RICOH

RP106x SERIES

0.8%ACCURACY 0.7V OUTPUT 400mA LDO REGULATOR

NO.EA-180-131017

OUTLINE

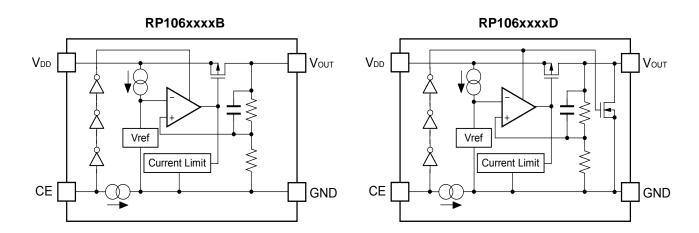
The RP106x Series are low voltage 400mA voltage regulator. These ICs had been further improved of low-voltage capability compared with previous low-voltage product.

The input voltage is as low as Min. 1.0V and the output voltage can be set from 0.7V. The output voltage accuracy has been improved to $\pm 0.8\%$ and due to a built-in transistor with low on-resistance of 0.55 Ω (at Vout=1.5V).

Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, and a current limit circuits for over-current for the destruction prevention by the over-current.

The CE pin can switch the regulator to standby mode. In addition to SOT-23-5 and SC-88A packages, a 0.69mm square WLCSP-4-P5 package and a 1.2mm square DFN(PLP)1212-6 are also available.

FEATURES


Supply Current	Typ. 48μA
Standby Current	Typ. 0.1μA
Ripple Rejection	Typ. 60dB (f=10kHz)
Input Voltage Range	1.0V to 3.6V
Output Voltage Range	0.7V to 1.8V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±0.8% (Vouτ≥1.0V, Topt=25°C)
• Temperature-Drift Coefficient of Output Voltage	Typ. ±60ppm/°C
Dropout Voltage	Тур. 0.22V (Vouт=1.5V)
Line Regulation	Typ. 0.10%/V
Packages	WLCSP-4-P5, DFN(PLP)1212-6, SC-88A, SOT-23-5
Built-in Fold Back Protection Circuit	Typ. 110mA (Current at short mode)
Built-in Constant Slope Circuit	
Ceramic capacitors are recommended to be use	ed with this IC1.0μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

NO.EA-180-131017

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user's request.

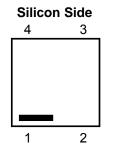
Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP106Zxx1*-TR-F	WLCSP-4-P5	5,000 pcs	Yes	Yes
RP106Kxx1*-TR	DFN(PLP)1212-6	5,000 pcs	Yes	Yes
RP106Qxx2*-TR-FE	SC-88A	3,000 pcs	Yes	Yes
RP106Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes

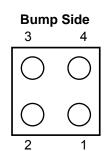
xx : Setting Output Voltage (Vout) :

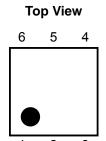
Fixed Type: 07 to 18 Stepwise setting with 0.1V increment in the range from 0.7V to 1.8V

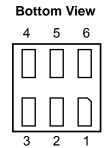
Exception: 1.25V=RP106x12x*5-xx 1.85V=RP106x18x*5-xx

* : Designation of Active Type:

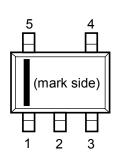

B:"H" Active, without auto discharge function at off state.

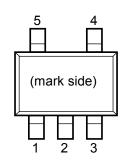

D:"H" Active, with auto discharge function at off state.


NO.EA-180-131017


PIN CONFIGURATIONS

• WLCSP-4-P5





• SC-88A

• DFN(PLP)1212-6

PIN DESCRIPTIONS

• WLCSP-4-P5

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	CE	Chip Enable Pin ("H" Active)
3	GND	Ground Pin
4	Vout	Output Pin

• DFN(PLP)1212-6

Pin No.	Symbol	Description	
1	NC	No Connection	
2	GND	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	V _{DD}	Input Pin	
5	NC	No Connection	
6	Vout	Output Pin	

• SC-88A

Pin No.	Symbol	Description
1	CE	Chip Enable Pin ("H" Active)
2	NC	No Connection
3	GND	Ground Pin
4	Vout	Output Pin
5	V _{DD}	Input Pin

• SOT-23-5

Pin No.	Symbol	Description	
1	V_{DD}	Input Pin	
2	GND	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	NC	No Connection	
5	Vouт	Output Pin	

