

PMIC for LCD Bias Power

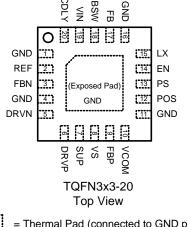
#### **Features**

- Input Voltage Range from 2.7V to 5.5V
- Positive & Negative Charge Pump for  $V_{GH}$  &  $V_{GL}$
- **High Performance Operation Amplifier** 
  - ±100mA Output Short Circuit Current
  - 13V/ms Slew Rate
  - 10MHz, -3dB Bandwidth
- **Control Output for External P-MOSFET to Support** Completely Disconnecting the Battery
- Adjustable Power Sequence by External Capacitor
- **Internal Soft-start**
- Cycle By Cycle Current Limit
- **Multiple Overload Protection**
- **Over Temperature Protection**
- Available in TQFN3x3-20 Package
- Halogen and Lead Free Available (RoHS Compliant)

## **General Description**

The APW7276 integrates with a high-performance stepup converter, two charge pump controllers and one high current operational amplifiers for TFT-LCD applications. The main step-up regulator is a current-mode, fixed-frequency PWM switching regulator. The 1.5MHz switching frequency allows the usage of low-profile inductors and ceramic capacitors to minimize the thickness of LCD panel designs. The charge pump controllers provide regulated the gate-driver of TFT-LCD  $V_{GH}$  and  $V_{GI}$  supplies.The amplifiers are ideal for  $V_{\text{COM}}$  applications, with 100mA output short circuit current drive, 10MHz bandwidth, and 13V/µs slew rate. All inputs and outputs are rail-to-rail.

The APW7276 is available in a tiny 3mm x 3mm 20-pin QFN package (TQFN3x3-20).

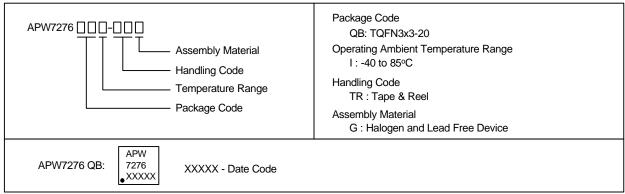

## **Applications**

**Panel** 

# **Simplified Application Circuit**

## VIN $V_{COM}$ $V_{\text{AVDD}}$ $V_{\text{SUP}}$ Step-up VCOM Converter Negative Positive Charge Charge Pump Pump

# **Pin Configuration**




= Thermal Pad (connected to GND plane for better heat dissipation)

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.



## **Ordering and Marking Information**



Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

## **Absolute Maximum Ratings** (Note 1)

| Symbol           | Parameter                                           | Rating           | Unit |
|------------------|-----------------------------------------------------|------------------|------|
| VIN              | Input Bias Supply Voltage (VIN to GND)              | -0.3 ~ 6         | V    |
|                  | LX, DRP, DRN, PS, SUP, VS, POS, VCOM to GND Voltage | -0.3 ~ 20        | V    |
|                  | FB, FBP, FBN, BSW, CDLY, REF, EN to GND Voltage     | -0.3 ~ 6         | V    |
| P <sub>D</sub>   | Power Dissipation                                   | Internally Limit | W    |
| TJ               | Maximum Junction Temperature                        | 150              | °C   |
| T <sub>STG</sub> | Storage Temperature                                 | -65 ~ 150        | °C   |
| $T_{SDR}$        | Maximum Lead Soldering Temperature (10 Seconds)     | 260              | °C   |

Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

## **Thermal Characteristics**

| Symbol            | Parameter                                           |            | Typical Value | Unit |
|-------------------|-----------------------------------------------------|------------|---------------|------|
| $\theta_{JA}$     | Junction-to-Ambient Resistance in free air (Note 2) | TQFN3x3-20 | 50            | °C/W |
| $\theta_{\sf JC}$ | Case-to-Ambient Resistance in free air (Note 2)     | TQFN3x3-20 | 12            | °C/W |

Note 2:  $\theta_{IA}$  is measured with the component mounted on a high effective thermal conductivity test board in free air.



# **Recommended Operating Conditions** (Note 3)

| Symbol           | Parameter                               | Range                                   | Unit |
|------------------|-----------------------------------------|-----------------------------------------|------|
| VIN              | Input Bias Supply Voltage (VIN to GND)  | 2.7 ~ 5.5                               | V    |
| $V_{\text{SUP}}$ | Main Step-up Converter Output Voltage   | VIN ~ 15                                | V    |
| $V_{GH}$         | Positive Charge Pump Output Voltage     | 0 ~ 2*V <sub>SUP</sub> -2               | V    |
| $V_{GL}$         | Negative Charge Pump Output Voltage     | -V <sub>SUP</sub> +2 ~ V <sub>REF</sub> | V    |
| C <sub>IN</sub>  | Input Power Capacitor                   | 4.7 ~                                   | μF   |
| L1               | Inductor Range                          | 1 ~ 10                                  | μН   |
| $C_{VGH}$        | V <sub>GH</sub> Capacitor               | 0.22 ~ 2.2                              | μF   |
| $C_{VGL}$        | V <sub>GL</sub> Capacitor               | 0.22 ~ 2.2                              | μF   |
| $C_{REFF}$       | V <sub>REF</sub> Capacitor              | 0.1 ~ 0.47                              | μF   |
| R1               | Feedback Resistance of V <sub>SUP</sub> | 0.1 ~ 1                                 | ΜΩ   |
| R4               | Feedback Resistance of V <sub>GH</sub>  | 0.1 ~ 1                                 | ΜΩ   |
| R6               | Feedback Resistance of V <sub>GL</sub>  | 0.1 ~ 0.54                              | ΜΩ   |
| T <sub>A</sub>   | Ambient Temperature                     | -40 ~ 85                                | °C   |
| TJ               | Junction Temperature                    | -40 ~ 125                               | °C   |

Note 3: Refer to the typical application circuit.

