PD - 90697E

International **IGR** Rectifier **RADIATION HARDENED POWER MOSFET THRU-HOLE (T0-204AA/AE)**

Product Summary

Part Number	Radiation Level	RDS(on)	١D
IRH7250	100K Rads (Si)	0.11Ω	26A
IRH3250	300K Rads (Si)	0.11Ω	26A
IRH4250	600K Rads (Si)	0.11Ω	26A
IRH8250	1000K Rads (Si)	0.11Ω	26A

International Rectifier's RADHard HEXFET[®] technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Absolute Maximum Ratings

IRH7250 200V, N-CHANNEL RAD Hard[™]HEXFET[®] TECHNOLOGY

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Package
- Light Weight

Pre-Irradiation

	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	26	
$I_D @ V_{GS} = 12V, T_C = 100^{\circ}C$	Continuous Drain Current	16	A
IDM	Pulsed Drain Current ①	104	
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
IAR	Avalanche Current ①	26	A
EAR	Repetitive Avalanche Energy ①	15	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in.(1.6mm) from case for 10s)	
	Weight	11.5 (Typical)	g

For footnotes refer to the last page

Pre-Irradiation

	Parameter	Min	Тур	Мах	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	—	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
∆BV _{DSS} /∆TJ	Temperature Coefficient of Breakdown Voltage	—	0.27	—	V/°C	
R _{DS(on)}	Static Drain-to-Source On-State		—	0.10	Ω	$V_{GS} = 12V, I_D = 16A$
	Resistance	—	—	0.11		$V_{GS} = 12V, I_{D} = 26A$
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 mA$
9fs	Forward Transconductance	8.0	—	_	S (Ŭ)	V _{DS} > 15V, I _{DS} = 16A ④
IDSS	Zero Gate Voltage Drain Current		—	25	μA	V _{DS} = 160V ,V _{GS} =0V
		—	—	250	μι	VDS = 160V,
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	—	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	—	—	-100		VGS = -20V
Qg	Total Gate Charge	—	—	170		VGS =12V, ID =26A
Qgs	Gate-to-Source Charge	—	—	30	nC	$V_{DS} = 100V$
Qgd	Gate-to-Drain ('Miller') Charge	—	—	70		
td(on)	Turn-On Delay Time		—	33		V _{DD} = 100V, I _D =26A
tr	Rise Time	—	—	140	ns	$V_{GS} = 12V, R_{G} = 2.35\Omega$
td(off)	Turn-Off Delay Time	—	—	140	115	
tf	Fall Time	—	—	140		
LS+LD	Total Inductance	—	10	—	nH	Measured from Drain lead (6mm /0.25in.
						from package) to Source lead (6mm /0.25in.
						from package) with Source wires internally
						bonded from Source Pin to Drain Pad
C _{iss}	Input Capacitance		4700	—		$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	_	850	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	210	_		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)	_	_	26	^	
ISM	Pulse Source Current (Body Diode) ①	—	—	104	A	
VSD	Diode Forward Voltage	-	—	1.4	V	$T_j = 25^{\circ}C$, $I_S = 26A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time	—		820	nS	Tj = 25°C, IF = 26A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge	-	—	12	μC	$V_{DD} \leq 50V @$
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.				

Thermal Resistance

	Parameter	Min	Тур	Мах	Units	Test Conditions
RthJC	Junction-to-Case	_	—	0.83		
R _{th} JA	Junction-to-Ambient	—	_	30	°C/W	
RthCS	Case-to-Sink	_	0.12	—		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

Radiation Characteristics

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

	Parameter	100 K Ra	ads(Si)1	300 - 1000	K Rads (Si) ²	Units	Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	200		200	—	V	$V_{GS} = 0V, I_D = 1.0mA$
VGS(th)	Gate Threshold Voltage	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	—	-100	—	-100		V _{GS} = -20 V
IDSS	Zero Gate Voltage Drain Current	—	25	—	50	μA	V _{DS} =160V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	_	0.100	—	0.155	Ω	VGS = 12V, I _D =16A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source ④	_	0.100	_	0.155	Ω	VGS = 12V, I _D =16A
, ,	On-State Resistance (TO-204AE)						
V _{SD}	Diode Forward Voltage ④	_	1.4	—	1.4	V	$V_{GS} = 0V, I_S = 26A$