NO.EA-180-131017

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	4.0	V
Vce	Input Voltage (CE Pin)	-0.3 to 4.0	V
Vouт	Output Voltage	-0.3 to V _{IN} +0.3	V
Іоит	Output Current	500	mA
	Power Dissipation (WLCSP-4-P5)*	278	
Pp	Power Dissipation (DFN(PLP)1212-6)*	400	mW
PD	Power Dissipation (SC-88A)*	380	IIIVV
	Power Dissipation (SOT-23-5)*	420	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

NO.EA-180-131017

ELECTRICAL CHARACTERISTICS

• RP106x

 V_{IN} =Set V_{OUT} +1V, I_{OUT} =1mA, C_{IN} = C_{OUT} =1 μ F, unless otherwise noted. The specifications surrounded by are guaranteed by Design Engineering at $-40^{\circ}\text{C} \le T_{\text{OP}} \le 85^{\circ}\text{C}$.

Topt=25°C

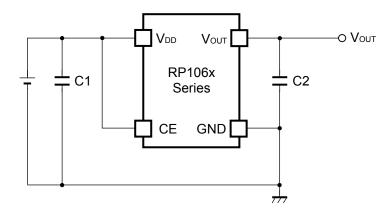
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
		T 25°C	V _{OUT} ≥ 1.0V	×0.992		×1.008	V
N/	Output Valtage	Topt=25°C	V _{OUT} < 1.0V	-8		8	mV
Vout	Output Voltage	400C < T . < 0E0C	V ₀ ∪T ≥ 1.0V	×0.983		×1.017	V
		–40°C ≤ Topt ≤ 85°C	V _{OUT} < 1.0V	-17		17	mV
Іоит	Output Current			400			mA
Δ V ουτ/Δ I ουτ	Load Regulation	$1mA \leq I_{\text{OUT}} \leq 400mA$			25	45	mV
VDIF	Dropout Voltage	ſ	Refer to the foll	owing tal	ole		
Iss	Supply Current	Іоит=0mA			48	75	μΑ
İstandby	Standby Current	Vce=0V			0.1	8.0	μΑ
ΔVουτ/ΔVιν	Line Regulation	Set Vout+0.5V \leq ViN \leq In case that Set Vout \leq 1.3V \leq ViN \leq 3.6V			0.10	0.25	%/V
RR	Ripple Rejection	f=10kHz, Ripple 0.2Vp VIN=Set Vour+1V, Iour=	•		60		dB
Vin	Input Voltage*			1.0		3.6	٧
ΔVουτ/ $Δ$ Topt	Output Voltage Temperature Coefficient	$-40^{\circ}C \leq Topt \leq 85^{\circ}C$			±60		ppm /°C
Isc	Short Current Limit	Vout=0V			110		mA
Vceh	CE Input Voltage "H"			0.9			V
VCEL	CE Input Voltage "L"					0.4	V
en	Output Noise	BW=10Hz to 100kHz lout=30mA, Vout=0.7V	,		30		μVrms
RLOW	Low Output Nch Tr. ON Resistance (of D version)	VIN=2.0V, VCE=0V			43		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient items.

RP106x	
O.EA-180-131017	
The specifications surrounded by are guaranteed by Design Engineering at −40°C ≤ Topt ≤ 85°C.	

Dropout Voltage by Output Voltage

Topt=25°C


Output Voltage	Dropout Voltage VDF (V)		
V оит (V)	Condition	Тур.	Max.
0.7 ≤ V _{OUT} < 0.8	- - Iouт=400mA	0.48	0.62
0.8 ≤ V _{OUT} < 0.9		0.40	0.54
0.9 ≤ V _{OUT} < 1.0		0.36	0.47
1.0 ≤ V _{OUT} < 1.2		0.32	0.45
1.2 ≤ Vouт < 1.5		0.28	0.38
1.5 ≤ Vout		0.22	0.31

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-180-131017

TYPICAL APPLICATION

(External Components)

C1, C2 Ceramic 1.0µF MURATA: GRM155B31A105KE15

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with $1.0\mu F$ or more.

If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C2 is large, the loop oscillation may result. Because of this, select C2 carefully considering its frequency characteristics.