## **Electrical Characteristics**

Unless otherwise specified, these specifications apply over  $\rm V_{IN}\!=\!3.6V$  and  $\rm T_A\!=25^{\circ}C.$ 

| Symbol           | Downwood on                         | Tank On will the same                                                  | APW7276 |      |       | 1114 |
|------------------|-------------------------------------|------------------------------------------------------------------------|---------|------|-------|------|
| Symbol           | Parameter                           | Test Conditions                                                        |         | Тур. | Max.  | Unit |
| SUPPLY C         | URRENT                              |                                                                        | •       |      |       |      |
| VIN              | Input Voltage Range                 |                                                                        | 2.7     | -    | 5.5   | V    |
|                  | VIN Complex Company                 | V <sub>FB</sub> = 1V, switching                                        | -       | 2    | 5     | mA   |
| $I_{ m VIN}$     | VIN Supply Current                  | V <sub>FB</sub> = 1.3V, no switching                                   | -       | 300  | -     | μΑ   |
| I <sub>SD</sub>  | VIN Shutdown Input Current          | EN = GND                                                               | -       | 0.1  | 1     | μА   |
| UNDER VO         | DLTAGE LOCKOUT (UVLO)               |                                                                        | •       |      |       |      |
| VIN              | UVLO Threshold Voltage              |                                                                        | 2.2     | 2.4  | 2.6   | V    |
|                  | UVLO Hysteresis Voltage             |                                                                        | 50      | 100  | 150   | mV   |
| STET-UP F        | REGULATOR                           | •                                                                      | •       |      |       |      |
| $V_{REF}$        | Reference Voltage                   | VIN=2.7V~5.5V, T <sub>A</sub> = -40 ~ 85°C, I <sub>REF</sub> = 0 ~ 2mA | 1.225   | 1.25 | 1.275 | V    |
| I <sub>REF</sub> | Reference Voltage Output<br>Current |                                                                        | 2       | -    | -     | mA   |
| $V_{FB}$         | FB Regulation Voltage               | VIN=2.7V~5.5V, T <sub>A</sub> = -40 ~ 85°C                             | 1.225   | 1.25 | 1.275 | V    |
| Fsw              | Switching Frequency                 | V <sub>FB</sub> = 1.1V                                                 | 1.25    | 1.5  | 1.75  | MHz  |
| R <sub>on</sub>  | Power Switch On Resistance          | VIN = 3.6V                                                             | -       | 0.5  | -     | Ω    |
| I <sub>LIM</sub> | Power Switch Current Limit          |                                                                        | 2.0     | -    | -     | Α    |
|                  | LX Leakage Current                  | $V_{EN} = GND$ , $V_{LX}=0V$ or 5V, $VIN = 5V$                         | -1      | -    | 1     | μΑ   |
| D <sub>MAX</sub> | LX Maximum Duty Cycle               |                                                                        | 92      | 95   | 98    | %    |
| I <sub>FB</sub>  | FB Input Current                    |                                                                        | -50     | -    | 50    | nA   |



# **Electrical Characteristics (Cont.)**

Unless otherwise specified, these specifications apply over  $\rm V_{IN}{=}3.6V$  and  $\rm T_{A}{=}~25^{\circ}C.$ 

| Cumaland          | Parameter                                   | Took Conditions                                                |          | APW7276 |       |      |
|-------------------|---------------------------------------------|----------------------------------------------------------------|----------|---------|-------|------|
| Symbol            | Parameter                                   | Test Conditions                                                |          | Тур.    | Max.  | Unit |
| SOFT-STA          | RT AND SHUTDOWN                             |                                                                | •        |         | •     | •    |
| T <sub>SS</sub>   | Step-up Regulator Soft-start<br>Duration    | (Note 4)                                                       | -        | 2       | -     | ms   |
|                   | EN High Threshold                           | V <sub>EN</sub> Rising                                         | -        | -       | 1     | V    |
| $V_{TEN}$         | EN Low Threshold                            | V <sub>EN</sub> Falling                                        | 0.4      | -       | -     | V    |
| I <sub>EN</sub>   | EN Leakage Current                          | V <sub>EN</sub> = 5V, VIN = 5V                                 | -1       | -       | 1     | μΑ   |
| I <sub>BSW</sub>  | BSW Pull-down Current                       |                                                                | 3        | 5       | 10    | μΑ   |
|                   | BSW to VIN Ron                              |                                                                | -        | 200     | -     | Ω    |
| I <sub>CDLY</sub> | CDLY Charge Current                         |                                                                | -        | 10      | -     | μΑ   |
|                   | CDLY High Threshold                         | V <sub>GL</sub> Soft-start without Delay from V <sub>SUP</sub> | -        | 1       | -     | V    |
|                   | PS to GND Leakage Current                   | V <sub>PS</sub> =15V                                           | -        | -       | 100   | nA   |
|                   | PS to GND On Resistance                     |                                                                | -        | 1k      | -     | Ω    |
| INTERNAL          | SWITCH                                      |                                                                | <b>I</b> | ı       | ı     |      |
| R <sub>vs</sub>   | SUP to VS On Resistance                     |                                                                | -        | 50      | -     | Ω    |
|                   | SUP to VS Leakage Current                   |                                                                | -        | -       | 100   | nA   |
|                   | VS Soft-start Duration                      | (Note 4)                                                       | -        | 2       | -     | ms   |
| POSITIVE          | REGULATED CHARGE PUMP                       |                                                                | I        |         | ı     |      |
| V <sub>FBP</sub>  | FBP Regulation Voltage                      | VIN=2.7V~5.5V, T <sub>A</sub> = -40 ~ 85°C                     | 1.225    | 1.25    | 1.275 | V    |
| I <sub>FBP</sub>  | FBP Input Current                           |                                                                | -50      | -       | 50    | nA   |
| I <sub>DRVP</sub> | RMS DRVP Output Current                     | V <sub>SUP</sub> = 12V                                         | 5        | -       | -     | mA   |
|                   | DRP On Resistance High                      |                                                                | -        | 20      | -     | Ω    |
|                   | DRP On Resistance Low                       |                                                                | -        | 3.5     | -     | Ω    |
|                   | Positive Charge Pump<br>Frequency           |                                                                | 400      | 500     | 600   | kHz  |
| T <sub>SSP</sub>  | Positive Charge Pump Soft-start Duration    | (Note 4)                                                       | -        | 2       | -     | ms   |
| NEGATIVE          | REGULATED CHARGE PUMP                       |                                                                |          |         |       |      |
| $V_{FBN}$         | FBN Regulation Voltage                      | VIN=2.7V~5.5V, T <sub>A</sub> = -40 ~ 85°C                     | -25      | 0       | 25    | mV   |
| I <sub>FBN</sub>  | FBN Input Current                           |                                                                | -50      | -       | 50    | nA   |
| I <sub>DRVN</sub> | RMS DRVN Output Current                     | V <sub>SUP</sub> = 12V                                         | 5        | -       | -     | mA   |
|                   | DRN On Resistance High                      |                                                                | -        | 5       | -     | Ω    |
|                   | DRN On Resistance Low                       |                                                                | -        | 12      | -     | Ω    |
|                   | Negative Charge Pump<br>Frequency           |                                                                | 400      | 500     | 600   | kHz  |
| T <sub>SSN</sub>  | Negative Charge Pump<br>Soft-start Duration | (Note 4)                                                       | -        | 2       | -     | ms   |

