

CMOS 5GHz WLAN 802.11a/n/ac RFeIC with PA, LNA, AND SPDT

Description

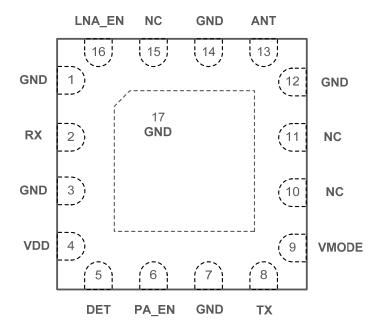
RFX8055 is a highly integrated, single-chip, single-die RFeIC (RF Front-end Integrated Circuit) which incorporates key RF functionality needed for IEEE 802.11a/n/ac WLAN systems operating in the 5.1-5.95GHz range. The RFX8055 architecture integrates a high-efficiency high-linearity power amplifier (PA), a low noise amplifier (LNA) with bypass, the associated matching network, LO rejection, and harmonic filters all in a CMOS single-chip device.

RFX8055 has simple and low-voltage CMOS control logic, and requires minimal external components. A directional coupler based power detect circuit is also integrated for accurate monitoring of output power from the PA.

RFX8055 is assembled in an ultra-compact low-profile 2.3x2.3x0.4 mm 16-lead QFN package. With support to direct battery operation, the RFX8055 is ideal RF front-end solution for implementing 5GHz WLAN in smartphones and other mobile platforms.

Applications

- 802.11a/n/ac
- Smartphones
- ► Tablets/MIDs
- Consumer Electronics
- Notebook/Netbook/Ultrabooks
- Mobile/Portable Devices
- Access Points / Gateways
- Other 5GHz ISM Platforms


FEATURES

- 5GHz WLAN Single Chip, Single-Die RF Front-End IC
- High Transmit Signal Linearity Meeting Standards for 802.11ac OFDM /MCS9 Modulation
- Separate TX, RX Transceiver Ports, Single Antenna Port
- 5GHz Power Amplifier with Low-Pass Harmonic Filter
- Low Noise Amplifier with Bypass Mode
- Transmit/Receive Switch Circuitry
- Integrated Power Detector for Transmit Power Monitor and Control
- ► Low Voltage (1.2V) CMOS Control Logic
- Low-Current Mode in TX for Battery Current Savings

- ESD Protection Circuitry on all Pins
- DC Decoupled RF Ports
- ▶ Internal RF Decoupling on All VDD Bias Pins
- Low Noise Figure for the Receive Chain
- High Power Capability for Received Signals in Bypass Mode
- ▶ Low DC Power Consumption
- On-chip Matching Circuit with 50Ω Input/Output
- Minimal External Components Required
- Market Proven Bulk CMOS Technology
- 2.3mm x 2.3mm x 0.4mm Small Outline 16L QFN Package with Exposed Ground Pad
- ▶ RoHS and REACH Compliant

PIN-OUT DIAGRAM:

(Top "See-Through" View)

PIN ASSIGNMENTS:

Pin Number	Pin Name	Description		
10, 11, 15	NC	Internally Not Connected		
2	RX	RF Output Port from LNA or Bypass – DC Shorted to GND		
4	VDD	DC Supply Voltage		
5	DET	Analog Voltage Proportional to the PA Power Output		
6	PA_EN	CMOS Input to Control TX Enable		
8	TX	RF Input Port from the Transceiver – DC Shorted to GND		
9	VMODE	CMOS Input to Control High-Linearity/Low-Current Mode		
13	ANT	Antenna Port (RF Signal from the PA or RF Signal Applied to the LNA) – DC Shorted to GND		
16	LNA_EN	CMOS Input to Control RX Enable		
1, 3, 7, 12, 14	GND	Ground – Must Be Connected to GND in the Application Circuit		

ABSOLUTE MAXIMUM RATINGS:

Parameters	Units	Min	Max	Conditions
DC VDD Voltage Supply	V	-0.3	4.0	At VDD Pin
DC Control Pin Voltage	V	-0.3	3.6	All Control Pins
DC Voltage at Det Pin	V	-0.3	3.6	External voltage applied to Detector Pin
DC VDD Current Consumption	mA		400	Through VDD Pin when TX is "ON"
TX RF Input Power	dBm		+7	CW and all modulation types in
ANT RF Input Power	dBm		+10	accordance with 802.11a/n/ac standard
Junction Temperature	°C		150	
Storage Ambient Temperature	°C	-40	+150	Appropriate care required according to JEDEC Standards
Operating Ambient Temperature	°C	-20	+85	
Moisture Sensitivity				MSL1

Note: Sustained operation at or above the Absolute Maximum Ratings for any one or combinations of the above parameters may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50-Ohm terminal impedance.

NOMINAL OPERATING CONDITIONS:

Parameters	Units	Min	Тур	Max	Conditions
DC VDD Voltage Supply (Note 1)	V	3.0	3.3	3.6	All VDD Pins
Control Voltage "High" (Note 2)	V	1.2		*	* 3.6V or VDD Whichever is Lower
Control Voltage "Low"	V	0		0.4	
DC Control Pin Current Consumption	μΑ		1		
DC Shutdown Current	μΑ		3		
PA Turn On/Off Time	µsec		0.4		
LNA Turn On/Off Time	µsec		0.4		
θjc (Note 3)	°C/W		27		
θја	°C/W		64		

Note 1: For normal operation of the RFX8055, VDD must be continuously applied to VDD supply pin.

Note 2: If control voltage can exceed 1.8V, a $1K\Omega - 10K\Omega$ series resistor is recommended for the application circuit on each control line

Note 3: Thermal measurements were performed on an RFaxis test EVB under typical use conditions. Please contact RFaxis for details regarding the test conditions and the configuration of the thermal vias on the EVB. Refer to "PCB Land Pattern" for recommended thermal vias.