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

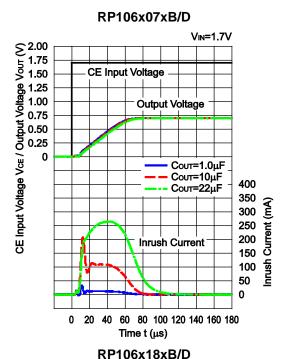
Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

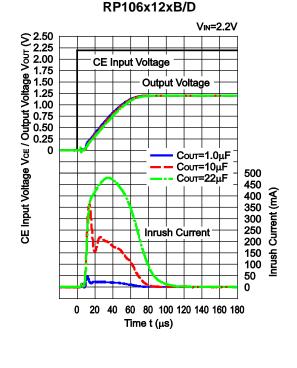
Impedance of Input pin

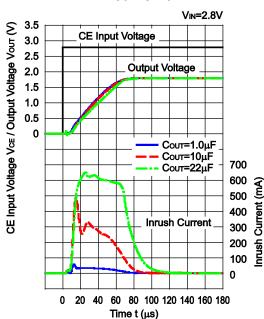
CE pull-down constant current circuit is built in the RP106x.

However, if the CE pin is floating and the wiring is long, the malfunction may occur by noise. Therefore, fully evaluation on the actual PCB is necessary.

NO.EA-180-131017


CONSTANT SLOPE CIRCUITS


The RP106x Series is equipped with a constant slope circuit as a soft-start circuit, which allows the output voltage to start up gradually when the CE is turned on.


The constant slope circuit minimizes the inrush current at the start-up and also prevents the overshoot of the output voltage.

The capacitor to create the start-up slope is built in the IC that does not require any external components. The start-up time and the start-up slope angle are fixed inside the IC. For more details, please refer to the graph 15 of "Inrush Current Characteristics Example".

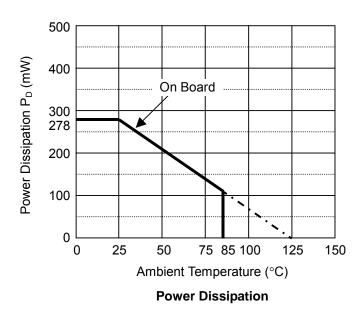
Inrush Current Characteristics Example (C1=1.0μF, Topt=25°C)

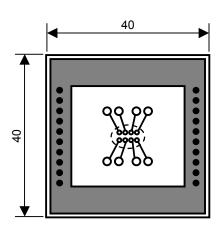
NO.EA-180-131017

PACKAGE INFORMATION

• Power Dissipation (WLCSP-4-P5)

Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

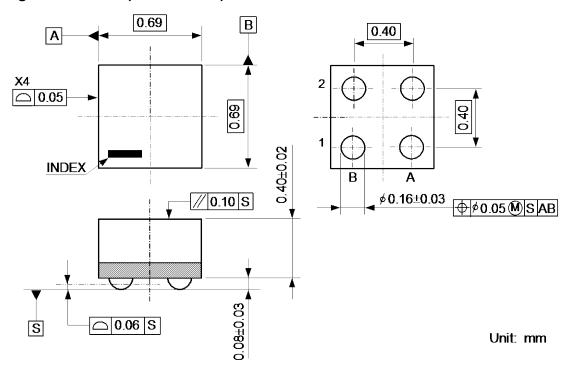

* Measurement Conditions


modean armanic deritatio	
	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plastic (Double sided)
Board Dimensions	40mm × 40mm × 1.6mm
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%
Through-hole	φ 0.5mm × 28pcs

* Measurement Result

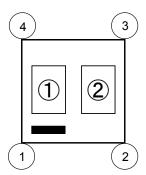
(Ta=25°C, Timax=125°C)

modedicinent recall	(1d 25 5, 1)max 125 5)
	Standard Land Pattern
Power Dissipation	278mW
Thornal Desistance	θja = (125–25°C)/0.278W = 360°C/W
Thermal Resistance	θjc = 46°C/W



Measurement Board Pattern

IC Mount Aria (Unit : mm)


NO.EA-180-131017

• Package Dimensions (WLCSP-4-P5)

• Mark Specification (WLCSP-4-P5)

①②: Lot No. Alphanumeric serial number.