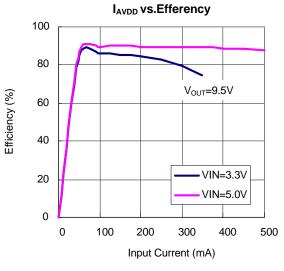


# **Electrical Characteristics (Cont.)**

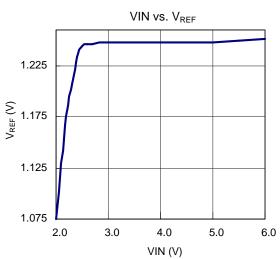
Unless otherwise specified, these specifications apply over  $\rm V_{IN}{=}3.6V$  and  $\rm T_{A}{=}~25^{\circ}C.$ 

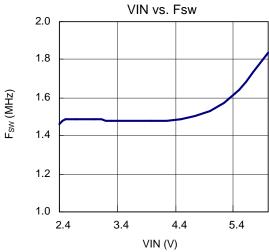
| Comple ed         | Parameter                                               | Test Conditions         | APW7276               |                      |      | Unit |
|-------------------|---------------------------------------------------------|-------------------------|-----------------------|----------------------|------|------|
| Symbol            |                                                         |                         | Min.                  | Тур.                 | Max. | Onne |
| SEQUENC           | E                                                       |                         | •                     | •                    | •    |      |
| T <sub>DEL1</sub> | PS Delay Time                                           | (Note 4)                | -                     | 15                   | -    | ms   |
| T <sub>DEL2</sub> | Delay Time Between V <sub>AVDD</sub> to V <sub>GL</sub> | (Note 4)                | 1                     | -                    | 15   | ms   |
| T <sub>DEL3</sub> | Delay Time Between V <sub>GL</sub> to V <sub>GH</sub>   | (Note 4)                | -                     | 15                   | -    | ms   |
| VCOMP BI          | UFFER                                                   |                         | •                     |                      |      |      |
| A <sub>OL</sub>   | Open Loop Gain                                          | (Note 4)                | -                     | 110                  | -    | dB   |
| Vou               | V <sub>OH</sub> Output Voltage High                     | Ι <sub>ΟυΤ</sub> =100μΑ | V <sub>SUP</sub> -15  | V <sub>SUP</sub> -3  | ı    | mV   |
| V OH              |                                                         | I <sub>OUT</sub> =5mA   | V <sub>SUP</sub> -150 | V <sub>SUP</sub> -80 | 1    | mV   |
| V                 | Output Voltage Low                                      | I <sub>OUT</sub> =100μA | -                     | 2                    | 15   | mV   |
| $V_{OL}$          | Output Voltage Low                                      | I <sub>OUT</sub> =5mA   | -                     | 80                   | 150  | mV   |
| I <sub>sc</sub>   | Short Circuit Current                                   |                         | 50                    | 70                   | -    | mA   |
| I <sub>VCOM</sub> | Continuous Output Current                               |                         | <del>±</del> 40       | -                    | -    | mA   |
|                   | VCOM discharge resistance                               |                         | -                     | 2                    | -    | kΩ   |
| PSRR              | Power Supply Rejection Ratio                            | (Note 4)                | 60                    | -                    | -    | dB   |
| BW                | -3dB Bandwidth                                          | (Note 4)                | -                     | 10                   | 1    | MHz  |
| GBWP              | Gain Bandwidth Product                                  | (Note 4)                | -                     | 8                    | 1    | MHz  |
| SR                | Slew Rate                                               | (Note 4)                | -                     | 13                   | -    | V/μs |

