

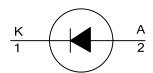
UNISONIC TECHNOLOGIES CO., LTD

BYC15 Preliminary DIODE

RECTIFIER DIODE, HYPERFAST

■ DESCRIPTION

The UTC **BYC15** is a rectifier diode. It provides the designers with ultra-fast switching and low switching loss in associated MOSFET.


The UTC **BYC15** is suitable for half-bridge lighting ballasts, half-bridge/full-bridge switched mode power supplies and active power factor correction applications.

Tab 1 TO-220-2

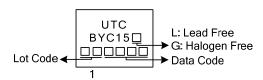
■ FEATURES

- * Low Reverse Recovery Current
- * Ultra-Fast Switching
- * Low Switching Loss in associated MOSFET
- * Low Thermal Resistance

■ SYMBOL

ORDERING INFORMATION

Ordering Number		Deelsess	Pin A	Assigni	Daakina		
Lead Free	Halogen Free	Package	1	2	Tab	Packing	
BYC15L-6-TA2-T	BYC15G-6-TA2-T	TO-220-2	K	Α	K	Tube	


Note: Pin Assignment: A: Anode K: Cathode Tab: Mounting Base

BYC15L-6-TA2-T (1)Packing Type (1) T: Tube

(2)Package Type (2) TA2: TO-220-2

(3)Green Package (3) L: Lead Free, G: Halogen Free and Lead Free

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Peak Repetitive Reverse Voltage		V_{RRM}	600	V
Crest Working Reverse Voltage		V_{RWM}	600	V
Reverse Voltage	square-wave pulse;δ =1.0; T _{Tab} ≤100°C	V _R 500		V
Average Forward Current	square-wave pulse;δ =0.5; T _{Tab} ≤98°C	I _{F(AV)}	I _{F(AV)} 15	
Repetitive Peak Forward Current	square-wave pulse; δ =0.5; t_P = 25 μ s, $T_{Tab} \le 98$ °C	I _{FRM}	30	Α
Non-Repetitive Peak	t _P =10ms,sine-wave pulse;	_	200	Α
Forward Current.	t _P =8.3ms,sine-wave pulse;	I _{FSM}	220	Α
Junction Temperature		T_J	150	°C
Storage Temperature		T_{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	60	K/W
Junction to Tab	θ_{JB}	1.5	K/W

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS			TYP	MAX	UNIT
	VF	I _F =15A, T _J =150°C			1.32	2.03	V
Forward Voltage		I _F =30A, T _J =150°C			1.64	2.34	V
		I _F =15A			1.89	2.9	V
Reverse Current	l lo	V _R =600V			12	200	μΑ
		V _R =500V, T _J =100°C			1.1	3.0	mA
Reverse Recovery Time	t _{RR}	I _F =1A, V _R =30V, dI _F /dt=50A/μs (Figure1)			35	55	ns
		I _F =15A,V _R =400V,I _F /dt=500A	/µs T _J =25°C		19		ns
		(Figure1)	T _J =100°C		32	40	ns
Peak Reverse Recovery Current	I DM	I _F =15A,V _R =400V, T _J =125°C	dI _F /dt=50A/μs		3.0	7.5	Α
		(Figure1)	dI _F /dt=500A/µs		9.5	12	Α
Forward Recovery Voltage	V_{FR}	I _F =15A, dI _F /dt=100A/μs (Figure2)			8	11	V

■ TYPICAL CHARACTERISTICS

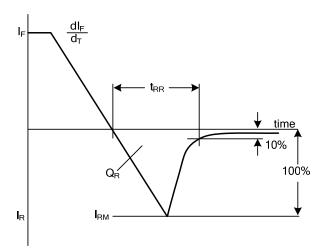


Fig 1. Reverse Recovery Definitions

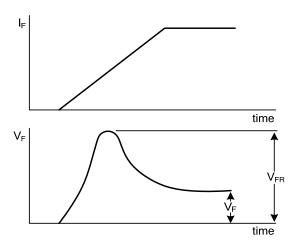


Fig 2. Forward Recovery Definitions

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.