NO.EA-180-131017

• RP106Z Series marking list table (WLCSP-4-P5)

RP106ZxxxB

Product Name	VSET
RP106Z071B	0.7V
RP106Z081B	0.8V
RP106Z091B	0.9V
RP106Z101B	1.0V
RP106Z111B	1.1V
RP106Z121B	1.2V
RP106Z131B	1.3V
RP106Z141B	1.4V
RP106Z151B	1.5V
RP106Z161B	1.6V
RP106Z171B	1.7V
RP106Z181B	1.8V
RP106Z121B5	1.25V
RP106Z181B5	1.85V

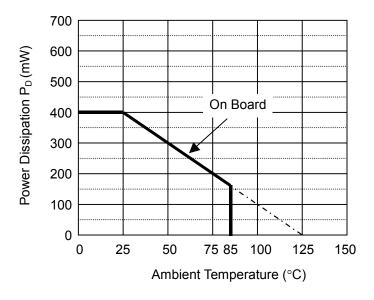
RP106ZxxxD

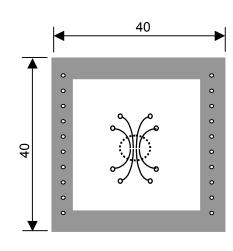
Product Name	VSET
RP106Z071D	0.7V
RP106Z081D	0.8V
RP106Z091D	0.9V
RP106Z101D	1.0V
RP106Z111D	1.1V
RP106Z121D	1.2V
RP106Z131D	1.3V
RP106Z141D	1.4V
RP106Z151D	1.5V
RP106Z161D	1.6V
RP106Z171D	1.7V
RP106Z181D	1.8V
RP106Z121D5	1.25V
RP106Z181D5	1.85V

NO.EA-180-131017

• Power Dissipation (DFN(PLP)1212-6)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

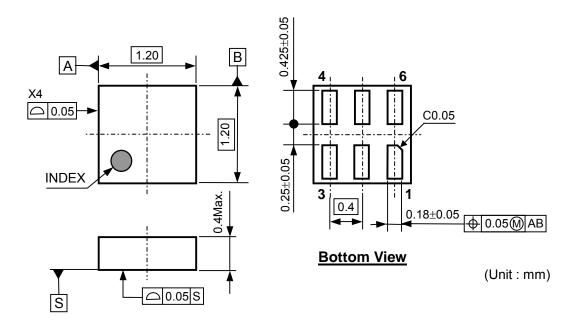

Measurement Conditions


	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm×40mm×1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.54mm×28pcs	

Measurement Result

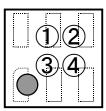
(Ta=25°C, Tjmax=125°C)

	Standard Test Land Pattern	
Power Dissipation	400mW	
Thermal Desistance	θja=(125-25°C)/0.4W=250°C/W	
Thermal Resistance	θjc=67 °C/W	



Measurement Board Pattern

iC Mount Area Unit : mm


NO.EA-180-131017

• Package Dimensions (DFN(PLP)1212-6)

• Mark Specification (DFN(PLP)1212-6)

①②:Product Code......Refer to the marking list table ③④:Lot No.....Alphanumeric serial number.

NO.EA-180-131017

• RP106K Series marking list table (DFN(PLP)1212-6)

RP106KxxxB

Product Name	12	VSET
RP106K071B	NA	0.7V
RP106K081B	NB	0.8V
RP106K091B	NC	0.9V
RP106K101B	ND	1.0V
RP106K111B	NE	1.1V
RP106K121B	NF	1.2V
RP106K131B	NG	1.3V
RP106K141B	NH	1.4V
RP106K151B	NJ	1.5V
RP106K161B	NK	1.6V
RP106K171B	NL	1.7V
RP106K181B	NM	1.8V
RP106K121B5	NP	1.25V
RP106K181B5	NQ	1.85V

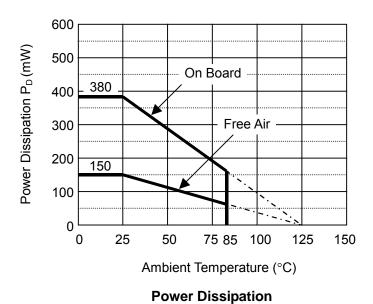
RP106KxxxD

Product Name	12	VSET
RP106K071D	PA	0.7V
RP106K081D	PB	0.8V
RP106K091D	PC	0.9V
RP106K101D	PD	1.0V
RP106K111D	PE	1.1V
RP106K121D	PF	1.2V
RP106K131D	PG	1.3V
RP106K141D	PH	1.4V
RP106K151D	PJ	1.5V
RP106K161D	PK	1.6V
RP106K171D	PL	1.7V
RP106K181D	PM	1.8V
RP106K121D5	PP	1.25V
RP106K181D5	PQ	1.85V

NO.EA-180-131017

• Power Dissipation (SC-88A)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below;