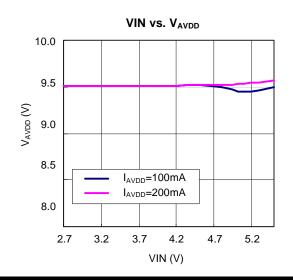
Note 4: Guarantee by design, not production test

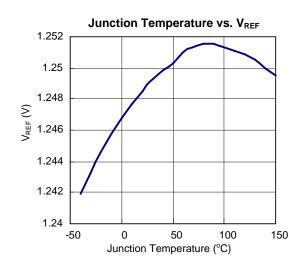



# **Pin Description**


| PIN         | 1    | FUNCTION                                                                                                                                                                                                                                                                                                                                                |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQFN3x3-20  | NAME | FUNCTION                                                                                                                                                                                                                                                                                                                                                |
| 1,4,11,16   | GND  | Signal and Power ground. Connect these pins to exposed pad.                                                                                                                                                                                                                                                                                             |
| 2           | REF  | Internal 1.25V reference voltage output. Connect 1µF capacitor to this pin.                                                                                                                                                                                                                                                                             |
| 3           | FBN  | Negative charge pump feedback input.                                                                                                                                                                                                                                                                                                                    |
| 5           | DRVN | Regulated charge pump driver for V <sub>GL</sub> . Connect to flying capacitor.                                                                                                                                                                                                                                                                         |
| 6           | DRVP | Regulated charge pump driver for V <sub>GH</sub> . Connect to flying capacitor.                                                                                                                                                                                                                                                                         |
| 7           | SUP  | This is the supply pin of the positive and negative charge pump driver. Connected this pin to the output of the main step-up converter V <sub>SUP</sub> .                                                                                                                                                                                               |
| 8           | VS   | The supply voltage of positive charge pump regulator.                                                                                                                                                                                                                                                                                                   |
| 9           | FBP  | Positive charge pump feedback input.                                                                                                                                                                                                                                                                                                                    |
| 10          | VCOM | VCOM output.                                                                                                                                                                                                                                                                                                                                            |
| 12          | POS  | Non-inverting Input of VCOM.                                                                                                                                                                                                                                                                                                                            |
| 13          | PS   | This is the gate drive pin which can be used to control an external P-channel MOSFET to provide input to output isolation of $V_{\text{SUP}}$ or $V_{\text{AVDD}}$ . See the Typical Application Section. PS is an open-drain output and is pulled low as soon as the delay time of CDLY setting is expired. PS goes high impedance when the EN is low. |
| 14          | EN   | Enable pin. Logic high initiates power-up sequencing. Logic low disable the device.                                                                                                                                                                                                                                                                     |
| 15          | LX   | Step-up converter inductor/diode connection.                                                                                                                                                                                                                                                                                                            |
| 17          | FB   | Main step-up converter feedback input.                                                                                                                                                                                                                                                                                                                  |
| 18          | BSW  | Bi-direction switch control pin. This switch disconnects VOUT from VIN during shutdown and any fault evens.                                                                                                                                                                                                                                             |
| 19          | VIN  | IC power input.                                                                                                                                                                                                                                                                                                                                         |
| 20          | CDLY | Delay Setting Capacitor Connection Pin. Connecting a capacitor from this pin to GND allows the setting of delay time between $V_{\text{SUP}}$ to $V_{\text{GL}}$ during start-up. Pull this pin exceed 1V ignore the delay time.                                                                                                                        |
| Exposed Pad | GND  | Signal and Power Ground.                                                                                                                                                                                                                                                                                                                                |

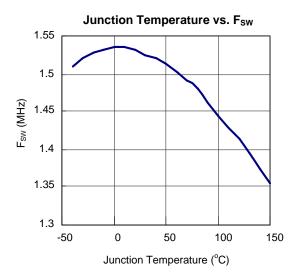




# **Typical Operating Characteristics**













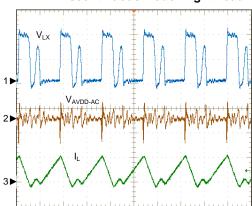

# **Typical Operating Characteristics**





## **Operating Wavrforms**

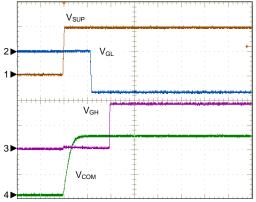
The test conditions are APW7276, VIN=3.3V,  $V_{AVDD}$ =9.5V,  $V_{GL}$ =-8.2V,  $V_{GH}$ =16.8V,  $V_{COM}$ = $V_{AVDD}$ /2,  $V_{AVDD}$ -20.00 unless otherwise specified.


#### **Boost Converter** PWM continuous Mode: Heavy Load



VIN=3.3V,  $V_{AVDD}=9.5V/300mA$ , L=2.2uH

CH1: V<sub>LX</sub>, 5V/Div, DC CH2: V<sub>AVDD-AC</sub>, 100mV/Div, AC CH3: I<sub>L</sub>, 500mA/Div, DC TIME: 400ns/Div


#### **Boost Converter PWM Discontinuous Mode: Light Load**

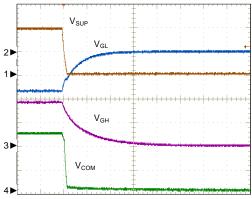


 $VIN=3.3V, V_{AVDD}=9.5V/50mA, L=2.2uH$ 

CH1: V<sub>LX</sub>, 5V/Div, DC CH2:  $V_{AVDD-AC}$ , 100mV/Div, AC CH3: I<sub>L</sub>, 500mA/Div, DC TIME: 400ns/Div

