
International Rectifier

Ultra Low Dropout, 10A Adjustable Positive Linear Regulator Thru-Hole (C6)

OM7581SC 5962 - 0323702MZA

Product Summary

Part Number	Output Voltage	Current	Dropout
OM7581SC	+1.8V to +5.5V	10A	0.66V

Description

The OM7581SC is a 10A, ultra low dropout, adjustable linear regulator specifically designed for low voltage, high current applications. Housed in a hermetic package, the dropout of this device is 660mV at full load and as low a 100mV at light loads. The low dropout is achieved by an additional low current input voltage. This unit is ideally suited for military/defense, commercial aircraft, industrial control and other harsh environments where a hermetically sealed package is required.

Features:

- Dropout Voltage of 660mV at Full Load
- Dropout Voltage of 100mV at Light Loads
- Fast Transient Response
- Adjustable Output: 1.8 to 5.5V
- Remote Sense
- Hermetic C-6 Package ensures High Reliability

Absolute Maximum Ratings

Parameter	Symbol	Value	Units	
Output Currrent	I _O	10	Α	
Power Input Voltage	V_{PWR}	6.0	V	
Control Input Voltage	V_{CTRL}	13		
Power Dissipation @ Tc = 25°C	P_{D}	20	W	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	5.0	°C/W	
Operating Junction Temperature Range	T _J	-55 to +125		
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Lead Temperature Soldering (10second maximum)	TL	300		

www.irf.com 1

Electrical Characteristics @T_A = 25°C (Unless Otherwise Specified)

Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Reference Voltage	$V_{CTRL} = 2.7V, V_{PWR} = 2.0V, I_{LOAD} = 10mA$	1.243	1.250	1.257	V	
V _{ADJ} = 0V	V_{CTRL} =2.7 to 12V, V_{PWR} =1.75V to 5.5V, I_{LOAD} =10mA to 10A	1.237	1.250	1.263	V	
Line Regulation	V_{CTRL} = 2.5 to 12V, V_{PWR} = 3.0V to 5.5V, I_{LOAD} = 1.0mA ①		1.0	3.0	m\/	
Load Regulation	V_{CTRL} = 2.75V, V_{PWR} = 2.75V, I_{LOAD} = 10mA to 10A ①	1	1.0	10	mV	
Minimum Load Current	V _{CTRL} = 5.0V, V _{PWR} = 3.3V, V _{ADJ} = 0V ⊕②	1	3.0	10		
Ground Pin Current	$V_{CTRL} = 5.0V$, $V_{PWR} = 3.3V$, $I_{LOAD} = 0$ mA ①	1	6.0	10	mΑ	
Control Pin Current 3	V _{CTRL} = 2.75V, V _{PWR} = 2.75V, I _{LOAD} = 10A ①			170		
Adjust Pin Current	$V_{CTRL} = 2.75V, V_{PWR} = 2.05V, I_{LOAD} = 10mA$		50	120	μΑ	
V _{ADJ} = 0V						
Dipple Dejection	$V_{CTRL} = V_{PWR} = 5.0V \text{ (AVG)}, V_{RIPPLE} = 1.0V_{P-P}, f = 120Hz$	60	80		dB	
Ripple Rejection	$I_{OUT} = 4.0A TJ = 25^{\circ}C$					
Current Limit	V_{CTRL} = 2.75V, V_{PWR} = 2.75V, ΔV_{OUT} = 100mV, $TJ_{=}$ 25°C	10.1	11		۸	
Current Limit	$\label{eq:ctrl} V_{CTRL} = 2.75 \text{V}, \ V_{PWR} = 2.75 \text{V}, \ \Delta V_{OUT} = 100 \text{mV}, \ TJ = -55 ^{\circ}\text{C} \ \& \ TJ = +125 ^{\circ}\text{C}$	10.1	-	1	Α	
Minimum V _{CONTROL}	$V_{PWR} = 3.3V$, $I_{LOAD} = 10A$ ①	-	-	1.35		
	V _{CTRL} = 2.75V, I _{LOAD} = 10A, TJ = 25°C			0.66	V	
Minimum V _{PWR}	V _{CTRL} = 2.75V, I _{LOAD} = 10A, TJ = 125°C			0.85	·	
	V _{CTRL} = 2.75V, I _{LOAD} =10A, TJ = -55°C			0.85		
Thermal Regulation	V_{PWR} = 5.0V, I_{O} = 10A, $P_{D} \ge$ 20W, pulse width = 30ms	-		0.02	%/W	
	Dropout is caused by either minimum control voltage or minimum power voltage. Both					
Dropout Voltage	parameters are specified with respect to the output voltage. The specifications represent the					
	minimum input/output voltage required to maintain 1% regulation.					

Footnotes

- ①- Denotes specifications which apply over the full operating temperature range.
- 2- The minimum load current is minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.
- 3- The control pin current is the drive current required for the output transistor. The control pin current is approximately 0.01% output current. The minimum value is equal to quiescent current of the device.

2 www.irf.com

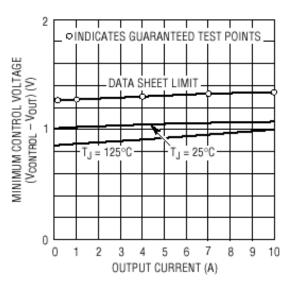


Fig 1: Typical Power Voltage Vs Output Current

Fig 2: Typical Control Voltage Vs Output Current

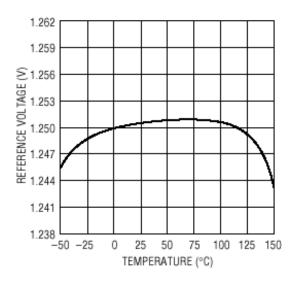


Fig 3: Typical Reference Voltage Vs Temperature

www.irf.com 3

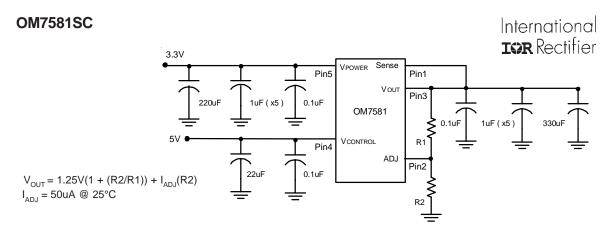
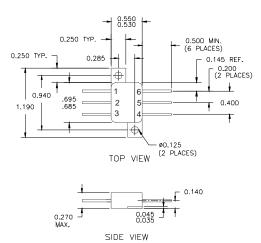



Fig 5: Typical Application

Layout Consideration

It is recommended that output capacitors be located as close as possible to the V_{OUT} terminal of the device to prevent any high frequency oscillation that may result due to excessive stray inductance. Specifications for capacitors: 330 μ F Tantalum Low ESR, 220 μ F Electrolytic, 22 μ F Electrolytic

Case Outline and Dimensions — C-6

Pin Assignment

Pin#	Pin Description	
1	ADJUST	
2	N/C	
3	SENSE	
4	V_{CTRL}	
5	V _{OUT}	
6	V_{PWR}	

Part Numbering Nomenclature

<u>OM</u>	<u>7581</u>	<u>s</u>	<u>C</u>	<u>X</u>
Omnirel	Device	S=Isolated	Package	Screening

www.irf.com

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, Tel: (978) 534-5776 Data and specifications subject to change without notice. 12/03

Downloaded from: http://www.datasheetcatalog.com/