
24	Vcc	-	Power supply (5 V) input pin.
25	Vss	-	Power supply (0 V) input pin.
26	C	-	Capacitor pin for stabilizing power supply. Connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$.
27	X0	A	Pin for high-rate oscillation.
28	X1	A	Pin for high-rate oscillation.
29 to 32	P10 to P13	D	General-purpose input/output ports.
	IN0 to IN3		Functions as trigger input pins of input capture channels 0 to 3 . Use the pins by setting as input ports.

(Continued)

MB90895 Series

(Continued)

Pin No.	Pin name	$\begin{gathered} \hline \text { Circuit } \\ \text { type } \end{gathered}$	Function
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.
	PPG0 to PPG3		Functions as output pin of PPG timers 01 and 23. Valid when output setting is "enabled."
37	P40	D	General-purpose input/output port.
	SIN1		Serial data input pin for UART1. Use the pin by setting as input port.
38	P41	D	General-purpose input/output port.
	SCK1		Serial clock input/output pin for UART1. Valid only when serial clock input/ output setting on UART1 is "enabled."
39	P42	D	General-purpose input/output port.
	SOT1		Serial data output pin for UART1. Valid only when serial data output setting on UART1 is "enabled."
40	P43	D	General-purpose input/output port.
	TX		Transmission output pin for CAN. Valid only when output setting is "enabled."
41	P44	D	General-purpose input/output port.
	RX		Receive input pin for CAN. Use the pin by setting as input port.
42	P30	D	General-purpose input/output port.
	SOT0		Serial data output pin for UARTO. Valid only when serial data output setting on UARTO is "enabled."
43	P31	D	General-purpose input/output port.
	SCK0		Serial clock input/output pin for UARTO. Valid only when serial clock input/ output setting on UARTO is "enabled."
44	P32	H	General-purpose input/output port.
	SIN0		Serial data input/output pin for UART0. Use the pin by setting as input port.
45	P33	D	General-purpose input/output port.
46	X0A*	A	Pin for low-rate oscillation.
	P35*		General-purpose input/output port.
47	X1A*	A	Pin for low-rate oscillation.
	P36*		General-purpose input/output port.
48	AVss	-	Vss power supply input pin for A/D converter.

[^0]
MB90895 Series

I/O CIRCUIT TYPE

| Type | | Remarks
 • High-rate oscillation feedback
 resistor, approx. $1 \mathrm{M} \Omega$ |
| :---: | :---: | :---: | :---: |
| • Low-rate oscillation feedback | | |
| resistor, approx. $10 \mathrm{M} \Omega$ | | |

(Continued)
|

MB90895 Series

- Caution on Operations during PLL Clock Mode

- If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

- Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A / D converter and analog input before turning off the digital power supply.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)
- Handling Pins When A/D Converter is Not Used
- If the A / D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss".
- Note on Turning on Power
- For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50μ s of voltage rising time (between 0.2 V and 2.7 V) when turning on the power.
- Stabilization of supply voltage
- A sudden change in the supply voltage may cause the device to malfunction even within the specified V_{cc} supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.
For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies ($50 / 60 \mathrm{~Hz}$) fall below 10% of the standard V cc supply voltage and the coefficient of fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.
- Support for $+\mathbf{1 2 5}^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$
- Users considering application exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ are advised to contact their representatives beforehand for reliability limitations.

MB90895 Series

BLOCK DIAGRAM

MB90895 Series

MEMORY MAP

1. Memory allocation of MB90895

MB90895 series model outputs 24-bit wide internal address bus and up to 24 -bit of external address bus. A maximum of 16 Mbyte memory space of external access memory is accessible.

2. Memory map

: Internal access memory
: Access disallowed

* : On MB90F897/S/Y/YS, to read "FE0000н" to "FEFFFFн" is to read out "FF0000" to "FFFFFFн".

Note : When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model. $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ assigns the same low order 16 -bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.
For example, when accessing to " 00 C 000 h ", ROM data at "FFC000н" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000н" to "FFFFFFF"" is viewed on " 004000 н" to " 00 FFFFF" image, store a ROM data table in area "FF4000н" to "FFFFFFн."

MB90895 Series

I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
000000н	(Reserved area) *				
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W	Port 3	ХХХХХХХХХв
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXX
$\begin{array}{\|c\|} \hline 00000 \mathrm{H}_{\mathrm{H}} \\ \text { to } \\ 000010_{\mathrm{H}} \end{array}$	(Reserved area) *				
000011н	DDR1	Port 1 direction data register	R/W	Port 1	00000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	00000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000X0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	XXX00000в
000015 ${ }^{\text {H }}$	DDR5	Port 5 direction data register	R/W	Port 5	00000000в
$\begin{array}{\|c\|} \hline 000016 н \\ \text { to } \\ 00001 \text { A }_{H} \end{array}$	(Reserved area) *				
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	1111111в
$\begin{array}{\|c\|} \hline 00001 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00001 \mathrm{~F}_{\mathrm{H}} \end{array}$	(Reserved area) *				
000020н	SMR0	Serial mode register 0	R/W	UARTO	00000000в
000021н	SCR0	Serial control register 0	R/W, W		00000100в
000022н	$\begin{aligned} & \hline \text { SIDR0/ } \\ & \text { SODRO } \end{aligned}$	Serial input data register $0 /$ Serial output data register 0	R, W		ХХХХХХХХХв
000023н	SSR0	Serial status register 0	R, R/W		00001X00в
000024н	CDCR0	Communication prescaler control register 0	R/W		0XXX1111в
000025н	SES0	Serial edge selection register 0	R/W		XXXXXXX0в
000026н	SMR1	Serial mode register 1	R/W	UART1	00000000в
000027H	SCR1	Serial control register 1	R/W, W		00000100 в
000028H	$\begin{aligned} & \hline \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	Serial input data register 1/ Serial output data register 1	R, W		ХХХХХХХХХв
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан	(Reserved area) *				
00002Bн	CDCR1	Communication prescaler control register 1	R/W	UART1	0XXX0000в

