

SB320 - SB3100

3.0A Axial Leaded Schottky Barrier Diode

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications

Mechanical Data

Case: DO-201AD, Molded Plastic

Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208

Polarity: Cathode Band

• Weight: 1.2 grams (approx.)

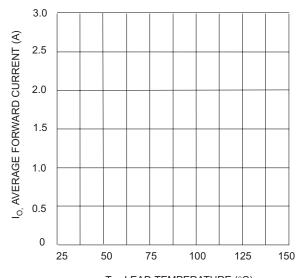
Mounting Position: Any

Marking: Type Number

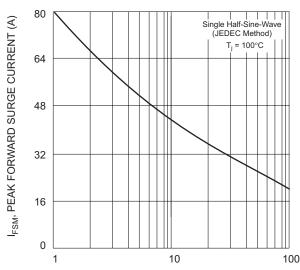
Lead Free: For RoHS / Lead Free Version,
Add "-LF" Suffix to Part Number, See Page 4

DO-201AD						
Dim	Min	Max				
Α	25.4	_				
В	7.20	9.50				
С	1.20	1.30				
D	4.80	5.30				
All Dimensions in mm						

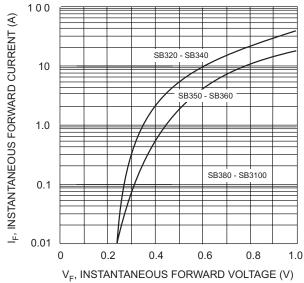
Maximum Ratings and Electrical Characteristics @TA=25°C unless otherwise specified

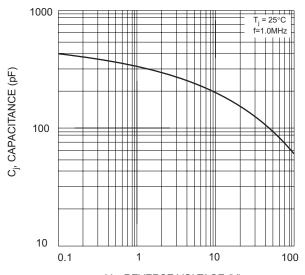

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

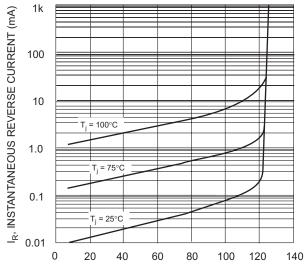
Characteristic	Symbol	SB320	SB330	SB340	SB350	SB360	SB380	SB3100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	50	60	80	100	V
RMS Reverse Voltage	VR(RMS)	14	21	28	35	42	56	70	٧
Average Rectified Output Current @T _L = 95°C (Note 1)	lo	3.0						Α	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	80						Α	
Forward Voltage @I _F = 3.0A	VFM	0.50 0.75 0.85				85	٧		
	IRM	0.5 20							mA
Typical Junction Capacitance (Note 2)	Cj	250							pF
Typical Thermal Resistance (Note 1)	$R_{ heta}JA$	20						°C/W	
Operating and Storage Temperature Range	Tj, Tstg	-65 to +150						°C	


Note: 1. Valid provided that leads are kept at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.




 T_L , LEAD TEMPERATURE (°C) Fig. 1 Forward Current Derating Curve


NUMBER OF CYCLES AT 60 Hz Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

INSTANTANEOUS FORWARD VOLTAGE (V) Fig. 2 Typical Forward Characteristics

 V_R , REVERSE VOLTAGE (V) Fig. 4 Typical Junction Capacitance

PERCENT OF RATED PEAK REVERSE VOLTAGE (%) Fig. 5 Typical Reverse Characteristics