

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

Part Number/Ordering Information 1/

1N80

Package Type

__ = Axial Leaded SMS = Surface Mount Square Tab

Device Type (VRWM)

18 = 100 V **19** = 150 V

20 = 200 V

1N8018 thru 1N8020 SERIES

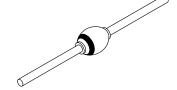
1 AMP 100 - 200 VOLTS 9 nsec HYPER FAST SOFT RECOVERY RECTIFIER

FEATURES:

- Hyper fast reverse recovery time 9 ns max
- Low forward voltage drop
- Low reverse leakage current
- Avalanche breakdown
- Void free ceramic frit glass construction
- High temperature category I eutectic metallurgical bond
- · Hermetically sealed
- · Solid silver lead
- Excellent liquid-to-liquid cryogenic thermal shock performance
- Available in axial & square tab versions
- · For high efficiency applications
- TX, TXV, and S-level screening available^{2/}
- Available as a QPL product per MIL-PRF-19500/769
- Replacement for 1N6638, 1N6642 and 1N5806

MAXIMUM RATINGS 3/				
RATING		SYMBOL	VALUE	UNIT
Peak Repetitive Reverse Voltage DC Blocking Voltage	1N8018 1N8019 1N8020	$oldsymbol{V_{RWM}}{oldsymbol{V_{R}}}$	100 150 200	Volts
Average Rectified Forward Current (Resistive Load, 60 Hz, Sine Wave, T _C = 25°C)		lo	1	Amp
Peak Surge Current (8.3 msec Pulse, Half Sine Wave Superimposed on Io, allow junction to reach equilibrium between pulses, T _C = 25°C)		I _{FSM}	20	Amps
Operating & Storage Temperature		T_{OP} and T_{STG}	-65 to +175	°C
Thermal Resistance SMS- Junction to End Tab Axial- Junction to Lead @ .375"		R _{θJE} R _{θJL}	20 80	°C/W

NOTES:

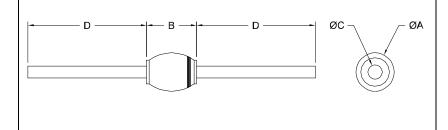

1/ For Ordering Information, Price, and Availability- Contact Factory.

2/ Screening Based on MIL-PRF-19500. Screening Flows Available on Request.

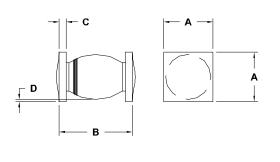
3/ Unless Otherwise Specified, All Electrical Characteristics @25°C.

Axial Leaded

SMS


Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com


1N8018 thru 1N8020 **SERIES**

ELECTRICAL CHARACTERISTICS 3/ CHARACTERISTICS		SYMBOL	LIMIT	UNIT
Maximum Instantaneous Forward Voltage Drop (Pulsed, T _A = 25°C)	\bigcirc I _F = 1mA \bigcirc I _F = 10mA \bigcirc I _F = 100mA \bigcirc I _F = 200mA \bigcirc I _F = 500mA \bigcirc I _F = 1A	V _{F1} V _{F2} V _{F3} V _{F4} V _{F5} V _{F6}	0.575 0.700 0.800 0.850 0.900 0.975	Vdc
Maximum Instantaneous Forward Voltage Drop (Pulsed, T _A = 150°C)	@ I _F = 10mA @ I _F = 100mA	V _{F7} V _{F8}	0.50 0.62	Vdc
Maximum Instantaneous Forward Voltage Drop (Pulsed, T _A = -55°C)	@ I _F = 10mA @ I _F = 100mA	$ m V_{F9} m V_{F10}$	0.81 0.92	Vdc
Minimum Breakdown Voltage I_R = 100 μA	1N8018 1N8019 1N8020	BV_R	110 165 220	Vdc
Maximum Reverse Leakage Current (300 μ s Pulse Minimum , T_A = 25°C)	\textcircled{Q} $V_R = 20V$ \textcircled{Q} $V_R = 75V$ \textcircled{Q} $V_R = \max \text{ rated}$	I _{R1} I _{R2} I _{R3}	50 75 150	nA
Maximum Reverse Leakage Current (300 μs Pulse Minimum , T _A = 150°C)	@ $V_R = 20V$ @ $V_R = 75V$ @ $V_R = \max \text{ rated}$	I _{R4} I _{R5} I _{R6}	50 75 150	μΑ
Maximum Junction Capacitance $(T_A = 25^{\circ}C, f = 1MHz) V_R = 0V$		C_{J1}	14	pf
Maximum Junction Capacitance $(T_A = 25^{\circ}C, f = 1MHz) V_R = 1.5V$		C _{J2}	10	pf
Maximum Junction Capacitance $(T_A = 25^{\circ}C , f = 1 MHz) V_R = 10V$		C _{J3}	6	pf
Maximum Reverse Recovery Time ($I_F = 50$ mA, $I_R = 100$ mA, $I_{RR} = 25$ mA)		t _{rr}	9	nsec
Maximum Forward Recovery Time (I _F = 50 mA)		t _{fr}	18	nsec

	AXIAL	
DIM	MIN	MAX
Α	.056"	.075"
В	.125"	.140"
С	.018"	.022"
D	1.00"	1.50"

SMS				
DIM	MIN	MAX		
Α	.070"	.085"		
В	.168"	.200"		
С	.019"	.028"		
D	.001"			