(Continued)

MB90895 Series

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
$\begin{aligned} & \hline 00002 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 00002 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	(Reserved area) *				
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	00000000в
000031н	EIRR	DTP/External interrupt source register	R/W		ХХХХХХХХХв
000032н	ELVR	Detection level setting register	R/W		00000000в
000033н			R/W		00000000в
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D converter	00000000в
000035н			R/W, W		00000000в
000036н	ADCR	A/D data register	W, R		Х XXXXXXX $^{\text {¢ }}$
000037н			R		00101XXX
$\begin{gathered} 000038 \text { н } \\ \text { to } \\ 00003 \text { Eн }^{2} \end{gathered}$	(Reserved area) *				
00003FH	PSCCR	PLL/Subclock control register	R/W, W	Clock	XXXX0000в
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/1	0X000XX1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W		0X000001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XХв
000043н	(Reserved area) *				
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/3	0X000XX1в
000045 ${ }^{\text {H }}$	PPGC3	PPG3 operation mode control register	R/W, W		0X000001в
000046H	PPG23	PPG2/3 count clock selection register	R/W		000000XХв
$\begin{array}{\|c\|} \hline 000047 \mathrm{H} \\ \text { to } \\ 00004 \mathrm{~F}_{\mathrm{H}} \end{array}$	(Reserved area) *				

(Continued)

MB90895 Series

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
000050н	IPCP0	Input capture data register 0	R	16-bit input/output timer	ХХХХХХХХВ
000051н					ХХХХХХХХХв
000052 H	IPCP1	Input capture data register 1	R		ХХХХХХХХХ
000053н					XXXXXXXX
000054н	ICS01	Input capture control status register	R/W		00000000в
000055 ${ }^{\text {H }}$	ICS23				00000000в
000056н	TCDT	Timer counter data register	R/W		00000000в
000057H					00000000в
000058 H	TCCS	Timer counter control status register	R/W		00000000в
000059н		(Reserved	d area) *		
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output timer	XXXXXXXX ${ }_{\text {¢ }}$
00005Вн					XXXXXXXX
00005CH	IPCP3	Input capture data register 3	R		XXXXXXXX
00005D					ХХХХХХХХХв
$\begin{gathered} 00005 \text { Ен } \\ \text { to } \\ 000065 \text { H } \end{gathered}$	(Reserved area) *				
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	00000000в
000067H			R/W		XXXX0000в
000068н	TMCSR1		R/W	16-bit reload timer 1	00000000в
000069н			R/W		XXXX0000в
$\begin{aligned} & 00006 \text { Ан } \\ & \text { to } \\ & 00006 \mathrm{E} \end{aligned}$	(Reserved area) *				
00006F ${ }_{\text {H }}$	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1в
$\begin{gathered} \text { 000070н } \\ \text { to } \\ 00007 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	(Reserved area) *				
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	00000000в
000081н	(Reserved area) *				
000082н	TREQR	Send request register	R/W	CAN controller	00000000в
000083н	(Reserved area) *				
000084н	TCANR	Send cancel register	W	CAN controller	00000000в
000085 ${ }^{\text {H }}$	(Reserved area) *				
000086н	TCR	Send completion register	R/W	CAN controller	00000000в

(Continued)

MB90895 Series

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
000087н	(Reserved area) *				
000088н	RCR	Receive completion register	R/W	CAN controller	00000000в
000089н	(Reserved area) *				
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	00000000в
00008Вн	(Reserved area) *				
00008CH	ROVRR	Receive overrun register	R/W	CAN controller	00000000в
00008D	(Reserved area) *				
00008Ен	RIER	Receive completion interrupt permission register	R/W	CAN controller	00000000в
$\begin{array}{\|l} \hline 00008 \mathrm{~F}_{\mathrm{H}} \\ \text { to } \\ 00009 \mathrm{D}_{\mathrm{H}} \end{array}$	(Reserved area) *				
00009Ен	PACSR	Address detection control register	R/W	Address matching detection function	00000000в
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0в
0000AOH	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в
0000A2н	PILR	Port input level selection register	R/W	I/O	0000000Хв
$\begin{aligned} & \text { 0000АЗ } \\ & \text { to } \\ & 0000 \mathrm{~A} 7 \mathrm{H} \end{aligned}$	(Reserved area) *				
0000A8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111в
0000A9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100в
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1X001000в
$\begin{aligned} & \hline 0000 \mathrm{ABH}_{\mathrm{H}} \text { to } \\ & 0000 \mathrm{ADH} \end{aligned}$	(Reserved area) *				
0000АЕн	FMCS	Flash memory control status register	R,W,R/W	512K-bit flash memory	000X0000в
0000AFH	(Reserved area) *				

(Continued)

MB90895 Series

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
0000ВОн	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000В1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000В3н	ICR03	Interrupt control register 03			00000111в
0000B4н	ICR04	Interrupt control register 04			00000111в
0000B5	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000B7 ${ }_{\text {H }}$	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000BCH	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111 ${ }_{\text {b }}$
0000BFн	ICR15	Interrupt control register 15			00000111в
$\begin{array}{\|c\|} \hline 0000 \mathrm{C} 0_{H} \\ \text { to } \\ 0000 \mathrm{FF}_{\mathrm{H}} \end{array}$	(Reserved area) *				
001FFOH	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	ХХХХХХХХХв
001FF1H		Detection address setting register 0 (middle-order)			ХХХХХХХХв
001FF2н		Detection address setting register 0 (high-order)			ХХХХХХХХХв
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		ХХХХХХХХХв
001FF4H		Detection address setting register 1 (middle-order)			XXXXXXXX
001FF5 ${ }_{\text {H }}$		Detection address setting register 1 (high-order)			XXXXXXXX
003900н	TMR0/ TMRLR0	16-bit timer register 0/16-bit reload register 0	R,W	16-bit reload timer 0	ХХХХХХХХХв
003901н					ХХХХХХХХ ${ }_{\text {¢ }}$
003902н	TMR1/ TMRLR1	16-bit timer register 1/16-bit reload register 1	R,W	16-bit reload timer 1	ХХХХХХХХв
003903н					ХХХХХХХХв
$\begin{gathered} \hline 003904 \text { н } \\ \text { to } \\ 003909 \text { н } \end{gathered}$	(Reserved area) *				

