

PI2PCIE2442

PCI Express[®] 2.0, 2-lane Exchange Switch

Features

- 8 Differential Channel (2-lane) Exchange Switch
- PCI Express® 2.0 performance, 5.0 Gbps
- Low Bit-to-Bit Skew: 10ps (between +/- signals)
- Low Crosstalk: -28dB @ 2.5 GHz (5Gbps)
- Low Insertion Loss: -2.1dB @ 2.5 GHz (5Gbps)
- V_{DD} Operating Range: +1.5V to +1.8V $\pm 10\%$
- ESD Tolerance: 2kV HBM
- Packaging: 42-contact TQFN (ZH42)

Truth Table

Function	SEL	OE#
Ax = Bx $Cx = Dx$	L	0
Ax = Dx $Cx = Bx$	Н	0
Ax, Bx, Cx, DX = Hi-Z	х	1

Description

Pericom Semiconductor's PI2PCIE2442 is a differential exchange switch featuring pass-through pinout. It supports two full PCI Express lanes operating at 5.0Gbps PCIe® 2.0 performance.

With the select control input low, Port A connects to Port B, and Port C connects to port D for an 8-channel differential pass-though. When the select control input is high Port A connects to Port D, and Port B connects to Port C.

Block Diagram

Pin Diagram

Pin Description

Pin #	Pin Name	I/O	Description	
1 2	A0+ A0-	I/O	Signal I/O, Channel 0, Port A	
5 6	A1+ A1-	I/O	Signal I/O, Channel 1, Port A	
10 11	A2+ A2-	I/O	Signal I/O, Channel 2, Port A	
14 15	A3+ A3-	I/O	Signal I/O, Channel 3, Port A	
38 37	B0+ B0-	I/O	Signal I/O, Channel 0, Port B	
34 33	B1+ B1-	I/O	Signal I/O, Channel 1, Port B	
29 28	B2+ B2-	I/O	Signal I/O, Channel 2, Port B	
25 24	B3+ B3-	I/O	Signal I/O, Channel 3, Port B	
3 4	C0+ C0-	I/O	Signal I/O, Channel 0, Port C	
7 8	C1+ C1-	I/O	Signal I/O, Channel 1, Port C	
12 13	C2+ C2-	I/O	Signal I/O, Channel 2, Port C	
16 17	C3+ C3-	I/O	Signal I/O, Channel 3, Port C	
36 35	D0+ D0-	I/O	Signal I/O, Channel 0, Port D	
32 31	D1+ D1-	I/O	Signal I/O, Channel 1, Port D	
27 26	D2+ D2-	I/O	Signal I/O, Channel 2, Port D	
23 22	D3+ D3-	I/O	Signal I/O, Channel 3, Port D	
41	OE#	Ι	Output Enable, active low. When OE# = 0 the device I/O is enabled. When OE#=1, all I/O are high impedance	
9	SEL	Ι	Operation mode Select (when SEL=0: $A \rightarrow B$, $C \rightarrow D$, when SEL=1: $A \rightarrow D$, $C \rightarrow B$)	
18, 20, 30, 40, 42	V _{DD}	Pwr	vr 1.5V to 1.8V (±0.1V) Positive Supply Voltage	
19, 21, 39, Center Pad	GND	Pwr	Power ground	

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +2.5V
DC Input Voltage	–0.5V to V _{DD}
DC Output Current	
Power Dissipation	

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I _{DD}	Quiescent Power Supply Current	V_{DD} = Max., V_{IN} = GND or V_{DD}			400	μA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{DD} = 1.8V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

DC Electrical Characteristics for Switching over Operating Range

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 1.5V \text{ to } 1.8V \pm 10\%)$