#### **Power-On Sequence**




VIN=3.3V,  $V_{AVDD}$ =9.5V/30mA,

 $V_{GL}$ =-8.2V/8.2kohm, $V_{GH}$ =16.8V/18kohm, EN

Power On

CH1: V<sub>SUP</sub>, 5V/Div, DC CH2: V<sub>GL</sub>, 5V/Div, DC CH3: V<sub>GH</sub>, 10V/Div, DC CH4: V<sub>COM</sub>, 5V/Div, DC TIME: 20ms/Div

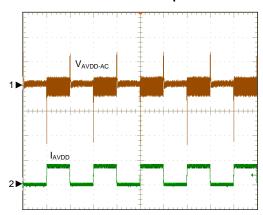
#### **Power-Off Sequence**



VIN=3.3V, V<sub>AVDD</sub>=9.5V/30mA,

 $V_{GL}$ =-8.2V/8.2kohm,  $V_{GH}$ =16.8V/18kohm, EN

Power On

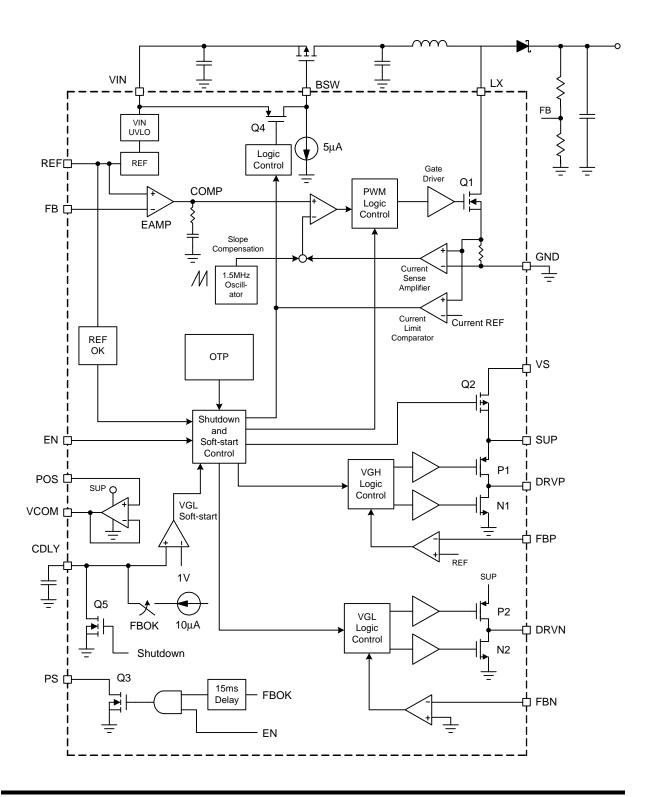

CH1: V<sub>SUP</sub>, 5V/Div, DC CH2: V<sub>GL</sub>, 5V/Div, DC CH3: V<sub>GH</sub>, 10V/Div, DC CH4: V<sub>COM</sub>, 5V/Div, DC TIME: 20ms/Div



# **Operating Wavrforms**

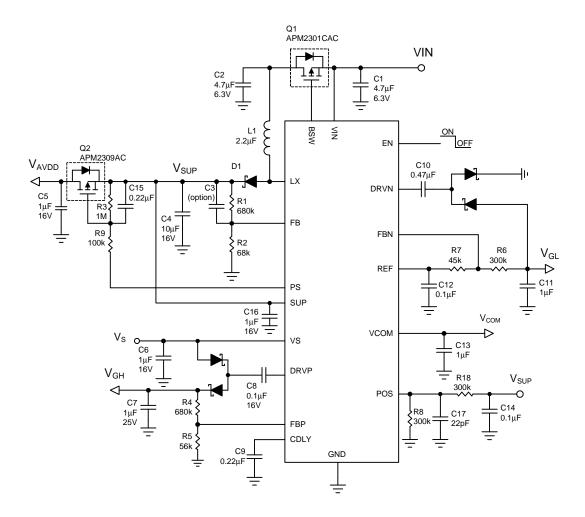
The test conditions are APW7276, VIN=3.3V,  $V_{\text{AVDD}}$ =9.5V,  $V_{\text{GL}}$ =-8.2V,  $V_{\text{GH}}$ =16.8V,  $V_{\text{COM}}$ = $V_{\text{AVDD}}$ /2,  $V_{\text{AVDD}}$ =25°C unless otherwise specified.

#### Boost Converter Load Transient Response



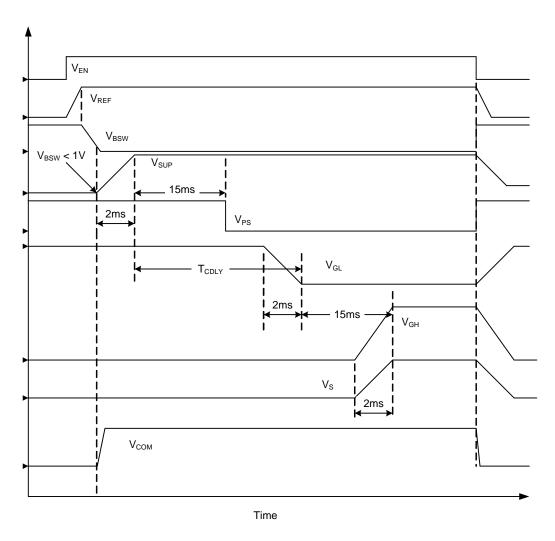

$$\begin{split} &\text{VIN=3.3V, V}_{\text{AVDD}}\text{=}9.5\text{V, L=}2.2\text{uH} \\ &\text{CH1: V}_{\text{AVDD-AC}}, 100\text{mV/Div, AC} \\ &\text{CH2: I}_{\text{AVDD}}, 200\text{mA/Div, DC} \end{split}$$

TIME: 10ms/Div




# **Block Diagram**






# **Typical Application Circuit**





# **Power On Sequence**



The output voltage falling slew rate after shutdown depend on external resistance beside  $V_{\text{COM}}$ .



