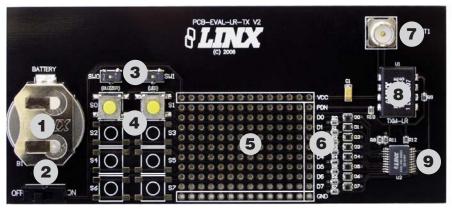


EVAL-315-LR EVAL-418-LR EVAL-433-LR

LR SERIES BASIC EVALUATION KIT USER'S GUIDE

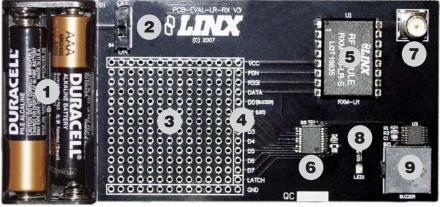
INTRODUCTION

Linx LR Series RF modules offer a simple, efficient, and cost-effective method of adding wireless communication capabilities to any product. The Basic Evaluation Kit is intended to give a designer all the tools necessary to correctly and legally incorporate the LR Series modules into an end product. The development boards themselves serve several important functions:


- Rapid Module Evaluation The boards allow the performance of the Linx LR Series modules to be evaluated quickly in a user's environment.
- Range Testing Using the on-board encoders and decoders to generate a simplex transmission, a pair of development boards can be used to evaluate the range performance of the modules.
- Design Benchmark During the design process of your product, the boards provide a known benchmark against which the performance of your own design can be judged.
- Application Development An on-board prototyping area is provided to allow a
 designer to develop applications directly on the development board. All signal
 lines are available on a breakout header for easy connection to the designer's
 circuits.

The purpose of this guide is to show the designer how to take full advantage of the basic development boards included with the kit.

The kit includes 2 LR Series transmitters*, 2 LR Series receivers*, 2 extra PCB-mount RP-SMA connectors, 2 development boards, 2 CW Series antennas, 1 CR2032 battery, 2 AAA batteries, and full documentation.


*One part is soldered to the board, one extra for use on your first prototype board.

LR TRANSMITTER EVALUATION BOARD

- Battery 3VDC (use a CR2032-style battery only)
- 2. Power Switch
- 3. Continuous ON Switches
- 4. Momentary Pushbuttons S0 (D0), S1 (D1)
- Prototyping Area
- 6. Breakout Header
- Reverse-Polarity SMA Antenna Connector
- 8. LR Series Transmitter Module
- 9. MS Series Encoder

LR RECEIVER EVALUATION BOARD

- 1. Batteries 3VDC (use 2 AAA style batteries only)
- Power Switch
- Prototyping Area
- 4. Breakout Header
- 5. LR Series Receiver Module
- MS Series Decoder
- 7. Reverse-Polarity SMA Antenna Connector
- 8. LED D1
- 9. Buzzer D0

THEORY OF OPERATION

TRANSMITTER EVALUATION BOARD

The transmitter board is powered by an on-board 3V CR2032 lithium battery. It has two SPST pushbutton switches, the state of which is encoded into a data stream using a Linx MS Series encoder. If a switch is closed, the transmitter will be enabled while the encoder captures the pushbutton states for encoding and transmission. The encoder will power down the transmitter when the button is released. Only the two switches that control the LED and buzzer on the receiver board have been populated, but if it is desired to use all eight data lines, then the Omron B3S-1002 or equivalent switches can be used. All of the data lines have been wired out to the header to the right of the prototyping area and can be accessed for use with other switches, contacts, or microcontrollers.

RECEIVER EVALUATION BOARD

The receiver board is powered by two AAA batteries. The LR Series receiver exhibits a sensitivity of greater than -112dBm, so under optimum line-of-sight conditions, the transmitter / receiver link can operate over distances of up to 3,000 feet. The data recovered by the LR Series receiver is decoded by a MS Series decoder, and the data lines are updated to match the state of the data lines (or pushbuttons) on the transmitter board. To demonstrate this, one data line is used to drive a LED while another is used to activate a buzzer. This board also has a prototyping area with all of the receiver and decoder lines brought out to a header.

USING THE KIT

Using the kit is straightforward. Simply attach the antennas, turn on the power, and press one or both of the buttons on the transmitter board. When S0 is pressed, the buzzer will sound; when S1 is pressed, the LED will turn on.

DEVELOPMENT USING THE PROTOTYPING AREA

In addition to their evaluation functions, the boards may also be used for actual product development. They feature a prototyping area to facilitate the addition of application-specific circuitry. This area has a connection to V_{CC} at the top and ground at the bottom that can be used to power the added circuitry.