(Continued)

MB90895 Series

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
$\begin{gathered} \hline 003 \mathrm{C} 2 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{C} 2 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	IDR7	ID register 7	R/W	CAN controller	$\begin{gathered} \hline \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & 003 \mathrm{C} 3 \mathrm{H}_{\mathrm{H}} \\ & 003 \mathrm{C} 31 \mathrm{H} \end{aligned}$	DLCR0	DLC register 0	R/W		$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { XXXXXXXXB } \end{aligned}$
$\begin{aligned} & \text { 003С32н } \\ & 003 \mathrm{C} 33 \mathrm{H} \end{aligned}$	DLCR1	DLC register 1	R/W		$\begin{aligned} & \text { XXXXXXXXB }_{\text {BXXX }} \\ & \text { XXXXXX } \end{aligned}$
$\begin{aligned} & 003 \mathrm{C} 34 \mathrm{H} \\ & 003 \mathrm{C} 35 \end{aligned}$	DLCR2	DLC register 2	R/W		$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { XXXXXXXXB } \end{aligned}$
$\begin{aligned} & 003 \mathrm{C} 36 \mathrm{H} \\ & 003 \mathrm{C} 37 \mathrm{H} \end{aligned}$	DLCR3	DLC register 3	R/W		$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXXX } \end{aligned}$
$\begin{aligned} & 003 \mathrm{C} 38 \mathrm{H} \\ & 003 \mathrm{C} 39_{\mathrm{H}} \end{aligned}$	DLCR4	DLC register 4	R/W		$\begin{aligned} & \text { ХХХХХХХХв } \\ & \text { XXXXXXXXB } \end{aligned}$
$\begin{aligned} & 003 \mathrm{C} 3 А н \\ & 003 \mathrm{C} 3 \mathrm{~B} \end{aligned}$	DLCR5	DLC register 5	R/W		$\begin{aligned} & \text { XXXXXXXXB } \\ & \text { XXXXXXXX } \end{aligned}$
$\begin{aligned} & \hline 003 \mathrm{C3CH} \\ & 003 \mathrm{C} 3 \mathrm{D} \end{aligned}$	DLCR6	DLC register 6	R/W		
$\begin{aligned} & \text { 003С3Ен } \\ & 003 \mathrm{C} 3 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	DLCR7	DLC register 7	R/W		$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXXX } \end{aligned}$
$\begin{gathered} \text { 003C40н } \\ \text { to } \\ 003 \mathrm{C} 47 \mathrm{H} \end{gathered}$	DTR0	Data register 0	R/W		$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \text { 003C48н } \\ \text { to } \\ 003 \mathrm{C} 4 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	DTR1	Data register 1	R/W		$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \text { 003C50н } \\ \text { to } \\ 003 \mathrm{C} 57 \mathrm{H} \end{gathered}$	DTR2	Data register 2	R/W		$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \text { 003C58H } \\ \text { to } \\ 003 \mathrm{C} 5 \mathrm{FH} \end{gathered}$	DTR3	Data register 3	R/W		$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \text { 003C60н } \\ \text { to } \\ 003 \mathrm{C} 67 \mathrm{H} \end{gathered}$	DTR4	Data register 4	R/W		$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} 003 \mathrm{C} 68 \mathrm{H} \\ \text { to } \\ 003 \mathrm{C} 6 \mathrm{FH} \end{gathered}$	DTR5	Data register 5	R/W		$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXB } \end{gathered}$
$\begin{gathered} 003 \mathrm{C} 70_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{C} 7 \mathrm{H}_{\mathrm{H}} \end{gathered}$	DTR6	Data register 6	R/W		$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 003C78H } \\ & \text { to } \\ & 003 \mathrm{C} 7 \mathrm{FH} \end{aligned}$	DTR7	Data register 7	R/W		$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$

(Continued)

MB90895 Series

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
$\begin{array}{\|c\|} \hline 003 \mathrm{C} 80_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{CFFF}_{\mathrm{H}} \\ \hline \end{array}$	(Reserved area) *				
$\begin{array}{l\|} \hline 003 \mathrm{DOOH} \\ \text { 003D01н } \end{array}$	CSR	Control status register	R/W, R	CAN controller	$\begin{aligned} & \text { 0XXXX001в } \\ & \text { 00XXX000в } \end{aligned}$
003D02н	LEIR	Last event display register	R/W		000XX000в
003D03н	(Reserved area) *				
$\begin{array}{\|l\|} \hline \text { 003D04н } \\ \text { 003D05н } \end{array}$	RTEC	Send/receive error counter	R	CAN controller	$\begin{aligned} & \hline 00000000_{\text {в }} \\ & 00000000_{\text {в }} \end{aligned}$
$\begin{array}{\|l\|} \hline 003 \mathrm{DO6H} \\ \text { 003D07H } \end{array}$	BTR	Bit timing register	R/W		$\begin{aligned} & \text { 11111111в } \\ & \text { X1111111в } \end{aligned}$
003D08н	IDER	IDE register	R/W		ХХХХХХХХв
003D09н	(Reserved area) *				
003D0Ан	TRTRR	Send RTR register	R/W		00000000в
003D0Bн	(Reserved area) *				
003D0CH	RFWTR	Remote frame receive wait register	R/W	CAN controller	ХХХХХХХХв
003D0Dн	(Reserved area) *				
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	00000000 ${ }_{\text {B }}$
003D0F ${ }^{\text {¢ }}$	(Reserved area) *				
$\begin{array}{\|l\|} \hline \text { 003D10н } \\ \text { 003D11н } \end{array}$	AMSR	Acceptance mask selection register	R/W	CAN controller	$\begin{aligned} & \text { XXXXXXXXB } \\ & \text { XXXXXXXXB }^{\text {(}} \end{aligned}$
$\begin{array}{\|l\|} \hline \text { 003D12н } \\ \text { 003D13н } \end{array}$	(Reserved area) *				
$\begin{array}{\|c\|} \hline \text { 003D14H } \\ \text { to } \\ \text { 003D17H } \end{array}$	AMR0	Acceptance mask register 0	R/W	CAN controller	$\begin{gathered} \hline \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
$\begin{array}{\|c\|} \hline \text { 003D18н } \\ \text { to } \\ 003 \mathrm{D} 1 \mathrm{BH} \end{array}$	AMR1	Acceptance mask register 1	R/W	CAN controller	$\begin{gathered} \hline \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXXB } \\ \hline \end{gathered}$
$\left\|\begin{array}{c} 003 \mathrm{D} 1 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{DFF}_{\mathrm{H}} \end{array}\right\|$	(Reserved area) *				
$\begin{gathered} \hline 003 \mathrm{E} 00_{\mathrm{H}} \\ \text { to } \\ 003 \mathrm{EFF}_{\mathrm{H}} \end{gathered}$	(Reserved area) *				
$\begin{array}{\|c\|} \hline 003 F F O_{H} \\ \text { to } \\ 003 F F F_{H} \end{array}$	(Reserved area) *				

