## Low Voltage, 1.15 V to 5.5 V, 4-Channel, Bidirectional Logic Level Translator

## FEATURES

Bidirectional level translation<br>Operates from 1.15 V to 5.5 V<br>Low quiescent current < $5 \mu \mathrm{~A}$<br>No direction pin<br>Supports defense and aerospace applications<br>(AQEC standard)<br>Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$<br>Controlled manufacturing baseline<br>One assembly and test site<br>One fabrication site<br>Enhanced product change notification<br>Qualification data available on request

## APPLICATIONS

SPI ${ }^{\oplus}$, MICROWIRE ${ }^{T M}$ level translation
Low voltage ASIC level translation

## Smart card readers

Cell phones and cell phone cradles

## Portable communications devices

Telecommunications equipment
Network switches and routers
Storage systems (SAN/NAS)

## GENERAL DESCRIPTIONS

The ADG3304-EP is a bidirectional logic level translator that contains four bidirectional channels. It can be used in multivoltage digital system applications, such as data transfer, between a low voltage digital signal processing controller and a higher voltage device using SPI and MICROWIRE interfaces. The internal architecture allows the device to perform bidirectional logic level translation without an additional signal to set the direction in which the translation takes place.

The voltage applied to $\mathrm{V}_{\mathrm{CCA}}$ sets the logic levels on the A side of the device, while $V_{C C Y}$ sets the levels on the $Y$ side. For proper operation, $V_{\text {CCA }}$ must always be less than $V_{c c y}$. The $\mathrm{V}_{\text {CCA }}-c o m-$ patible logic signals applied to the A side of the device appear as VCCY-compatible levels on the Y side. Similarly, VCCY-compatible

FUNCTIONAL BLOCK DIAGRAM

logic levels applied to the Y side of the device appear as $\mathrm{V}_{\mathrm{CCA}}{ }^{-}$ compatible logic levels on the A side.

The enable pin (EN) provides three-state operation on both the A side and the $Y$ side pins. When the EN pin is pulled low, the terminals on both sides of the device are in the high impedance state. The EN pin is referred to the $\mathrm{V}_{\mathrm{CCA}}$ supply voltage and driven high for normal operation.

The ADG3304-EP is available in compact 14-lead TSSOP package.

Full details about this enhanced product are available in the ADG3304 data sheet, which should be consulted in conjunction with this data sheet.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
## ADG3304-EP

## TABLE OF CONTENTS

$\qquad$
Applications .....  1
Functional Block Diagram .....  1
General Descriptions .....  1
Revision History .....  2
Specifications .....  3
Absolute Maximum Ratings .....  6
ESD Caution. .....  6
Pin Configurations and Function Descriptions .....  7
Outline Dimensions .....  8
Ordering Guide .....  8

## REVISION HISTORY

10/10—Revision 0: Initial Version

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{CCY}}=1.65 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=1.15 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CCY}}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.
Table 1.