## **Function Description**

#### VIN Under-Voltage Lockout (UVLO)

The Under-voltage lockout (UVLO) circuit compares the input voltage at VIN with the UVLO threshold to ensure the input voltage is high enough for reliable operation. The 100mV (typ) hysteresis prevents supply transients from causing a restart. Once the input voltage exceeds the UVLO rising threshold, startup begins. When the input voltage falls below the UVLO falling threshold, the controller turns off the converter.

#### **Main Step-up Converter Control Loop**

The APW7276 is a constant frequency, synchronous rectifier and current-mode switching regulator. In normal operation, the internal main switch (Q1) is turned on each cycle. The peak inductor current at which EAMP turn off the Q1 is controlled by the voltage on the COMP node which is the output of the error amplifier (EAMP).

An external resistive divider connected between  $V_{\text{SUP}}$  and ground allows the EAMP to receive an output feedback voltage  $V_{\text{FB}}$  at FB pin. When the load current increases, it causes a slightly decrease in  $V_{\text{FB}}$  relative to the reference voltage, which in turn causes the COMP voltage to increase until the average inductor current matches the new load current. At light load current, the COMP voltage is low. The APW7276 auto skips pulse.

#### **Pulse Skip Modulation**

APW7276 auto skip pulse at light load.

#### **Main Step-up Converter Current Limit**

The APW7276 integrated a current-limit-comparator in main step-up converter. It monitors the inductor current, flows through the N-channel MOSFET, and limits the current peak at current-limit level to prevent loads and the APW7276 from damaging during overload or short-circuit conditions.

## $V_{\mathsf{REF}}$

The  $V_{\text{REF}}$  initiates soft-start process after POR and EN goes high. Shutdown if POR and EN goes low.

#### **CDLY**

Connecting a capacitor from this pin to GND allows the setting of delay time between  $V_{\rm GL}$  and  $V_{\rm SUP}.$  Once the  $V_{\rm SUP}$  soft-start process enabled, an internal 10µA current source starts to charge  $C_{\rm DLY}$ , the  $V_{\rm GL}$  channel initiates soft-start process once  $V_{\rm CDLY}$  exceed 1V. If the  $V_{\rm CDLY}$  exceeds 1V before  $V_{\rm SUP}$  start up, the  $V_{\rm SUP}$  and  $V_{\rm GL}$  start up simultaneously.

#### **BSW**

Once  $V_{REF}$  is within 8% of its normal regulated output voltage, an internal current source from the BSW to GND to pull BSW low. Once the  $V_{BSW}$  below 1V, the step-up converter initiates soft-start process. The  $V_{BSW}$  pull to VIN if main step-up current limit detected without delay, EN pull low or VIN below POR.

#### PS

This is the gate drive pin which can be used to control an external MOSFET switch to provide input to output isolation of  $V_{\text{SUP}}$  or  $V_{\text{AVDD}}$ . See the Typical Application Section. PS is an open-drain output and is latch low as soon as the step-up converter is within 10% of its normal regulated output voltage for 15ms. GD goes high impedance when the EN input voltage is cycle low.

#### An Isolation Switch from VSUP to VS (Q2)

The VS is the voltage source of positive charge pump,  $V_{\text{GH}}$ . As soon as the  $V_{\text{GL}}$  start-up for 15ms, the P-FET, Q2, switch soft on. The Q2 fully turns on after 2ms. The Q2 turns off at Q1 current limit detected and EN goes low.

#### **Operational Amplifier**

The operational amplifier is typically used to drive the LCD backplane (VCOM) or the gamma-correction divider string. They feature ±100mA output short-circuit current, 13V/µs slew rate, and 8MHz bandwidth. The rail-to-rail input and output capability maximizes system flexibility.



## **Function Description (Cont.)**

#### **Positive Charge Pump**

The positive charge-pump regulator is typically used to generate the positive supply rail for the TFT LCD gate driver ICs. The output voltage is set with an external Resistive voltage-divider from its output to GND with the midpoint connected to FBP. The charge pump includes a high-side p-channel MOSFET (P1) and a low-side n-channel MOSFET (N1) to control the power transfer as shown in Figure 1. During the first half-cycle, N1 turns on and charges flying capacitors C8 (Figure 1). During the second half cycle, N1 turns off and P1 turns on, level shifting C8 by V<sub>SUP</sub> volts. The amount of charge transferred to the output is determined by the error amplifier that controls P1's on-resistance. The positive charge-pump regulator's startup can be delayed from negative charge pump after 15ms, the positive charge-pump regulator is enabled. Each time it is enabled, the positive charge-pump regulator goes through a soft-start routine by ramping up its internal reference voltage from 0 to 1.25V. The soft-start period is 2ms (typ). The soft-start feature effectively limits the inrush current during startup.

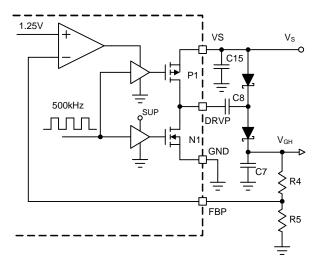



Fig1. Positive Charge Pump Regulator Block Diagram

#### **Negative Charge Pump**

The negative charge-pump regulator is typically used to generate the negative supply rail for the TFT LCD gate driver ICs. The output voltage is set with an external resistive voltage-divider from its output to REF with the midpoint connected to FBN. The number of charge pump stages and the setting of the feedback divider determine the output of the negative charge-pump regulator. The charge-pump controller includes a high-side p-channel MOSFET (P2) and a low-side n-channel MOSFET (N2) to control the power transfer as shown in Figure 2.