TRANSMIT PATH CHARACTERISTICS HIGH LINEARITY MODE (VDD=3.3V; T=+25 °C)

Parameters	Units	Min	Тур	Max	Conditions	
Operating Frequency Band	GHz	5.1		5.95		
Linear Output Power 1	dBm		+16.5		For DEVM<1.8%, 802.11ac, MCS9/VHT80	
Linear Output Power 2	dBm		+17		For DEVM<2.5%, 802.11n, MCS7/HT40	
Linear Output Power 3	dBm		+17.5		For DEVM<3%, 802.11a, 64QAM/54Mbps	
Linear Output Power 4	dBm		+20.5		For MCS0/6Mbps, 802.11a Mask Compliance with 1.5dB Margin	
Small-Signal Power Gain	dB		27			
TX Quiescent Current	mA		150		No RF Applied	
TX Linear Current	mA		230		P _{OUT} = +18dBm	
Power Detector Voltage Output	mV		200-1400		P _{OUT} = +8 to +20dBm, 10kΩ Load	
Second Harmonic	dBm/MHz		-30		P _{OUT} =+20dBm, 802.11a, MCS0, 6Mbps	
Third Harmonic	dBm/MHz		-25		P _{OUT} =+20dBm, 802.11a, MCS0, 6Mbps	
Input Return Loss	dB		-10		At TX Pin	
Output Return Loss	dB		-10		At ANT Pin	

TRANSMIT PATH CHARACTERISTICS LOW CURRENT MODE (VDD=3.3V; T=+25 °C)

Parameters	Units	Min	Тур	Max	Conditions
Operating Frequency Band	GHz	5.1		5.95	
Linear Output Power 1	dBm		+14.5		For DEVM<1.8%, 802.11ac, MCS9/VHT80
Linear Output Power 2	dBm		+15		For DEVM<2.5%, 802.11n, MCS7/HT40
Linear Output Power 3	dBm		+16		For DEVM<3%, 802.11a, 64QAM/54Mbps
Linear Output Power 4	dBm		+20		For MCS0/6Mbps, 802.11a Mask Compliance with 1.5dB Margin
Small-Signal Power Gain	dB		26		
TX Quiescent Current	mA		110		No RF Applied
TX Linear Current	mA		205		P _{OUT} = +18dBm

RFX8055 Production Data Sheet

RECEIVE PATH CHARACTERISTICS (VDD=3.3V; T=+25 °C)

Parameters	Units	Min	Тур	Max	Conditions
Operating Frequency Band	GHz	5.1		5.95	All RF Pins are Loaded by 50- Ohm
Gain	dB		13		Receive Mode, LNA On
Noise Figure	dB		2.9		Receive Mode, LNA On
DC Quiescent Current	mA		13		No RF Applied, Through VDD Pin
Receive IIP3	dBm		+5		Minimum value over PVT IIP3=0dBm
LNA Bypass Mode Insertion Loss	dB		6		
LNA Bypass Mode Current	μΑ		3		LNA Off, No RF applied, through VDD Pin
Input Return Loss	dB		-9		At ANT Pin
Output Return Loss	dB		-9		At RX Pin
RF Port Impedance	Ohm		50		

CONTROL LOGIC TRUTH TABLE

PA_EN	LNA_EN	VMODE	Mode Of Operation
0	0	X	Shutdown/LNA Bypass Mode
1	0	0	High Linearity Transmit Mode
0	1	X	Receive Mode, LNA On
1	0	1 Low Current Transmit Mode	
1	1	X Low Current Transmit Mode	
	All Others		Unsupported (No Damage)

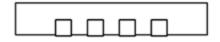
Note: "1" denotes high voltage state (> 1.2V)

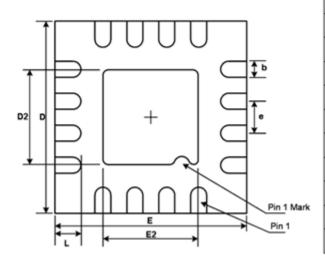
"0" denotes low voltage state (<0.4V) at Control Pins

"X" denotes the don't care state

 $1K\Omega - 10K\Omega$ series resistor may be required for each control line

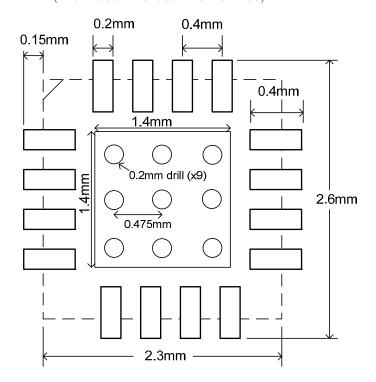

Rev 3.2

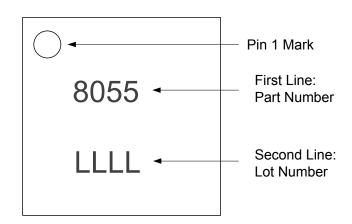

May '15



RFX8055 Production Data Sheet

PACKAGE DIMENSIONS (All Dimensions in mm):




Dimensional Ref.							
REF.	Min. Nom. Max.						
Α	-	-	0.400				
A1	0.000 - 0.050						
D	2.300 BSC						
E	2.300 BSC						
D2	1.350 1.400 1.450						
E2	1.350 1.400 1.450						
b	0.150 0.200 0.250						
e	0.400 BSC						
L	0.200 0.250 0.300						

PCB LAND PATTERN

(With Recommended Thermal Vias)

PACKAGE MARKING

RFeIC° is a registered trademark of RFaxis, Inc. All rights reserved. This product document and the RFX8055 are subject to change without notice.