## ADG3304-EP

| Parameter | Symbol | Test Conditions/Comments | Min | Typ ${ }^{1}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCHING CHARACTERISTICS ${ }^{2}$ |  |  |  |  |  |  |
| $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \leq \mathrm{V}_{C C A} \leq \mathrm{V}_{C C Y}, \mathrm{~V}_{C C Y}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ |  |  |  |  |  |  |
| $\mathrm{A} \rightarrow \mathrm{Y}$ Level Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, A \rightarrow Y}$ |  |  | 6 | 15 | ns |
| Rise Time | $t_{R, A \rightarrow Y}$ |  |  | 2 | 5 | ns |
| Fall Time | $t_{F, A \rightarrow Y}$ |  |  | 2 | 5 | ns |
| Maximum Data Rate | $\mathrm{D}_{\text {MAX, }} \rightarrow$ ¢ ${ }^{\text {r }}$ |  |  | 50 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{A}_{\text {¢ }}$ Y |  |  | 2 |  | ns |
| Part-to-Part Skew | $t_{\text {PPSKEW, }} A \rightarrow Y$ |  |  | 3 |  | ns |
| $Y \rightarrow$ A Level Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{T}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, Y \rightarrow A}$ |  |  | 4 | 10 | ns |
| Rise Time | $t_{R, Y \rightarrow A}$ |  |  | 1 | 5 | ns |
| Fall Time | $t_{F, Y \rightarrow A}$ |  |  | 3 | 10 | ns |
| Maximum Data Rate | $D_{\text {MAX }, Y \rightarrow A}$ |  |  | 50 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SkEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | $t_{\text {PPSKEW, }} Y \rightarrow \mathrm{~A}$ |  |  | 2 |  | ns |
| $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V} \leq \mathrm{V}_{C C A} \leq \mathrm{V}_{C C Y}, \mathrm{~V}_{C C Y}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  |  |  |  |  |
| $\mathrm{A} \rightarrow \mathrm{Y}$ Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, A \rightarrow Y}$ |  |  | 8 | 15 | ns |
| Rise Time | $t_{R, A \rightarrow Y}$ |  |  | 2 | 8 | ns |
| Fall Time | $t_{\text {F, }} A_{\rightarrow}$ |  |  | 2 | 8 | ns |
| Maximum Data Rate | $D_{\text {max, }} \rightarrow$ ¢ ${ }^{\text {r }}$ |  |  | 50 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{A}_{\text {, }}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | tppSKEw, $A \rightarrow Y$ |  |  | 4 |  | ns |
| $\mathrm{Y} \rightarrow \mathrm{A}$ Translation |  | $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, Y \rightarrow A}$ |  |  | 5 | 12 | ns |
| Rise Time | $t_{R, Y \rightarrow A}$ |  |  | 2 | 5 | ns |
| Fall Time | $t_{F, Y \rightarrow A}$ |  |  | 2 | 5 | ns |
| Maximum Data Rate | $\mathrm{D}_{\text {MAX }, ~}^{\text {Y }}$ ¢ ${ }^{\text {a }}$ |  |  | 50 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | $\mathrm{t}_{\text {PPSKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 3 |  | ns |
| 1.15 V to 1.3 $\mathrm{V} \leq \mathrm{V}_{C C A} \leq \mathrm{V}_{C C Y}, \mathrm{~V}_{C C Y}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  |  |  |  |  |
| $A \rightarrow Y$ Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, A \rightarrow Y}$ |  |  | 9 | 27 | ns |
| Rise Time | $t_{R, A \rightarrow Y}$ |  |  | 3 | 8 | ns |
| Fall Time | $t_{F, A \rightarrow Y}$ |  |  | 2 | 8 | ns |
| Maximum Data Rate | $D_{\text {MAX }, ~}^{\text {¢ }}$, ${ }^{\text {r }}$ |  |  | 40 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }}$, $\rightarrow$ Y |  |  | 2 |  | ns |
| Part-to-Part Skew | $\mathrm{t}_{\text {PPSKEW, }} \mathrm{A} \rightarrow \mathrm{Y}$ |  |  | 10 |  | ns |
| $\mathrm{Y} \rightarrow \mathrm{A}$ Translation |  | $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, Y \rightarrow A}$ |  |  | 5 | 13 | ns |
| Rise Time | $t_{R, Y \rightarrow A}$ |  |  | 2 | 6 | ns |
| Fall Time | $t_{F, Y \rightarrow A}$ |  |  | 2 | 6 | ns |
| Maximum Data Rate | $\mathrm{D}_{\text {MAX }, Y \rightarrow \mathrm{~A}}$ |  |  | 40 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | tPPSKEW, $Y \rightarrow A$ |  |  | 4 |  | ns |