Initial values :
0 : Initial value of this bit is " 0 ."
1 : Initial value of this bit is " 1 ."
X : Initial value of this bit is undefined.
*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

MB90895 Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	$\mathrm{El}^{2} \mathrm{OS}$ readiness	Interrupt vector			Interrupt control register		Priority*3
		Num	ber	Address	ICR	Address	
Reset	\times	\#08	08н	FFFFDCH	-	-	High
INT 9 instruction	\times	\#09	09н	FFFFD8н	-	-	\uparrow
Exceptional treatment	\times	\#10	0Ан	FFFFD4н	-	-	
CAN controller reception completed (RX)	\times	\#11	OBн	FFFFD0н	ICR00	$0000 \mathrm{B0} \mathrm{H}^{* 1}$	
CAN controller transmission completed (TX) / Node status transition (NS)	\times	\#12	OCH	FFFFCCC			
Reserved	\times	\#13	0D	FFFFC8\%	ICR01	0000B1н	
Reserved	\times	\#14	ОЕн	FFFFC4 ${ }_{\text {¢ }}$			
CAN wakeup	Δ	\#15	OFH	FFFFC0\%	ICR02	0000B2 ${ }^{* 1}$	
Time-base timer	\times	\#16	10 H	FFFFBCH			
16-bit reload timer 0	Δ	\#17	11н	FFFFB8	ICR03	0000B3 ${ }^{* 1}$	
8/10-bit A/D converter	Δ	\#18	12н	FFFFB4 ${ }_{\text {¢ }}$			
16-bit free-run timer overflow	Δ	\#19	13н	FFFFB0н	ICR04	0000B4 ${ }^{* *}$	
Reserved	\times	\#20	14н	FFFFACH			
Reserved	\times	\#21	15н	FFFFA8н	ICR05	0000B5 ${ }^{* 1}$	
PPG timer ch.0, ch. 1 underflow	\times	\#22	16н	FFFFA4			
Input capture 0-input	Δ	\#23	17\%	FFFFA0н	ICR06	0000B6 ${ }^{* 1}$	
External interrupt (INT4/INT5)	Δ	\#24	18н	FFFF9C ${ }_{\text {н }}$			
Input capture 1-input	Δ	\#25	19н	FFFF98	ICR07	0000B7 ${ }^{* 2}$	
PPG timer ch.2, ch. 3 underflow	\times	\#26	1Ан	FFFF94 ${ }_{\text {¢ }}$			
External interrupt (INT6/INT7)	Δ	\#27	1Вн	FFFF90 ${ }_{\text {н }}$	ICR08	0000B8 ${ }^{* 1}$	
Watch timer	Δ	\#28	$1 \mathrm{CH}_{\mathrm{H}}$	FFFF8CH			
Reserved	\times	\#29	1Dн	FFFF88 ${ }_{\text {¢ }}$	ICR09	0000B9 ${ }^{* 1}$	
Input capture 2-input Input capture 3-input	\times	\#30	1Ен	FFFF84			
Reserved	\times	\#31	1FH	FFFF80 ${ }_{\text {н }}$	ICR10	$0000 \mathrm{BA}{ }^{* 1}$	
Reserved	\times	\#32	20H	FFFF7C ${ }_{\text {H }}$			
Reserved	\times	\#33	21н	FFFF78	ICR11	$0000 \mathrm{BB}^{* 1}$	
Reserved	\times	\#34	22н	FFFF74			
Reserved	\times	\#35	23H	FFFF70н	ICR12	$0000 \mathrm{BCH}^{* 1}$	\downarrow
16-bit reload timer 1	\bigcirc	\#36	24н	FFFF6C ${ }_{\text {н }}$			

(Continued)

MB90895 Series

(Continued)

Interrupt source	El2OS readiness	Interrupt vector			Interrupt control register		Priority*3
		Nu	ber	Address	ICR	Address	
UART1 reception completed	\bigcirc	\#37	25-	FFFF68 ${ }_{\text {H }}$	ICR13	$0000 \mathrm{BD}{ }^{* 1}$	$\begin{gathered} \text { High } \\ \uparrow \end{gathered}$
UART1 transmission completed	Δ	\#38	26н	FFFFF64			
UARTO reception completed	\bigcirc	\#39	27 ${ }^{\text {H }}$	FFFF60 ${ }_{\text {н }}$	ICR14	$0000 \mathrm{BE} \mathrm{r}^{* 1}$	
UART0 transmission completed	Δ	\#40	28H	FFFF55 ${ }_{\text {н }}$			
Flash memory	\times	\#41	29н	FFFF58 ${ }^{\text {H }}$	ICR15	$0000 \mathrm{BFH}^{*}{ }^{* 1}$	
Delay interrupt generation module	\times	\#42	2 Ан	FFFF54			$\begin{gathered} \downarrow \\ \text { Low } \end{gathered}$

\bigcirc : Available
\times : Unavailable
© : Available, El²OS stop function is provided.
Δ : Available when a cause of interrupt sharing a same ICR is not used.
*1 : • Peripheral functions sharing an ICR register have the same interrupt level.