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 66

1. Part numbers IRH7250

2. Part number IRH3250, IRH4250and IRH8250

Table 2. Single Event Effect Safe Operating Area

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

lon	LET	Energy	Range	VDS(V)						
	MeV/(mg/cm ²)) (MeV)	(µm)	@Vgs=0	V @VGS=-	5V @VGS=-10	V@VGS=-15V	/ @VGS=-20V		
Cu	28	285	43	190	180	170	125	_		
Br	36.8	305	39	100	100	100	50	—		

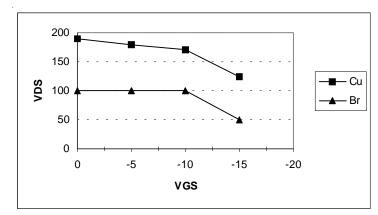
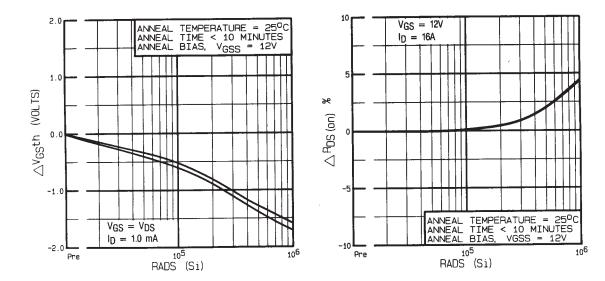



Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

Post-Irradiation

IRH7250

Voltage Vs. Total Dose Exposure

Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure

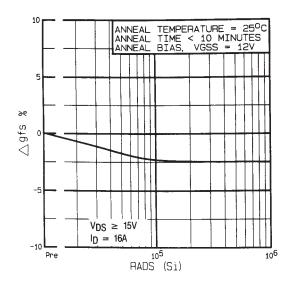


Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

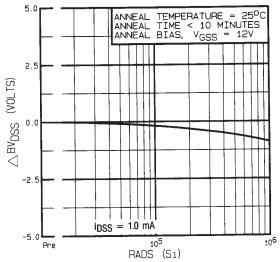


Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

Post-Irradiation

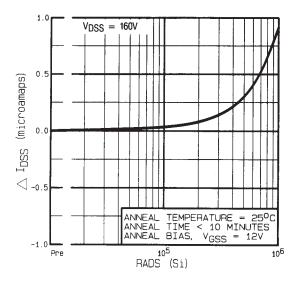


Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure

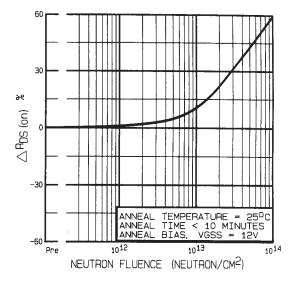
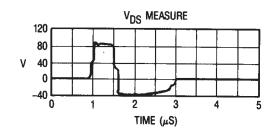



Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level

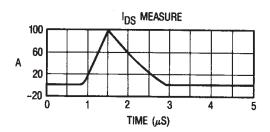
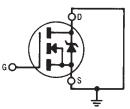



Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x10¹² Rad (Si)/Sec Exposure

www.irf.com

Fig 8a. Gate Stress of V_{GSS} Equals 12 Volts During Radiation

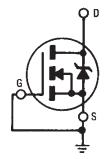
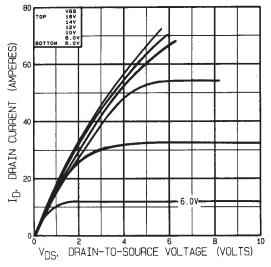



Fig 8b. V_{DSS} Stress Equals 80% of B_{VDSS} During Radiation

Radiation Characteristics

Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc

Fig 9. Typical Output Characteristics Pre-Irradiation

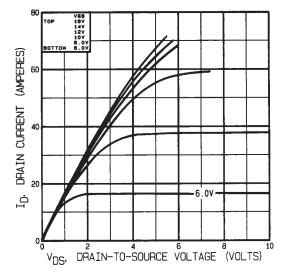
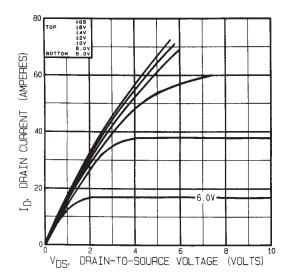
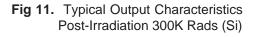