During the first half cycle, P2 turns on, and flying capacitor C10 charges to  $V_{\text{SUP}}$  minus a diode drop (Figure 2). During the second half cycle, P2 turns off, and N2 turns on, level shifting C10. This connects C10 in parallel with reservoir capacitor C11. If the voltage across C11 minus a diode drop is greater than the voltage across C10, charge flows from C11 to C10 until the diode (D5) turns off. The amount of charge transferred from the output is determined by the error amplifier, which controls N2's on-resistance.

The negative charge-pump regulator is enabled when the step-up regulator reaches regulation and  $V_{\text{CDLY}}$  exceed 1V. Each time it is enabled, the negative charge-pump regulator goes through a soft-start routine by ramping down its internal reference voltage from 1.25V to 0mV. The soft-start period is 2ms typically. The soft-start feature effectively limits the inrush current during startup.

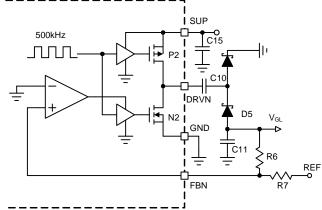



Fig2. Negative Charge Pump Regulator Block Diagram



## **Function Description (Cont.)**

#### **Over-Temperature Protection (OTP)**

The over-temperature circuit limits the junction temperature of the APW7276. When the junction temperature exceeds  $160^{\circ}$ C, a thermal sensor turns off the power MOSFET allowing the devices to cool. The thermal sensor allows the converters to start a soft-start process and regulates the output voltage again after the junction temperature cools by  $40^{\circ}$ C. The OTP is designed with a  $40^{\circ}$ C hysteresis to lower the average Junction Temperature (T<sub>J</sub>) during continuous thermal overload conditions increasing the lifetime of the device.

#### **Layout Consideration**

For all switching power supplies, the layout is an important step in the design; especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might show noise problems and duty cycle jitter.

- The input capacitor C1 and C16 should be placed close to the VIN/SUP and GND. Connecting the capacitor with VIN/SUP and GND pins by short and wide tracks for filtering and minimizing the input voltage ripple.
- The inductor and Schottky diode should be placed as close as possible to the LX pin to minimize length of the copper tracks as well as the noise coupling into other circuits.
- A star ground connection or ground plane minimizes ground shifts and noise is recommended.
- 4. Since the feedback pin (FBx) and network is a high impedance circuit the feedback network should be routed away from the inductor. The feedback pin and feedback network should be shielded with a ground plane or trace to minimize noise coupling into this circuit.

# TQFN3x3-20

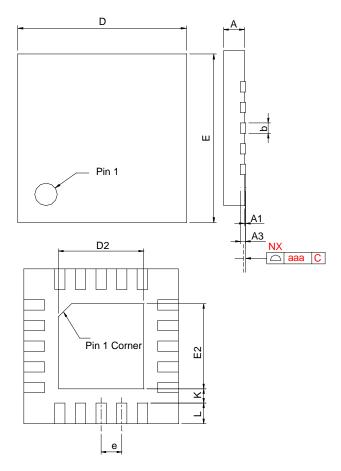
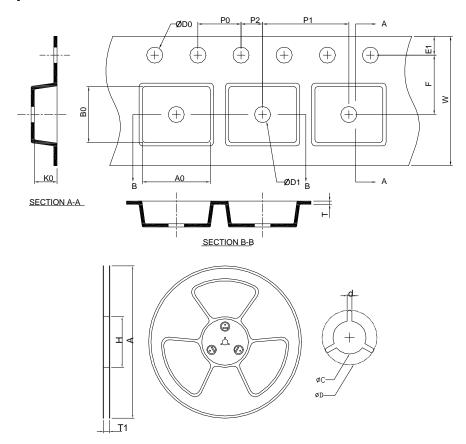

Just Recommend

Figure 3. Recommended Minimum Footprint



# **Package Information**

## TQFN3x3-20




|        | TQFN3x3-20 |             |        |       |  |
|--------|------------|-------------|--------|-------|--|
| P      |            | IQFN        | 3X3-2U |       |  |
| SYMBOL | MILLIM     | MILLIMETERS |        | HES   |  |
| 2      | MIN.       | MAX.        | MIN.   | MAX.  |  |
| Α      | 0.70       | 0.80        | 0.028  | 0.031 |  |
| A1     | 0.00       | 0.05        | 0.000  | 0.002 |  |
| А3     | 0.20 REF   |             | 0.008  | 3 REF |  |
| b      | 0.15       | 0.25        | 0.006  | 0.010 |  |
| D      | 2.90       | 3.10        | 0.114  | 0.122 |  |
| D2     | 1.50       | 1.80        | 0.059  | 0.071 |  |
| Е      | 2.90       | 3.10        | 0.114  | 0.122 |  |
| E2     | 1.50       | 1.80        | 0.059  | 0.071 |  |
| е      | 0.40       | BSC         | 0.016  | BSC   |  |
| L      | 0.30       | 0.50        | 0.012  | 0.020 |  |
| K      | 0.20       |             | 0.008  |       |  |
| aaa    | 0.         | 08          | 0.0    | 03    |  |