NOTE: The CR2032-style battery on the transmitter board has very low current capacity with, only about 3mA available for external circuitry. If added circuitry requires a higher current, the battery must be removed and the board powered from an external source.

The holes are plated and set at 0.100" on center with a 0.040" diameter, making it easy to add most industry-standard SIP and DIP packages to the board.

On the transmitter board, the data lines from the encoder and the PDN line from the transmitter have been wired out to a row of plated holes on the right side of the prototyping area. On the receiver board, the data lines from the decoder plus the RSSI, PDN, and DATA lines from the receiver have been wired out. This allows for easy access to connect external circuitry to the modules, the encoder, and the decoder. Data line D0 is connected to the buzzer and D1 is connected to the LED.

RANGE TESTING

Several complex mathematical models exist for determining path loss in many environments. These models vary as the transmitter and receiver are moved from indoor operation to outdoor operation. Although these models can provide an estimation of range performance in the field, the most reliable method is to simply perform range tests using the transmitter and receiver in the intended operational environment.

Simple range testing can be performed with the transmitter and receiver evaluation boards. To prepare the board for range testing, simply turn it on by switching the power switch to the ON position. Pressing S0 on the transmitter will activate the buzzer on the receiver board, while S1 activates the LED. Switches SW0 and SW1 have been provided to jumper the buttons and continuously transmit. This will allow the designer to turn on the transmitter and walk with the receiver.

As you near the maximum range of the link in your area, it is not uncommon for the signal to cut in and out as you move. This is normal and can result from other interfering sources or fluctuating signal levels due to multipath effects. This results in cancellation of the transmitted signal as direct and reflected signals arrive at the receiver at differing times and phases. The areas in which this occurs are commonly called "nulls" and simply walking a little farther will usually restore the signal.

Since the evaluation boards are intended for use by design engineers, they are not FCC certified. The transmitter has been set to approximate legal limits by resistor R9 so that the range test results will approximate the results from a well-designed, certified product. For applications where Part 15 limits are not applicable or output levels can be legally raised due to protocol duty cycle, R9 can be changed according to the graph on Page 3 of the LR Series Transmitter Data Guide.

To achieve maximum range, keep objects such as your hand away from the antenna and ensure that the antenna on the transmitter has a clear and unobstructed line-of-sight path to the receiver board. Range performance is determined by many interdependent factors. If the range you are able to achieve is significantly less than specified by Linx for the products you are testing, then there is likely a problem with either the board or the ambient RF environment in which the board is operating. First, check the battery, switch positions, and antenna connection. Next, measure the receiver's RSSI voltage with the transmitter turned off to determine if ambient interference is present. If this fails to resolve the issue, please contact Linx technical support.

ABOUT ANTENNAS

The choice of antennas is one of the most critical and often overlooked design considerations. The range, performance, and legality of an RF link are critically dependent upon the type of antenna employed. Linx offers a variety of antenna styles that you may wish to consider for your design. Included with your kit is a Linx CW Series connectorized whip antenna that should be connected prior to using the kit. Despite the fact that the antenna is not centered on the board's ground plane, it exhibits a VSWR of <1.7 and suitably demonstrates the module's best practical performance.

USING THE BOARDS AS A DESIGN REFERENCE

The basic evaluation boards included in this kit are very simple, yet they illustrate some important techniques that you may wish to incorporate into your own board layout. You will observe that the LR mounting pads extend slightly past the edge of the part. This eases hand assembly and allows for better heat conduction under the part if rework is necessary. Next, observe the use of a full ground plane fill on the lower side of the board. This ground plane serves three important purposes:

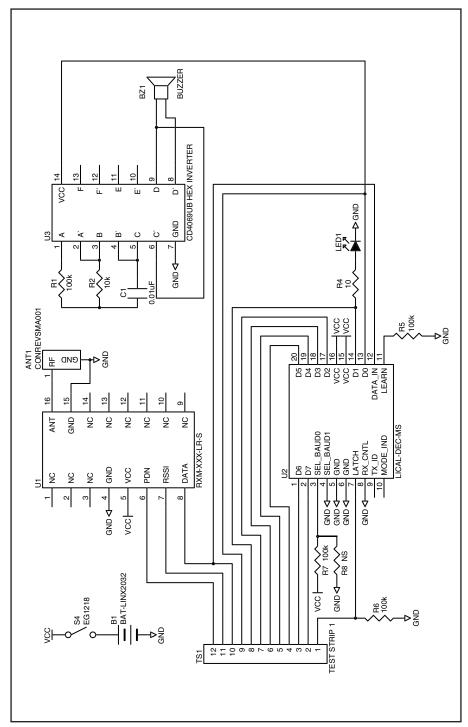
First, since a 1/4-wave antenna is employed, the ground plane is critical to serve as a counterpoise (you may wish to read Application Note AN-00500 Antennas: Design, Application, and Performance for additional details on how a ground plane affects antenna function).