| Parameter | Symbol | Test Conditions/Comments | Min | Typ ${ }^{1}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.15 V to $1.3 \mathrm{~V} \leq \mathrm{V}_{C C A} \leq \mathrm{V}_{C C Y}, \mathrm{~V}_{C C Y}=1.8 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  |  |  |  |  |
| $\mathrm{A} \rightarrow \mathrm{Y}$ Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{T}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, A \rightarrow Y}$ |  |  | 12 | 35 | ns |
| Rise Time | $t_{R, A \rightarrow Y}$ |  |  | 7 | 18 | ns |
| Fall Time | $\mathrm{t}_{\mathrm{F}, \mathrm{A} \rightarrow \mathrm{Y}}$ |  |  | 3 | 8 | ns |
| Maximum Data Rate |  |  |  | 25 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }}{ }_{\text {, }} \mathrm{Y}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | $\mathrm{t}_{\text {PPSKEW, }} \mathrm{A} \rightarrow \mathrm{Y}$ |  |  | 15 |  | ns |
| $Y \rightarrow A$ Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $\mathrm{t}_{\mathrm{P}, \mathrm{Y} \rightarrow \mathrm{A}}$ |  |  | 14 | 40 | ns |
| Rise Time | $\mathrm{t}_{\mathrm{R}, \mathrm{Y} \rightarrow \mathrm{A}}$ |  |  | 5 | 24 | ns |
| Fall Time | $t_{F, Y \rightarrow A}$ |  |  | 2.5 | 10 | ns |
| Maximum Data Rate | $\mathrm{D}_{\text {MAX }, Y \rightarrow \mathrm{~A}}$ |  |  | 25 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 3 |  | ns |
| Part-to-Part Skew | $\mathrm{t}_{\text {PPSKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 23.5 |  | ns |
| $\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ccA}} \leq \mathrm{V}_{\mathrm{cc}}, \mathrm{~V}_{\mathrm{cCY}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~A} \rightarrow \mathrm{Y} \text { Translation } \end{aligned}$ |  | $\mathrm{R}_{S}=\mathrm{R}_{T}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, A \rightarrow Y}$ |  |  | 7 | 15 | ns |
| Rise Time | $\mathrm{t}_{\mathrm{R}, \mathrm{A} \rightarrow \mathrm{Y}}$ |  |  | 2.5 | 6 | ns |
| Fall Time | $t_{F, A \rightarrow Y}$ |  |  | 2 | 8 | ns |
| Maximum Data Rate |  |  |  | 60 |  | Mbps |
| Channel-to-Channel Skew |  |  |  | 1.5 |  | ns |
| Part-to-Part Skew | tPPSKEW, $A \rightarrow Y$ |  |  | 4 |  | ns |
| $\mathrm{Y} \rightarrow \mathrm{A}$ Translation |  | $\mathrm{R}_{S}=\mathrm{R}_{T}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  |  |  |
| Propagation Delay | $t_{P, Y \rightarrow A}$ |  |  | 5 | 12 | ns |
| Rise Time | $t_{R, Y \rightarrow A}$ |  |  | 1 | 6 | ns |
| Fall Time | $t_{F, Y \rightarrow A}$ |  |  | 3 | 8 | ns |
| Maximum Data Rate | $\mathrm{D}_{\text {MAX }, Y \rightarrow \mathrm{~A}}$ |  |  | 60 |  | Mbps |
| Channel-to-Channel Skew | $\mathrm{t}_{\text {SKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 2 |  | ns |
| Part-to-Part Skew | $\mathrm{t}_{\text {PPSKEW, }} \mathrm{Y} \rightarrow \mathrm{A}$ |  |  | 3 |  | ns |
| POWER REQUIREMENTS |  |  |  |  |  |  |
| Power Supply Voltages | $V_{\text {CCA }}$ | $\mathrm{V}_{\text {CCA }} \leq \mathrm{V}_{\text {CCY }}$ | 1.15 |  | 5.5 | V |
|  | $V_{\text {cCY }}$ |  | 1.65 |  | 5.5 | V |
| Quiescent Power Supply Current | Icca | $\begin{aligned} & V_{A}=0 \mathrm{~V} / \mathrm{V}_{C C A}, \mathrm{~V}_{\mathrm{Y}}=0 \mathrm{~V} / \mathrm{V}_{\mathrm{CCY}}, \\ & \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCY}}=5.5 \mathrm{~V}, \mathrm{EN}=1 \end{aligned}$ |  | 0.17 | 5 | $\mu \mathrm{A}$ |
|  | $\mathrm{I}_{\mathrm{CCY}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} / \mathrm{V}_{\mathrm{CCA}}, \mathrm{~V}_{\mathrm{Y}}=0 \mathrm{~V} / \mathrm{V}_{\mathrm{CCY}}, \\ & \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCY}}=5.5 \mathrm{~V}, \mathrm{EN}=1 \end{aligned}$ |  | 0.27 | 5 | $\mu \mathrm{A}$ |
| Three-State Mode Power Supply Current | $\mathrm{I}_{\mathrm{Hiz}, \mathrm{A}}$ | $\mathrm{V}_{\text {CCA }}=\mathrm{V}_{\text {CCY }}=5.5 \mathrm{~V}, \mathrm{EN}=0$ |  | 0.1 | 5 | $\mu \mathrm{A}$ |
|  | $\mathrm{I}_{\mathrm{Hi}-\mathrm{Z}, \mathrm{Y}}$ | $\mathrm{V}_{C C A}=\mathrm{V}_{C C Y}=5.5 \mathrm{~V}, \mathrm{EN}=0$ |  | 0.1 | 5 | $\mu \mathrm{A}$ |