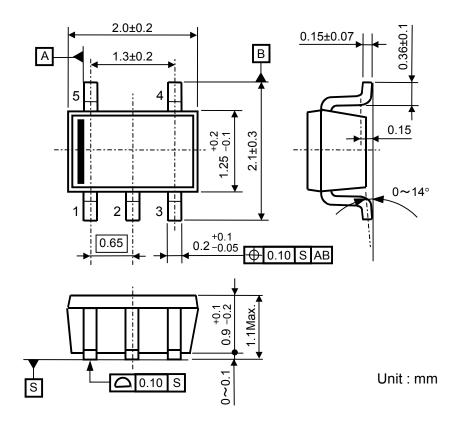

Measurement Conditions

ododi om		
	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double Layers)	
Board Dimensions	40mm×40mm×1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-hole	φ0.5mm×44pcs	

Measurement Result

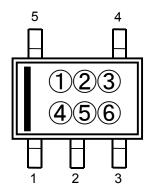
(Ta=25°C, Tjmax=125°C)

	Standard Land Pattern	Free Air	
Power Dissipation	380mW	150mW	
- Hormal Posistance θja=(125-25°C)/0.38W=263		θja=(125-25°C)/0.15W=667°C/W	
Thermal Resistance	θjc=75°C/W	-	


40

Measurement Board Pattern

(C) IC Mount Area (Unit : mm)


NO.EA-180-131017

• Package Dimensions (SC-88A)

• Mark Specification (SC-88A)

①②③④: Product Code......Refer to the marking list table ⑤⑥: Lot No......Alphanumeric serial number.

NO.EA-180-131017

• RP106Q Series marking list table (SC-88A)

RP106QxxxB

Product Name	1234	Vset
RP106Q072B	Q001	0.7V
RP106Q082B	Q002	0.8V
RP106Q092B	Q003	0.9V
RP106Q102B	Q004	1.0V
RP106Q112B	Q005	1.1V
RP106Q122B	Q006	1.2V
RP106Q132B	Q007	1.3V
RP106Q142B	Q008	1.4V
RP106Q152B	Q009	1.5V
RP106Q162B	Q 0 1 0	1.6V
RP106Q172B	Q 0 1 1	1.7V
RP106Q182B	Q 0 1 2	1.8V
RP106Q122B5	Q 0 1 4	1.25V
RP106Q182B5	Q 0 1 5	1.85V

RP106QxxxD

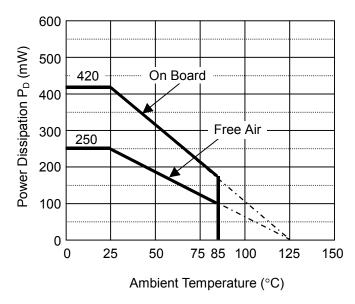
Product Name	1234	VSET
RP106Q072D	R001	0.7V
RP106Q082D	R002	V8.0
RP106Q092D	R003	0.9V
RP106Q102D	R004	1.0V
RP106Q112D	R005	1.1V
RP106Q122D	R006	1.2V
RP106Q132D	R007	1.3V
RP106Q142D	R008	1.4V
RP106Q152D	R009	1.5V
RP106Q162D	R 0 1 0	1.6V
RP106Q172D	R 0 1 1	1.7V
RP106Q182D	R 0 1 2	1.8V
RP106Q122D5	R 0 1 4	1.25V
RP106Q182D5	R 0 1 5	1.85V

NO.EA-180-131017

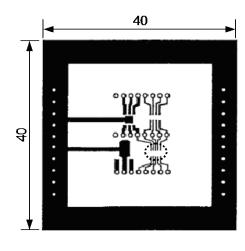
• Power Dissipation (SOT-23-5)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)


Measurement Conditions

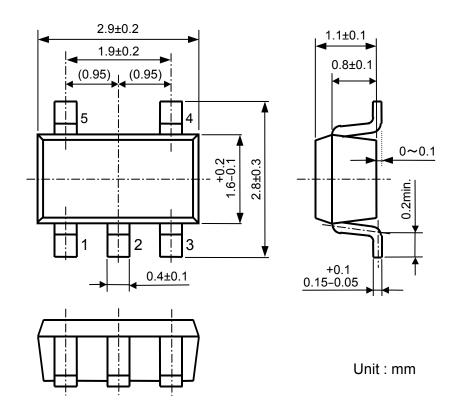
	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm×40mm×1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.5mm×44pcs	