Parameter	Description	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
VIH	Input HIGH Voltage, SEL and OE#	Guaranteed HIGH level	$0.65 \text{ x V}_{\text{DD}}$			
V _{IL}	Input LOW Voltage, SEL and OE#	Guaranteed LOW level	-0.5		0.35 x V _{DD}	v
V _{IK}	Clamp Diode Voltage, SEL and OE#	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
IIH	Input HIGH Current, SEL and OE#	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
IIL	Input LOW Current, SEL and OE#	$V_{DD} = Max., V_{IN} = GND$			±5	μΑ
		V_{O}/V_{I} >95%, R_{L} = 10K-Ohms	-0.4		2.5	V
VI _{DC}	DC Signal Voltage Range, channel I/O (A_x, B_x, C_x, D_x)	$V_O/V_I > 80\%$, $R_L = 50$ -Ohms	-0.3		1.2	v
R _{ON}	Channel On Resistance	V _{DD} = Min., V _{IN} = 1.3V, I _{IN} = 40mA			10	Ohm
C _{ON(AB)}	Channel On Capacitance	$V_{\rm IN} = 0, V_{\rm DD} = 1.8 V$		2.2	3.0	pF

3

Note:

1. Typical values are at V_{DD} = 1.8V, T_A = 25°C ambient and maximum loading.

Switching Characteristics

 $(T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}, V_{DD} = 1.5\text{V to } 1.8\text{V} \pm 10\%)$

Paramenter	Description	Min.	Тур.	Max.	Units
tpZH, tpZL	Line Enable Time - SEL to A _N , B _N	0.5		8	
tp _{HZ} , tPLZ	Line Disable Time - SEL to A _N , B _N	0.5		8	
t _{b-b}	Bit-to-bit skew within same differential pair			4	na
t _{ch} -t _{ch}	Channel-to-channel timing skew			35 ps	

Dynamic Electrical Characteristics Over the Operating Range

 $(T_A = -40^\circ \text{ to } +85^\circ \text{C}, V_{DD} = 1.5 \text{V to } 1.8 \text{V} \pm 10\%)$

Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
BW	Bandwidth (-3dB)			3.4		GHz
		Insertion loss 1.5dB, V _{IN} =0.6Vpp, DC=0V	1.6			
V	Max Signal Fre-	Insertion loss 1.5dB, V _{IN} =0.6Vpp, DC=0.9V	1.6			
VIF	quency Range	Insertion loss 3dB, V _{IN} =0.6Vpp, DC=0V	3.0			СПZ
		Insertion loss 3dB, V _{IN} =0.6Vpp, DC=0.9V	3.0			
P-1dB 1 dB Input	1 dB Compression	$R_L = 50$, f=625MHz, sin wave, DC=0V	1.2			Vpp
		R _L = 50, f=625MHz, sin wave, DC=0.45V	2.0			
		R _L = 50, f=625MHz, sin wave, DC=0.9V	2.4			
R _{LOSS}	Return Loss	f = 2.5 GHz		-18		
V Createll	f = 2.5 GHz		-28]	
ATALK	Clossialk	f = 100 MHz		-60		
O _{IRR}	OFF Isolation	f = 2.5 GHz		-22		dB
		f = 100 MHz		-55		
I _{LOSS}	Differential Inser- tion Loss	f = 2.5 GHz		-2.1]

Notes:

1. Guaranteed by design. Typical values are at $V_{DD} = 1.8V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

Crosstalk (V_{DD} = 1.8V, 25°C)

Differential Off Isolation($V_{DD} = 1.8V$, $T_A = 25^{\circ}C$)

Insertion Loss (V_{DD} = 1.8V, 25°C)

Differential Return Loss ($V_{DD} = 1.8V, 25^{\circ}C$)

Diff. Insertion Loss and Return Test Circuit

Diff. Near End Xtalk Test Circuit

Test Circuit for Electrical Characteristics⁽¹⁻⁵⁾

Switch Positions

Test	Switch
t _{PLZ} , t _{PZL}	2 x V _{DD}
t _{PHZ} , t _{PZH}	GND
Prop Delay	Open

Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics: PRR \leq MHz, $Z_0 = 50\Omega$, $t_R \leq 2.5$ ns, $t_F \leq 2.5$ ns.
- 5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

7

Packaging Mechanical: 42-Contact TQFN (ZH)

12-0529

· For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI2PCIE2442ZHEX	ZH	42-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Lead-free and green

2. X suffix = tape and reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com