[^1]
## ADG3304-EP

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 2.

| Parameter | Rating |
| :---: | :---: |
| $V_{\text {cca }}$ to GND | -0.3 V to +7V |
| Vccy to GND | $\mathrm{V}_{\text {cca }}$ to +7 V |
| Digital Inputs (A) | -0.3 V to ( V cca $+0.3 \mathrm{~V})$ |
| Digital Inputs ( Y ) | -0.3 V to ( $\left.\mathrm{V}_{\text {cci }}+0.3 \mathrm{~V}\right)$ |
| EN to GND | -0.3 V to +7 V |
| Operating Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| $\theta_{\mathrm{JA}}$ Thermal Impedance (4-Layer Board) 14-Lead TSSOP | $112.6^{\circ} \mathrm{C} / \mathrm{W}$ |
| Lead Temperature, Soldering |  |
| Vapor phase(60 sec) | $215^{\circ} \mathrm{C}$ |
| Infrared (15 sec) | $220^{\circ} \mathrm{C}$ |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 2. 14-Lead TSSOP Pin Configuration

Table 3. 14-Lead TSSOP Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :---: | :---: | :---: |
| 1 | V ${ }_{\text {cCa }}$ | Power Supply Voltage Input for the A 1 to $\mathrm{A} 4 \mathrm{I} / \mathrm{O}$ Pins ( $1.15 \mathrm{~V} \leq \mathrm{V}_{\text {ccA }} \leq \mathrm{V}_{\text {cç }}$ ). |
| 2 | A1 | Input/Output A1. Referenced to V cca . |
| 3 | A2 | Input/Output A2. Referenced to V cca . |
| 4 | A3 | Input/Output $A 3$. Referenced to $V_{\text {cca }}$. |
| 5 | A4 | Input/Output A4. Referenced to V cca . |
| 6,9 | NC | No Connect. |
| 7 | GND | Ground. |
| 8 | EN | Active High Enable Input. |
| 10 | Y4 | Input/Output Y4. Referenced to $\mathrm{V}_{\text {ccr }}$. |
| 11 | Y3 | Input/Output Y . Referenced to $\mathrm{V}_{\text {ccr }}$. |
| 12 | Y2 | Input/Output Y . Referenced to $\mathrm{V}_{\text {ccr }}$. |
| 13 | Y1 | Input/Output Y1. Referenced to $\mathrm{V}_{\text {ccr }}$. |
| 14 | $\mathrm{V}_{\text {cCr }}$ | Power Supply Voltage Input for the Y 1 to $\mathrm{Y} 4 \mathrm{I} / \mathrm{O}$ Pins ( $1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$ ). |

Table 4. Truth Table

| EN | Y I/O Pins | A I/O Pins |
| :--- | :--- | :--- |
| 0 | $\mathrm{Hi}^{1}$ | $\mathrm{Hi}^{1}$ |
| 1 | Normal operation $^{2}$ | Normal operation $^{2}$ |

[^2]
## ADG3304-EP

## OUTLINE DIMENSIONS



Figure 3. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option |
| :--- | :--- | :--- | :--- |
| ADG3304SRU-EP-RL7 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $14-$ Lead Thin Shrink Small Outline Package [TSSOP] | RU-14 |


[^0]:    One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
    Tel: 781.329.4700
    www.analog.com
    Fax: 781.461.3113 © 2010 Analog Devices, Inc. All rights reserved.

[^1]:    ${ }^{1} \mathrm{~T}_{\mathrm{A}}$ for typical specifications is $+25^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not production tested.

[^2]:    ${ }^{1}$ High impedance state.
    ${ }^{2}$ In normal operation, the ADG3304-EP performs level translation.