Fig 10. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

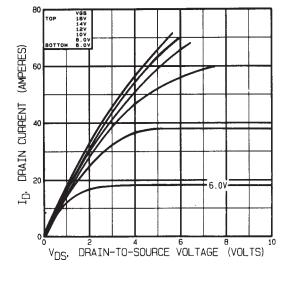


Fig 12. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si)

www.irf.com

Radiation Characteristics

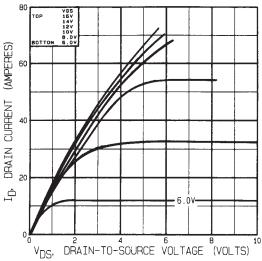


Fig 13. Typical Output Characteristics Pre-Irradiation

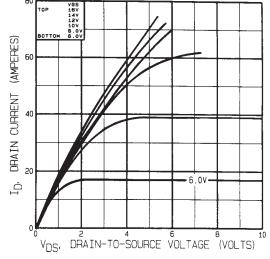


Fig 14. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

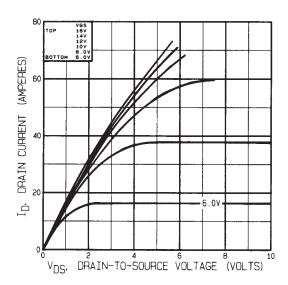


Fig 15. Typical Output Characteristics Post-Irradiation 300K Rads (Si)

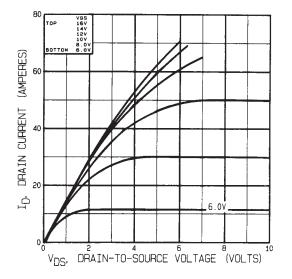


Fig 16. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si)