Measurement Result

(Ta=25°C, Tjmax=125°C)

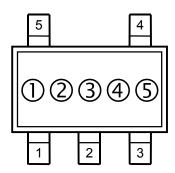
	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125-25°C)/0.42W=238°C/W	400°C/W

Power Dissipation



Measurement Board Pattern

ic Mount Area (Unit: mm)


NO.EA-180-131017

• Package Dimensions (SOT-23-5)

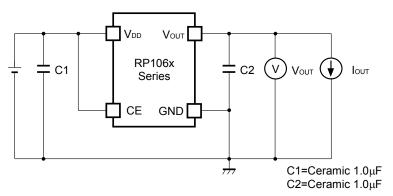
• Mark Specification (SOT-23-5)

①②③: Product Code......Refer to the marking list table ④⑤ : Lot No.....Alphanumeric serial number.

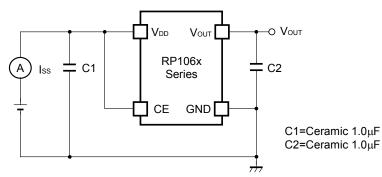
NO.EA-180-131017

• RP106N Series marking list table (SOT-23-5)

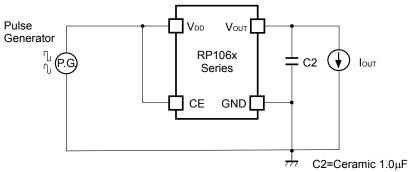
RP106NxxxB

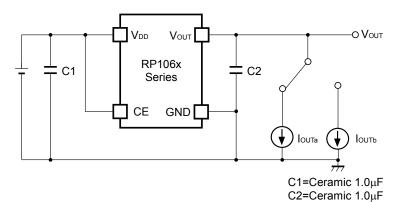

Product Name	123	Vset
RP106N071B	CAA	0.7V
RP106N081B	CAB	0.8V
RP106N091B	CAC	0.9V
RP106N101B	CAD	1.0V
RP106N111B	CAE	1.1V
RP106N121B	CAF	1.2V
RP106N131B	CAG	1.3V
RP106N141B	CAH	1.4V
RP106N151B	CAJ	1.5V
RP106N161B	CAK	1.6V
RP106N171B	CAL	1.7V
RP106N181B	CAM	1.8V
RP106N121B5	CAP	1.25V
RP106N181B5	CAQ	1.85V

RP106NxxxD


Product Name	123	V SET
RP106N071D	СВА	0.7V
RP106N081D	СВВ	0.8V
RP106N091D	СВС	0.9V
RP106N101D	CBD	1.0V
RP106N111D	CBE	1.1V
RP106N121D	CBF	1.2V
RP106N131D	CBG	1.3V
RP106N141D	СВН	1.4V
RP106N151D	СВЈ	1.5V
RP106N161D	СВК	1.6V
RP106N171D	CBL	1.7V
RP106N181D	СВМ	1.8V
RP106N121D5	СВР	1.25V
RP106N181D5	CBQ	1.85V