- If peripheral functions share an ICR register, only one function is available when using extended intelligent I/O service.
- If peripheral functions share an ICR register, a function using extended intelligent I/O service does not allow interrupt by another function.
*2 : Only input capture 1 is ready for $\mathrm{El}^{2} \mathrm{OS}$. Because PPG is not ready for $\mathrm{El}^{2} \mathrm{OS}$, disable PPG interrupt when using El²OS with Input capture 1.
*3 : Priority when two or more interrupts of a same level occur simultaneously.

MB90895 Series

FLASH MEMORY CONFIGURATION

- Sector configuration of 512 Kbit flash memory

Flash memory	CPU address	Writer address*
SA0 (4 Kbytes)	FFOOOOH FF0FFFH	$70000 \mathrm{H}$ 70FFFH
SA1 (4 Kbytes)	FF1000н FF1FFFH	$71000 \mathrm{H}$ 71FFFH
SA2 (4 Kbytes)	FF2000H FF2FFFH	$72000 \mathrm{H}$ 72FFFH
SA3 (4 Kbytes)	FF3000H FF3FFFH	$73000 \mathrm{H}$ 73FFFH
SA4 (16 Kbytes)	FF4000H FF7FFFH	$74000 \mathrm{H}$ 77FFFH
SA5 (16 Kbytes)	FF8000H FFBFFFн	$78000 \mathrm{H}$ 7BFFFH
SA6 (4 Kbytes)	FFCOOOH FFCFFFH	7 COOOH 7CFFFH
SA7 (4 Kbytes)	FFDOOOH FFDFFFH	7D000н 7DFFF
SA8 (4 Kbytes)	FFE000н FFEFFFH	7 EOOOH 7EFFFh
SA9 (4 Kbytes)	FFFOOOH FFFFFFH	$7 \mathrm{FOOOH}$ 7FFFFH

*: "Writer address" is an address equivalent to CPU address, which is used when data is written on flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

MB90895 Series

■ ELECTRIC CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	V cc	Vss -0.3	Vss +6.0	V	
	AV cc	Vss -0.3	Vss +6.0	V	$\mathrm{V} \mathrm{cc}=\mathrm{AV}_{\text {cc }}{ }^{\text {2 }}$
	AVR	Vss -0.3	Vss +6.0	V	AV cc $\geq \mathrm{AVR}^{* 2}$
Input voltage ${ }^{* 1}$	V_{1}	Vss -0.3	Vss +6.0	V	*3
Output voltage* ${ }^{*}$	Vo	Vss -0.3	Vss +6.0	V	*3
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	*7
Total maximum clamp current	$\Sigma \mid$ Ilcamp \|	-	20	mA	*7
"L" level maximum output current	loL1	-	15	mA	Normal output*4
	loL2	-	40	mA	High-current output*4
"L" level average output current	lolav1	-	4	mA	Normal output*5
	lolav2	-	30	mA	High-current output*5
"L" level maximum total output current	EloL1	-	125	mA	Normal output
	EloL2	-	160	mA	High-current output
"L" level average total output current	Elolavi	-	40	mA	Normal output*
	Eloav2	-	40	mA	High-current output*6
"H" level maximum output current	І ${ }_{\text {OH1 }}$	-	-15	mA	Normal output*
	Іон2	-	-40	mA	High-current output*4
"H" level average output current	lohav1	-	-4	mA	Normal output*5
	Іоhav2	-	-30	mA	High-current output*5
"H" level maximum total output current	Eloh1	-	-125	mA	Normal output
	इloн2	-	-160	mA	High-current output
"H" level average total output current	Elohav1	-	-40	mA	Normal output* ${ }^{\text {¢ }}$
	Elohav2	-	-40	mA	High-current output* ${ }^{*}$
Power consumption	PD	-	297	mW	
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	Other than MB90F897Y/YS
		-40	+125	${ }^{\circ} \mathrm{C}$	*8 Other than MB90F897Y/YS
		-40	+150	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { *8, *9 } \\ & \text { MB90F897Y/YS } \end{aligned}$
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: The parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$.
*2 : AVcc and AVR should not exceed Vcc.
(Continued)

MB90895 Series

(Continued)
*3: Vi and Vo should not exceed Vcc +0.3 V . However, if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V_{1} rating.
*4: A peak value of an applicable one pin is specified as a maximum output current.
*5: An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
*6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)
*7 : • Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35, P36, P37, P40 to P44, P50 to P57 Note: P35 and P36 are MB90F897S/YS only.

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:
- Input/Output Equivalent circuits
+B input (0 V to 16 V)

*8 : Users considering application exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ are advised to contact their FUJITSU MICROELECTRONICS representatives beforehand for reliability limitations.
*9 : Use the PB circuit board which has 4 or more layers.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90895 Series

2. Recommended Operating Conditions

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation
		3.0	-	5.5	V	Retain status of stop operation
		4.0	-	5.5	V	Accuracy guarantee voltage of A / D converter
Smoothing capacitor	Cs	0.1	-	1.0	$\mu \mathrm{F}$	*1
Operating temperature	TA	-40	-	+105	${ }^{\circ} \mathrm{C}$	Other than MB90F897Y/YS
		-40	-	+125	${ }^{\circ} \mathrm{C}$	*2 Other than MB90F897Y/YS
		-40	-	+150	${ }^{\circ} \mathrm{C}$	*2, *3 MB90F897Y/YS

*1 : Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.
Refer to the following figure for connection of smoothing capacitor Cs.
*2: Users considering application exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ are advised to contact their FUJITSU MICROELECTRONICS representatives beforehand for reliability limitations.
*3 : Use the PB circuit board which has 4 or more layers.

