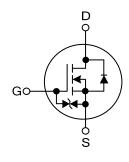


UTC UNISONIC TECHNOLOGIES CO., LTD

3N80Z **Preliminary Power MOSFET**

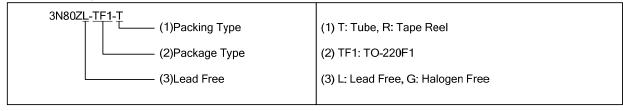
3 Amps, 800Volts **N-CHANNEL POWER MOSFET**

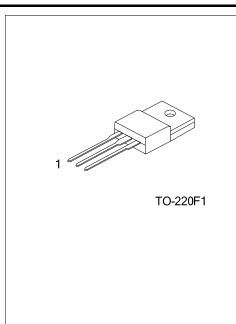

DESCRIPTION

The UTC 3N80Z provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * $R_{DS(ON)}$ =3.2 Ω @ V_{GS} =10 V
- * Ultra Low Gate Charge (typical 19 nC)
- * Low Reverse Transfer Capacitance (C_{RSS} = Typical 11 pF)
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness


SYMBOL



ORDERING INFORMATION

Ordering Number		Dooksays	Pin Assignment			Daakina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
3N80ZL-TF1-T	3N80ZG-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage (V _{GS} =0V)	V _{DSS}	800	V
Drain-Gate Voltage (R _G =20kΩ)	V_{DGR}	800	V
Gate-Source Voltage	V_{GSS}	±20	V
Gate-Source Breakdown Voltage (I _{GS} =±1mA)	BV _{GSO}	30 (MIN)	V
Insulation Withstand Voltage (DC)	V _{ISO}	2500	V
Avalanche Current (Note 2)	I _{AR}	3	Α
Continuous Drain Current	I _D	3	Α
Pulsed Drain Current	I _{DM}	10	Α
Single Pulse Avalanche Energy (Note 3)	E _{AS}	170	mJ
Peak Diode Recovery dv/dt (Note 4)	dv/dt	4.5	V/ns
Power Dissipation	P_D	25	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

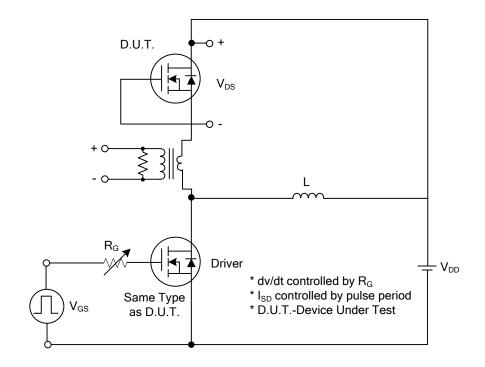
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

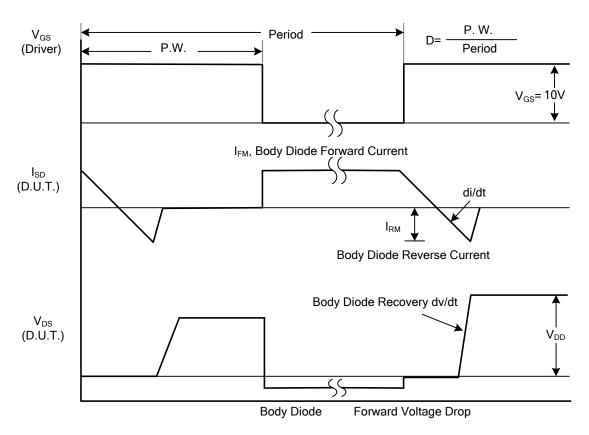
- 2. Pulse width limited by $T_{J(MAX)}$
- 3. starting T_J =25 °C, I_D = I_{AR} , V_{DD} =50V
- $4.\,I_{SD} {\leq} 2.5 \text{A, di/dt} {\leq} 200 \text{A/}\mu\text{s, V}_{DD} {\leq} \text{BV}_{DSS},\, T_J {\leq} T_{J(MAX)}.$

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θις	5	°C/W	

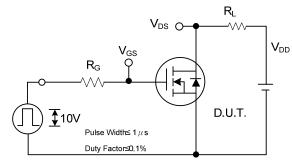

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•			•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA				V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V	•		1	μA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±10	μA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		3.75	4.5	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.5A		3.2	4.2	Ω
Forward Transconductance (Note 1)	g FS	V _{DS} =15V, I _D =1.5A		2.1		S
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ISS}			485		pF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1MHz		57		pF
Reverse Transfer Capacitance	C _{RSS}			11		pF
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{D(ON)}			17		ns
Turn-On Rise Time	t _R	V_{DD} =400V, I_{D} =3 A, R_{G} =4.7 Ω		27		ns
Turn-Off Delay Time	t _{D(OFF)}	V _{GS} =10V		36		ns
Turn-Off Fall Time	t _F			40		ns
Total Gate Charge	Q_G			19		nC
Gate-Source Charge	Q_GS	V_{DD} =640V, I_{D} =3A, V_{GS} =10V		3.2		nC
Gate-Drain Charge	Q_{DD}			10.8		nC
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	ISTICS				
Diode Forward Voltage(Note 1)	V_{SD}	I _{SD} =3A ,V _{GS} =0V			1.6	V
Source-Drain Current	I _{SD}				2.5	Α
Source-Drain Current (Pulsed)	I _{SDM}				10	Α
Reverse Recovery Current	I _{RRM}	I _{SD} =3A, di/dt=100A/μs, 		8.4		Α
Body Diode Reverse Recovery Time	t _{rr}			384		ns
Body Diode Reverse Recovery Charge	Q _{RR}			1600		nC
Notes: 1 Pulse width=300us Duty cycle <1	F 0/					

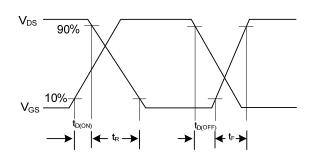

Notes: 1. Pulse width=300µs, Duty cycle ≤1.5%

^{2.} $C_{\text{OSS(EQ)}}$ is defined as constant equivalent capacitance giving the same charging time as C_{OSS} when V_{DS} increases from 0to 80% V_{DSS} .

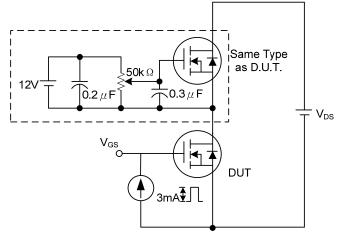
■ TEST CIRCUITS AND WAVEFORMS

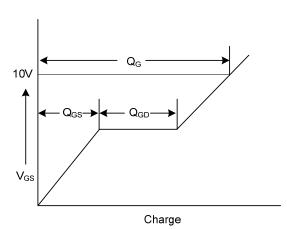


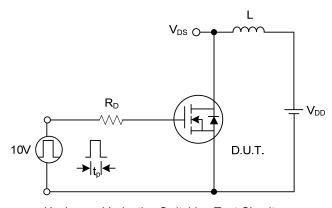
Peak Diode Recovery dv/dt Test Circuit

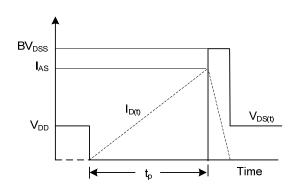


Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.