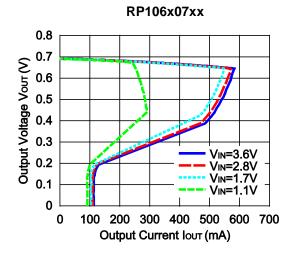
NO.EA-180-131017

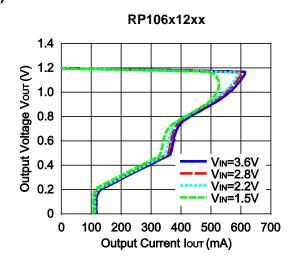

TEST CIRCUITS

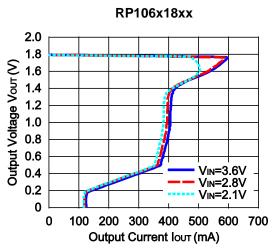

Basic Test Circuit

Supply Current Test Circuit

Ripple Rejection Test Circuit

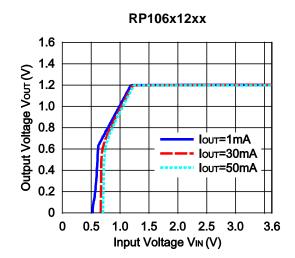

Load Transient Response Test Circuit

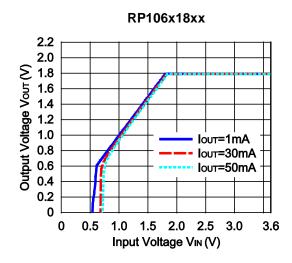

RICOH


NO.EA-180-131017

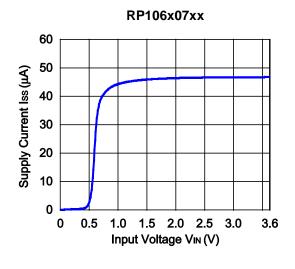
TYPICAL CHARACTERISTICS

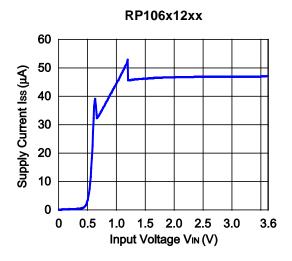
1) Output Voltage vs. Output Current (Topt=25°C)

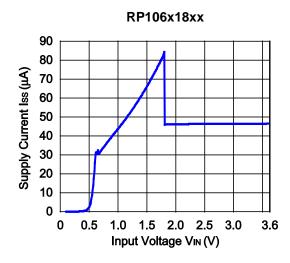




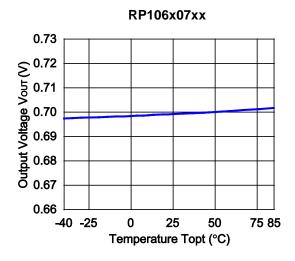
2) Output Voltage vs. Input Voltage (Topt=25°C)

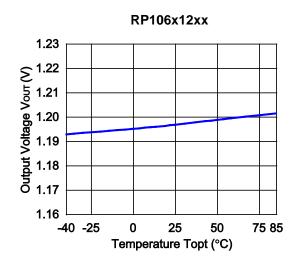


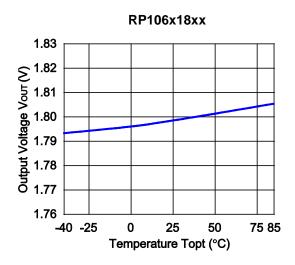



NO.EA-180-131017

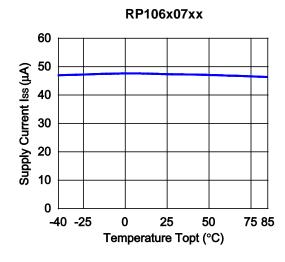
3) Supply Current vs. Input Voltage (Topt=25°C)