Note: 1. Followed from JEDEC MO-220 WEEE

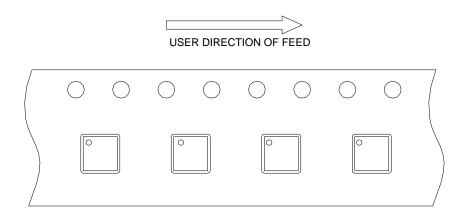


# **Carrier Tape & Reel Dimensions**

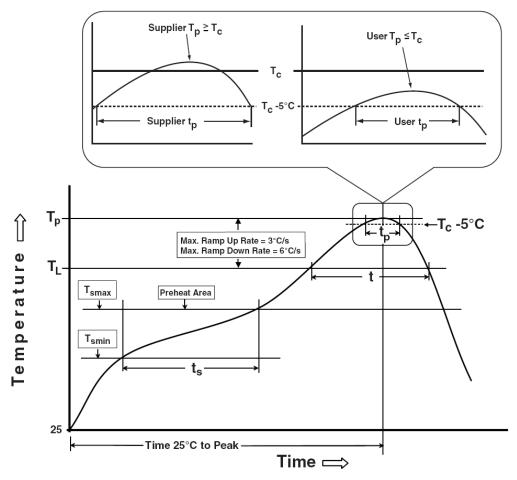


| Application | Α        | Н       | T1                 | С                  | d        | D         | W                  | E1                 | F                 |
|-------------|----------|---------|--------------------|--------------------|----------|-----------|--------------------|--------------------|-------------------|
|             | 330 ₤.00 | 50 MIN. | 12.4+2.00<br>-0.00 | 13.0+0.50<br>-0.20 | 1.5 MIN. | 20.2 MIN. | 12.0 <b>±</b> 0.30 | 1.75 <b>±</b> 0.10 | 5.5 <b>±</b> 0.05 |
| TQFN3x3-20  | P0       | P1      | P2                 | D0                 | D1       | Т         | A0                 | В0                 | K0                |
| 1           |          |         |                    |                    |          |           |                    |                    |                   |

(mm)


# **Devices Per Unit**

| Package Type | Unit        | Quantity |
|--------------|-------------|----------|
| TQFN3x3-20   | Tape & Reel | 3000     |




# **Taping Direction Information**

TQFN3x3-20



## **Classification Profile**





## **Classification Reflow Profiles**

| Profile Feature                                                                                                                                           | Sn-Pb Eutectic Assembly            | Pb-Free Assembly                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--|--|--|
| Preheat & Soak Temperature min (T <sub>smin</sub> ) Temperature max (T <sub>smax</sub> ) Time (T <sub>smin</sub> to T <sub>smax</sub> ) (t <sub>s</sub> ) | 100 °C<br>150 °C<br>60-120 seconds | 150 °C<br>200 °C<br>60-120 seconds |  |  |  |
| Average ramp-up rate (T <sub>smax</sub> to T <sub>P</sub> )                                                                                               | 3 °C/second max.                   | 3°C/second max.                    |  |  |  |
| Liquidous temperature (T <sub>L</sub> ) Time at liquidous (t <sub>L</sub> )                                                                               | 183 °C<br>60-150 seconds           | 217 °C<br>60-150 seconds           |  |  |  |
| Peak package body Temperature (T <sub>p</sub> )*                                                                                                          | See Classification Temp in table 1 | See Classification Temp in table 2 |  |  |  |
| Time (t <sub>P</sub> )** within 5°C of the specified classification temperature (T <sub>c</sub> )                                                         | 20** seconds                       | 30** seconds                       |  |  |  |
| Average ramp-down rate (T <sub>p</sub> to T <sub>smax</sub> )                                                                                             | 6 °C/second max.                   | 6 °C/second max.                   |  |  |  |
| Time 25°C to peak temperature                                                                                                                             | 6 minutes max.                     | 8 minutes max.                     |  |  |  |
| * Tolerance for neak profile Temperature (T.) is defined as a supplier minimum and a user maximum                                                         |                                    |                                    |  |  |  |

<sup>\*</sup> Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

| Package   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|-----------|------------------------|------------------------|
| Thickness | <350                   | <sup>3</sup> 350       |
| <2.5 mm   | 235 °C                 | 220 °C                 |
| ≥2.5 mm   | 220 °C                 | 220 °C                 |

Table 2. Pb-free Process – Classification Temperatures (Tc)

| Package         | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|-----------------|------------------------|------------------------|------------------------|
| Thickness       | <350                   | 350-2000               | >2000                  |
| <1.6 mm         | 260 °C                 | 260 °C                 | 260 °C                 |
| 1.6 mm – 2.5 mm | 260 °C                 | 250 °C                 | 245 °C                 |
| ≥2.5 mm         | 250 °C                 | 245 °C                 | 245 °C                 |

# **Reliability Test Program**

| Test item     | Method             | Description                            |
|---------------|--------------------|----------------------------------------|
| SOLDERABILITY | JESD-22, B102      | 5 Sec, 245°C                           |
| HOLT          | JESD-22, A108      | 1000 Hrs, Bias @ T <sub>j</sub> =125°C |
| PCT           | JESD-22, A102      | 168 Hrs, 100%RH, 2atm, 121°C           |
| TCT           | JESD-22, A104      | 500 Cycles, -65°C~150°C                |
| НВМ           | MIL-STD-883-3015.7 | VHBM 2KV                               |
| MM            | JESD-22, A115      | VMM 200V                               |
| Latch-Up      | JESD 78            | 10ms, 1 <sub>tr</sub> 100mA            |

<sup>\*\*</sup> Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.



## **Customer Service**

## **Anpec Electronics Corp.**

Head Office:

No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

## Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838