- C pin connection diagram

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB90895 Series

3. DC Characteristics

- MB90F897/S (Models that support + $125{ }^{\circ} \mathrm{C}$)
$\left(\mathrm{V} c \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Parame ter	Sym bol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	V ${ }_{\text {не }}$	CMOS hysteresis input pin	-	0.8 Vcc	-	V cc +0.3	V	When selected CMOS hysteresis
	VIHA	Automotive input pin	-	0.8 Vcc	-	V cc +0.3	V	When selected Automotive
	V нс $^{\text {c }}$	CMOS input pin (P32, P40)	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selected CMOS
	Vінм	MD input pin	-	V cc -0.3	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
"L" level input voltage	VıLS	CMOS hysteresis input pin	-	Vss - 0.3	-	0.2 Vcc	V	When selected CMOS hysteresis
	VILA	Automotive input pin	-	Vss - 0.3	-	0.5 Vcc	V	When selected Automotive
	VILC	CMOS input pin (P32, P40)	-	Vss - 0.3	-	0.3 Vcc	V	When selected CMOS
	VILM	MD input pin	-	Vss -0.3	-	Vss +0.3	V	
"H" level output voltage	Vон1	Pins other than P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	-	V	
	Vон2	P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-14.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	-	V	
"L" level output voltage	Vol1	Pins other than P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	Vol2	P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=20.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	+5	$\mu \mathrm{A}$	
Power supply current*	Icc	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \text {, }$ Internally operating at 16 MHz , normal operation.	-	25	30	mA	
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 16 MHz , writing on flash memory.	-	45	50	mA	MB90F897/S
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 16 MHz , deleting on flash memory.	-	45	50	mA	MB90F897/S

[^1](Continued)

MB90895 Series

(Continued)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
$\begin{aligned} & \text { Power } \\ & \text { supply } \\ & \text { current } \end{aligned}$	Icos	Voc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 16 MHz , sleeping.	-	8	12	mA	
	Icts		$V_{c c}=5.0 \mathrm{~V},$ Internally operating at 2 MHz , transition from main clock mode, in time-base timer mode.	-	0.2	0.35	mA	
	IcTsPII		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 16 MHz , transition from PLL clock mode, in time-base timer mode.	-	3	5	mA	
	Iccl		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 8 kHz , subclock operation, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	40	100	$\mu \mathrm{A}$	
	Iccıs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 8 kHz , subclock, sleep mode, $T_{A}=+25^{\circ} \mathrm{C}$	-	10	50	$\mu \mathrm{A}$	
	Ісст		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 8 kHz , watch mode, $T_{A}=+25^{\circ} \mathrm{C}$	-	8	30	$\mu \mathrm{A}$	
	Icch		Stopping, $T_{A}=+25^{\circ} \mathrm{C}$	-	5	25	$\mu \mathrm{A}$	
Input capacity	Cin	Other than AV cc, AV ss, AVR, C, Vcc, Vss	-	-	5	15	pF	
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Pull-up } \\ \text { resistor } \end{array} \end{array}$	Rup	$\overline{\mathrm{RST}}$	-	25	50	100	$\mathrm{k} \Omega$	
Pull-down resistor	Roown	MD2	-	25	50	100	$\mathrm{k} \Omega$	FLASH product is not provided with pull-down resistor

* : Test conditions of power supply current are based on a device using external clock.

MB90895 Series

- MB90F897Y/YS (Models that support $+\mathbf{1 5 0}^{\circ} \mathrm{C}$) (Under development)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " levelinputvoltage	Vihs	CMOS hysteresis input pin	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selected CMOS hysteresis
	Viha	Automotive input pin	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selected Automotive
	Vінс	CMOS input pin (P32, P40)	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selected CMOS
	Vнм	MD input pin	-	Vcc - 0.3	-	V cc +0.3	V	
"L" levelinputvoltage	VILs	CMOS hysteresis input pin	-	Vss - 0.3	-	0.2 Vcc	V	When selected CMOS hysteresis
	VILA	Automotive input pin	-	Vss - 0.3	-	0.5 Vcc	V	When selected Automotive
	Vilc	CMOS input pin (P32, P40)	-	Vss - 0.3	-	0.3 Vcc	V	When selected CMOS
	VILM	MD input pin	-	Vss -0.3	-	Vss +0.3	V	
"H" level output voltage	Vон1	Pins other than P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=4.5 \mathrm{~V}, \\ & \mathrm{IOH}=-3.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
	Vон2	P14 to P17	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-12.0 \mathrm{~mA} \end{aligned}$	Vcc - 0.5	-	-	V	
"L" level output voltage	VoL1	Pins other than P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	VoL2	P14 to P17	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	ILL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	+5	$\mu \mathrm{A}$	
$\begin{aligned} & \text { Power } \\ & \text { supply } \\ & \text { current** } \end{aligned}$	Icc	V cc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 16 MHz , normal operation.	-	25	32	mA	
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 16 MHz , writing on flash memory. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	-	45	50	mA	Up to $+125^{\circ} \mathrm{C}$
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internally operating at 16 MHz , deleting on flash memory. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	-	45	50	mA	Up to $+125^{\circ} \mathrm{C}$

*: Test conditions of power supply current are based on a device using external clock.
(Continued)