Note: Bias Conditions during radiation: Vgs = 0 Vdc, Vbs = 160 Vdc

Pre-Irradiation

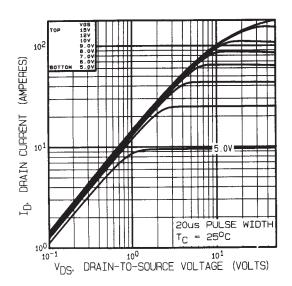


Fig 17. Typical Output Characteristics

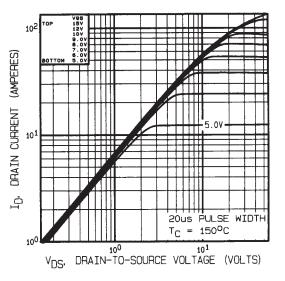


Fig 18. Typical Output Characteristics

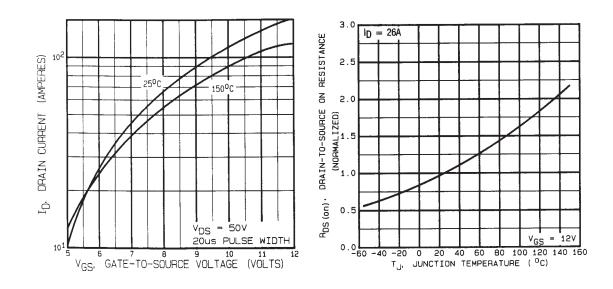


Fig 19. Typical Transfer Characteristics

Fig 20. Normalized On-Resistance Vs. Temperature

www.irf.com

Pre-Irradiation

IRH7250

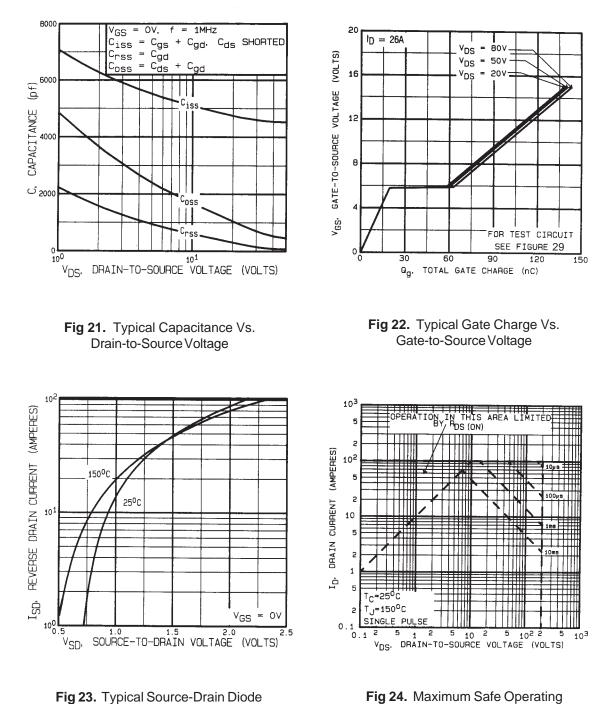
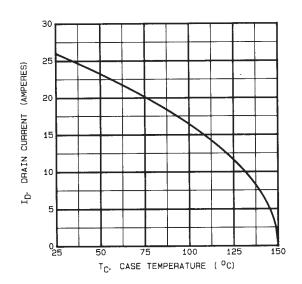



Fig 24. Maximum Safe Operating Area

www.irf.com

Forward Voltage

Pre-Irradiation

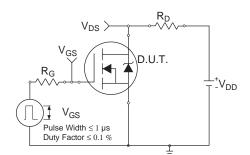


Fig 26a. Switching Time Test Circuit

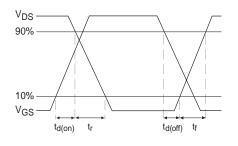
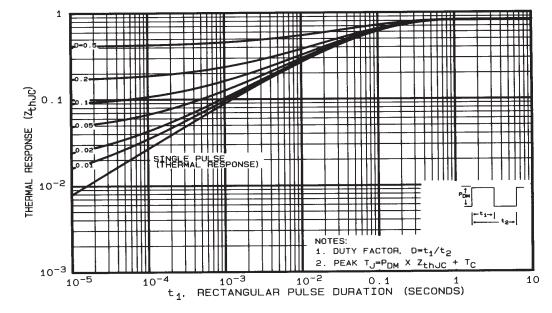
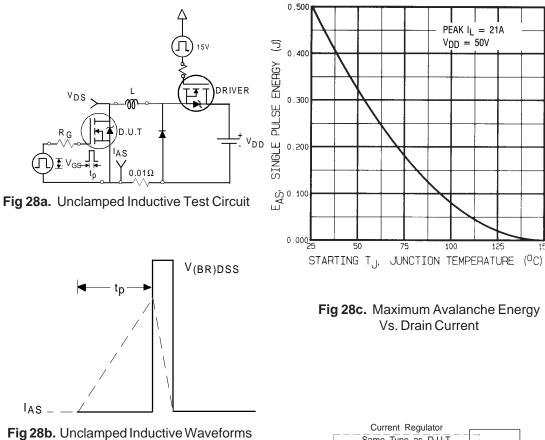
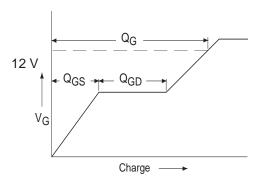
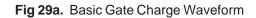


Fig 26b. Switching Time Waveforms




Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case

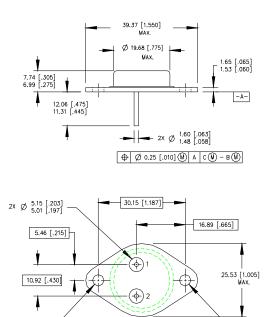

10


125

150

Pre-Irradiation

Same Type as D.U.T. 50KO 2μ 12\ ⊥+ ⊤V_{DS} D.U.T. V_{GS} > 3mA IG I_D Current Sampling Resistors


Pre-Irradiation

Foot Notes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- 2 VDD = 25V, starting TJ = 25°C, L=1.48mH Peak IL = 26A, VGS =12V

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- ⑤ Total Dose Irradiation with V_{GS} Bias. 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-204AE

 PIN ASSIGNMENTS

1 – SOURCE 2 – GATE 3 – DRAIN (CASE)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14,5M-1982.
- 2. CONTROLLING DIMENSION; INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204AE.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/02

-C-

www.irf.com