Second, a ground plane will suppress the transfer of noise between stages of a product, as well as unintentional radiation of noise into free space.

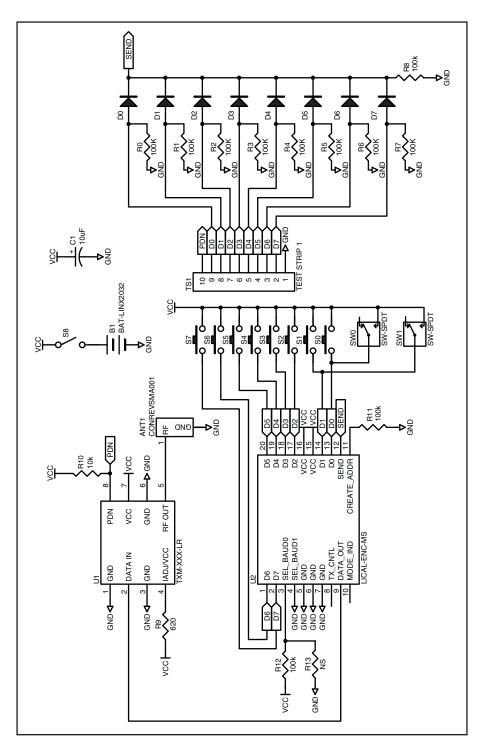
Third, a ground plane allows for the implementation of a microstrip feed to the antenna. The term microstrip refers to a PCB trace running over a ground plane that is designed to serve as a 50-ohm transmission line between the module and the antenna. A microstrip is implemented on this evaluation board. If you are unfamiliar with microstrip calculations, you may wish to refer to the LR Series data guides or the calculator available on our website.

IN CLOSING

Here at Linx, "Wireless Made Simple" is more than just our motto, it is our commitment. A commitment to the highest caliber of product, service, and support. That is why, should you have questions or encounter any difficulties using the evaluation kit, you'll be glad to know many resources are available to assist you. First, check carefully for the obvious, then visit our website at www.linxtechnologies.com or call 541-471-6256 between 9AM and 4PM Pacific Time to speak with an application engineer.


Legal Notice

All Linx kits and modules are designed in keeping with high engineering standards; however, it is the responsibility of the user to ensure that the products are operated in a legal and appropriate manner. The purchaser understands that legal operation may require additional permits, approvals, or certifications prior to use, depending on the country of operation.


ONLINE RESOURCES

If you have questions regarding any Linx product and have Internet access, make www.linxtechnologies.com your first stop. Our website is organized in an intuitive format to give you the answers you need. Day or night, the Linx website gives you instant access to the latest information regarding the products and services of Linx. It's all here: manual and software updates, application notes, a comprehensive knowledgebase, FCC information, and much more. Be sure to visit often!

Page 4 Page 5

EVAL-***-LR Receiver Board Schematic

EVAL-***-LR Transmitter Board Schematic

Page 6 Page 7

U.S. CORPORATE HEADQUARTERS

LINX TECHNOLOGIES, INC. 159 ORT LANE MERLIN, OR 97532

PHONE: (541) 471-6256 FAX: (541) 471-6251 www.linxtechnologies.com

Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Data Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is the customer's responsibility to verify the suitability of the part for the intended application. NO LINX PRODUCT IS INTENDED FOR USE IN ANY APPLICATION WHERE THE SAFETY OF LIFE OR PROPERTY IS AT RISK.

Linx Technologies DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY OF CUSTOMER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY FROM ANY DEFECTIVE OR NON-CONFORMING PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX TECHNOLOGIES. The limitations on Linx Technologies' liability are applicable to any and all claims or theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability for injury to person or property, economic loss, or business interruption) for all claims, including claims from third parties, arising from the use of the Products. The Customer will indemnify, defend, protect, and hold harmless Linx Technologies and its officers, employees, subsidiaries, affiliates, distributors, and representatives from and against all claims, damages, actions, suits, proceedings, demands, assessments, adjustments, costs, and expenses incurred by Linx Technologies as a result of or arising from any Products sold by Linx Technologies to Customer. Under no conditions will Linx Technologies be responsible for losses arising from the use or failure of the device in any application, other than the repair, replacement, or refund limited to the original product purchase price. Devices described in this publication may contain proprietary, patented, or copyrighted techniques, components, or materials. Under no circumstances shall any user be conveyed any license or right to the use or ownership of such items.