MB90895 Series

(Continued)
$\left(\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}\right.$ ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current*	Iccs	Voc	$\mathrm{Vcc}=5.0 \mathrm{~V}$, Internally operating at 16 MHz , sleeping.	-	8	14	mA	
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 2 MHz , transition from main clock mode, in time-base timer mode. $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	0.2	0.35	mA	Up to $+125^{\circ} \mathrm{C}$
	Icts		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 2 MHz , transition from main clock mode, in time-base timer mode. $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	-	0.2	T.B.D	mA	
	IctspII		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 16 MHz , transition from PLL clock mode, in time-base timer mode.	-	3	7	mA	
	Iccl		$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V},$ Internally operating at 8 kHz , subclock operation, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	40	100	$\mu \mathrm{A}$	
	Iccls		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 8 kHz , subclock, sleep mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	50	$\mu \mathrm{A}$	
	Ісст		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internally operating at 8 kHz , watch mode, $T_{A}=+25^{\circ} \mathrm{C}$	-	8	30	$\mu \mathrm{A}$	
	Іссн		Stopping, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	25	$\mu \mathrm{A}$	
Input capacity	Cin	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	-	5	15	pF	
$\begin{array}{\|l\|} \hline \text { Pull-up } \\ \text { resistor } \end{array}$	Rup	RST	-	25	50	100	k Ω	
Pull-down resistor	Roown	MD2	-	25	50	100	k Ω	FLASH product is not provided with pull-down resistor

*: Test conditions of power supply current are based on a device using external clock.
FUjITSU

MB90895 Series

4. AC Characteristics

(1) Clock timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$ (only MB90F897Y/YS))

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	fc	X0, X1	3	-	8	MHz	When crystal or ceramic resonator is used
			3	-	16	MHz	External clock
			4	-	16	MHz	PLL multiplied by 1
			4	-	8	MHz	PLL multiplied by 2
			4	-	5.33	MHz	PLL multiplied by 3
			4	-	4	MHz	PLL multiplied by 4
	fct	X0A, X1A	-	32.768	-	kHz	MB90F897/Y only
Clock cycle time	thcyl	X0, X1	125	-	333	ns	
	tLCyL	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	MB90F897/Y only
Input clock pulse width	Рwh, Pwı	X0	10	-	-	ns	Set duty factor at 30% to 70% as a guideline.
	Pwır,Pwlı	X0A	-	15.2	-	$\mu \mathrm{s}$	MB90F897/Y only
Input clock rise time and fall time	tcr, tcF	X0	-	-	5	ns	When external clock is used
Internal operation clock frequency	fcp	-	1.5	-	16	MHz	When main clock is used
	flcp	-	-	8.192	-	kHz	When sub clock is used, MB90F897/Y only
Internal operation clock cycle time	tcp	-	62.5	-	666	ns	When main clock is used
	tıcp	-	-	122.1	-	$\mu \mathrm{s}$	When sub clock is used, MB90F897/Y only

- Clock timing

MB90895 Series

- PLL operation guarantee range

> Relation between internal operation clock frequency and power supply voltage

Operation guarantee range of MB90F897/S/Y/YS

Relation among external clock frequency and internal clock frequency

* : fc is 8 MHz at maximum when crystal or ceramic resonator circuit is used.

MB90895 Series

Rating values of alternating current is defined by the measurement reference voltage values shown below:

- Input signal waveform

Hysteresis input pin
VIH
VIL

- Output signal waveform

Output pin

(2) Reset input timing

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Conditions	Value		Unit	Remarks
				Min	Max		
Reset input time	trsti	$\overline{\mathrm{RST}}$	-	16 tcp*3	-	ns	Normal operation
				$\begin{aligned} & \text { Oscillation time } \\ & \text { of oscillator }{ }^{* 1}+ \\ & 100 \mu \mathrm{~s}+16 \text { tcp }^{* 3} \end{aligned}$	-	-	In sub clock ${ }^{* 2}$, sub sleep ${ }^{* 2}$, watch ${ }^{\star 2}$ and stop mode
				100	-	$\mu \mathrm{s}$	In timebase timer

*1 : Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms . In ceramic oscillator, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ms .
*2 : Except for MB90F897S/YS.
*3 : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

- In sub clock, sub sleep, watch and stop mode

MB90895 Series

(3) Power-on reset

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power supply rise time	tR	Vcc	-	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-	ms	Repeated operation

Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is $1 \mathrm{~V} /$ s or less, use of PLL clock is allowed during operation.

MB90895 Series

- Internal shift clock mode

- External shift clock mode

MB90895 Series

5. A/D converter

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{A} \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, 3.0 \mathrm{~V} \leq \mathrm{AVR}-\mathrm{A} \mathrm{V}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{A} \mathrm{Vss}=0.0 \mathrm{~V}\right.$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$ (only MB90F897Y/YS)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Nonlinear error	-	-	-	-	± 2.5	LSB	
Differential linear error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vот	ANO to AN7	$\begin{aligned} & \hline \mathrm{AV} \mathrm{ss}^{-} \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{gathered} \mathrm{AVss}+ \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \mathrm{AV} \text { ss + } \\ 2.5 \mathrm{LSB} \end{gathered}$	V	$1 \mathrm{LSB}=(\mathrm{AVR}-$
Full-scale transition voltage	$V_{\text {fst }}$	AN0 to AN7	$\begin{gathered} \text { AVR - } \\ \text { 3.5 LSB } \end{gathered}$	$\begin{gathered} \text { AVR - } \\ \text { 1.5 LSB } \end{gathered}$	$\begin{gathered} \text { AVR + } \\ \text { 0.5 LSB } \end{gathered}$	V	AVss) /1024
Compare time	-	-	66 tcp *1	-	-	ns	With 16 MHz machine clock $5.5 \mathrm{~V} \geq \mathrm{AVcc} \geq 4.5 \mathrm{~V}$
			88 tcp *1	-	-	ns	With 16 MHz machine clock $4.5 \mathrm{~V}>\mathrm{AVcc} \geq 4.0 \mathrm{~V}$
Sampling time	-	-	32 tcp *1	-	-	ns	With 16 MHz machine clock $5.5 \mathrm{~V} \geq \mathrm{AVcc} \geq 4.5 \mathrm{~V}$
			128 tcp*1	-	-	ns	With 16 MHz machine clock $4.5 \mathrm{~V}>\mathrm{AV}$ cc $\geq 4.0 \mathrm{~V}$
Analog port input current	lain	ANO to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	ANO to AN7	AVss	-	AVR	V	
Reference voltage	-	AVR	AV ss + 2.7	-	AVcc	V	
Power supply current	IA	AVcc	-	3.5	7.5	mA	
	IA	AV ${ }_{\text {cc }}$	-	-	5	$\mu \mathrm{A}$	*2
Reference voltage supplying current	IR	AVR	-	165	250	$\mu \mathrm{A}$	
	IRH	AVR	-	-	5	$\mu \mathrm{A}$	*2
Variation among channels	-	AN0 to AN7	-	-	4	LSB	

