

S10040240P

GaAs Push Pull Hybrid 40MHz to 1000MHz

The S10040240P is a Hybrid Push Pull amplifier module. The part employs GaAs die and is operated from 40MHz to 1000MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

S10040240P Box with 50 Pieces

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 24.0dB Min. Gain at 1000MHz
- 255mA Max. at 24V_{DC}

Applications

 40MHz to 1000MHz CATV Amplifier Systems

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

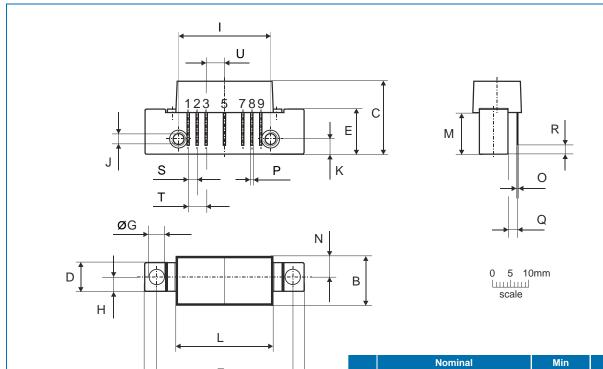
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification		Unit	Condition		
raidilletei	Min	Тур	Max	Unit	Condition	
General Performance					$V+ = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega$	
Power Gain	22.5	23.0	23.5	dB	f = 50MHz	
	24.0		25.5	dB	f = 1000MHz	
Slope ^[1]	1.0		2.5	dB	f = 40MHz to 1000MHz	
Flatness of Frequency Response			±0.5	dB	f = 40MHz to 1000MHz (peak to valley)	
Input Return Loss	20.0			dB	f = 40MHz to 160MHz	
	18.0			dB	f = 160MHz to 1000MHz	
	20.0			dB	f = 40MHz to 160MHz	
Output Return Loss	18.0			dB	f = 160MHz to 870MHz	
	15.0			dB	f = 870MHz to 1000MHz	
Noise Figure		2.5	3.5	dB	f = 50MHz to 1000MHz	
Total Current Consumption (DC)		250.0	255.0	mA		
Distortion Data 40MHz to 870MHz					$V+ = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega$	
СТВ		-66	-64	dBc	132 ch. flat, $V_0 = 40 dBmV^{[2]}$	
XMOD		-59	-57	dBc		
CSO		-66	-64	dBc		

^{1.} The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.


Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

^{2. 132} channels, NTSC frequency raster: 55.25MHz to 865.25MHz, +40dBmV flat output level.

Package Drawing (Dimensions in millimeters)

Notes:

European Projection

Pinning:

Pin	Name
1	Input
2-3	GND
4	
5	+VB
6	
7-8	GND
9	Output

Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
I	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
T	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33