*1 : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).
*2 : If A / D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

MB90895 Series

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Linear error : Deviation between a line across zero-transition line ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") and full-scale transition line ("11 11111110 " \hookleftarrow "11 11111111") and actual conversion characteristics.
Differential linear : Deviation of input voltage, which is required for changing output code by 1 LSB, from an error ideal value.

Total error : Difference between an actual value and an ideal value. A total error includes zero transition error, full-scale transition error, and linear error.

(Continued)

MB90895 Series

7. Notes on A/D Converter Section

<About the external impedance of the analog input and its sampling time>

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

Analog input circuit model

Note : The values are reference values.
(Continued)

MB90895 Series

(Continued)

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

The relationship between the external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
<About errors>
- As \mid AVR - AVss \mid become smaller, values of relative errors grow larger.

MB90895 Series

8. Flash Memory Program/Erase Characteristics*1

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time (4 KB sector)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	-	0.2	0.5	s	Excludes 00 н programming prior to erasure
Sector erase time (16 KB sector)		-	0.5	7.5	s	Excludes 00 н programming prior to erasure
Chip erase time		-	2.6	-	s	Excludes 00 н programming prior to erasure
Word (16 bit width) programming time		-	16	3,600	$\mu \mathrm{s}$	Except for the over head time of the system
Program/Erase cycle	-	10,000	-	-	cycle	
Flash Data Retention Time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	20	-	-	Years	*2

*1: For MB90F897Y/YS, it is prohibited to write or erase data in the range of $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB90895 Series

EXAMPLE CHARACTERISTICS

- MB90F897

$$
\mathrm{Icc}-\mathrm{Vcc}
$$

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, In external clock operation $\mathrm{f}=$ Internal operating frequency

Iccl-Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, In external clock operation $f=$ Internal operating frequency

MB90895 Series

(Continued)
(Vсс - Vон) - Іон

$$
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}
$$

Vol - lol

$$
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}
$$

"H" level input voltage/ "L" level input voltage
Vin - Vcc

$$
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$

MB90895 Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F897PMT	48-pin plastic LQFP	
MB90F897SPMT	(FPT-48P-M26)	
MB90F897YPMT		
MB90F897YSPMT		

MB90895 Series

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	Added the following part numbers under development. MB90F897Y, MB90F897YS
1	■ FEATURES	Added as follows. - Models that support $+150^{\circ} \mathrm{C}$ (MB90F897Y/YS)
8	- PIN DESCRIPTION	Corrected the function of pin SCKO on pin number 43. UART1 \rightarrow UART0
11	- HANDLING DEVICES	Corrected the description for "• Handling Unused Pins". unused input pins \rightarrow unused I/O pins
12		"• Support for $+125^{\circ} \mathrm{C}$ " \rightarrow "• Support for $+125^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$ "
13	- BLOCK DIAGRAM	Corrected the arrow for "pin X0 and X1" in the clock control circuit. "input \rightarrow " \rightarrow "input/output \longleftrightarrow "
		Corrected the arrow for "pin TIN0 and pin TIN1" in 16-bit reload timer (2ch). "output \rightarrow " \rightarrow "input \leftarrow "
23	■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS	Corrected footnotes in the address column for ICR05 and ICR07 of the interrupt control register. $\begin{aligned} & 0000 \mathrm{~B} 5 \mathrm{H}^{* 2} \rightarrow 0000 \mathrm{~B} 5 \mathrm{H}^{\star 1} \\ & 10000 \mathrm{~B} 7 \mathrm{H}^{* 1} \rightarrow 0000 \mathrm{~B} 7 \mathrm{H}^{* 2} \end{aligned}$
24		Corrected the description for footnote *2. 16-bit reload timer \rightarrow Input capture 1
-	■ PERIPHERAL RESOURCES	Deleted the section Refer to the hardware manual, for details of peripheral resources.
25	■ FLASH MEMORY CONFIGURATION	Changed the item name from "PERIPHERAL RESOURCES" to "FLASH MEMORY CONFIGURATION".
26	- ELECTRIC CHARACTERISTICS 1. Absolute Maximum Rating	Item: Added the rating value for MB90F897Y/YS to the operating temperature. Min: - $40^{\circ} \mathrm{C}$, Max: $+150^{\circ} \mathrm{C}$
27		Added footnote*9.
28	2. Recommended Operating Conditions	Item: Added the rating value for MB90F897Y/YS to the operating temperature. Min: - $40^{\circ} \mathrm{C}$,Max: $+150^{\circ} \mathrm{C}$
		Added footnote *3.
31, 32	3. DC Characteristics	Added DC characteristics for "MB90F897Y/YS".
33 to 40	4. AC Characteristics	Changed the condition description in the upper right of the table.$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \rightarrow \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C} \text { (Only MB90F897Y/YS) } \end{aligned}$
	5. A/D converter	
49	■ ORDERING INFORMATION	Added the following part numbers. MB90F897YPMT, MB90F897YSPMT

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3329
http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E),
Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: *: MB90F897/Y : X1A, X0A
 MB90F897S/YS : P36, P35

[^1]: * : Test conditions of power supply current are based on a device using external clock.