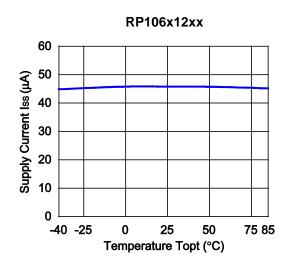


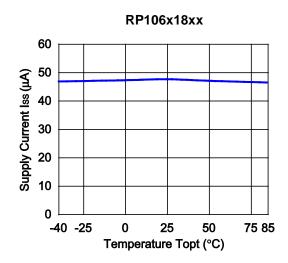




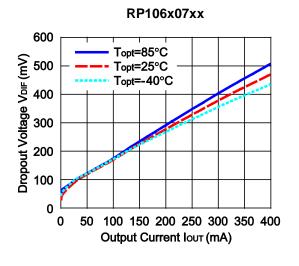
NO.EA-180-131017

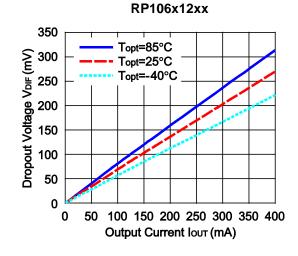

4) Output Voltage vs. Temperature

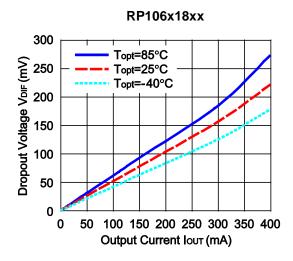




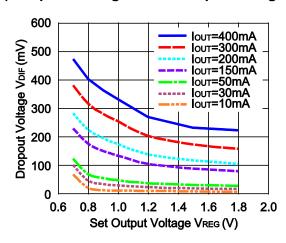
5) Supply Current vs. Temperature

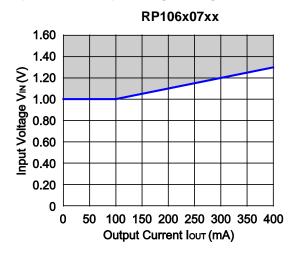





NO.EA-180-131017

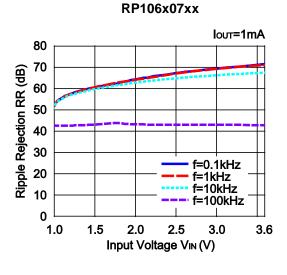
6) Dropout Voltage vs. Output Current

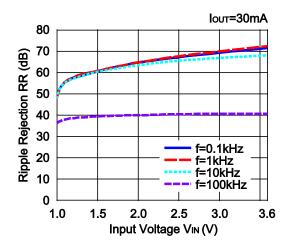


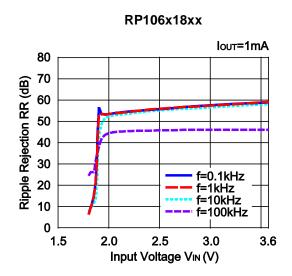


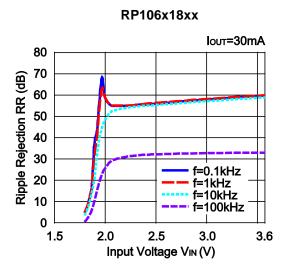
NO.EA-180-131017

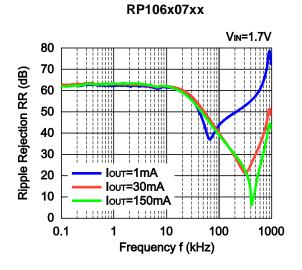
7) Dropout Voltage vs Set Output Voltage (Topt=25°C)



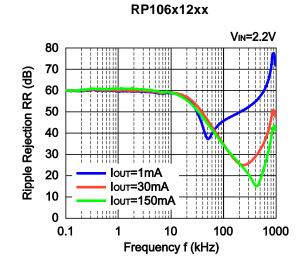

8) Minimum Operating Voltage


Hatched area is avaiable for 0.7V output

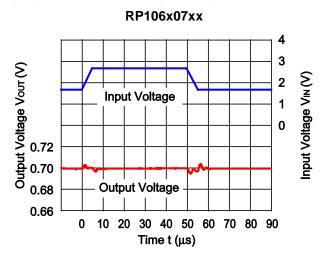

9) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=1.0μF, Ripple=0.2Vp-p, Topt=25°C) RP106x07xx RP106x07xx

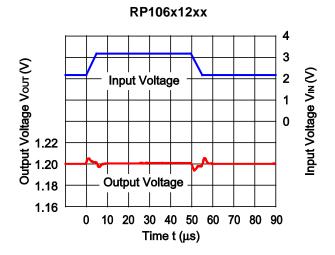


NO.EA-180-131017



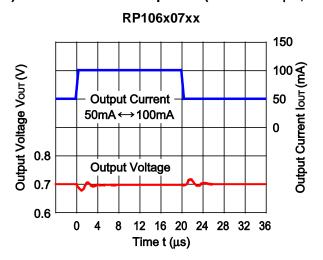
10) Ripple Rejection vs. Frequency (C1=none, C2=1.0μF, Ripple=0.1Vp-p, Topt=25°C)

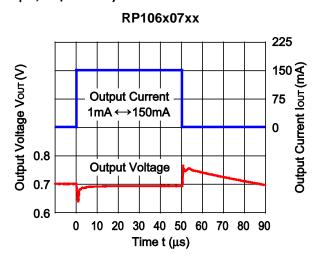

RP106x18xx

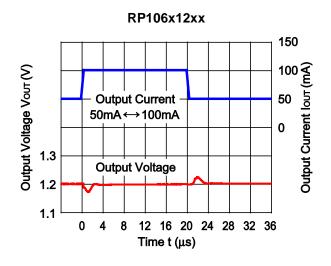


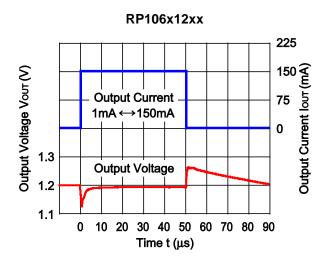
VIN=2.8V 80 70 Ripple Rejection RR (dB) 60 50 40 30 Iout=1mA 20 Iout=30mA 10 Iout=150mA 0 0.1 10 100 1000 Frequency f (kHz)

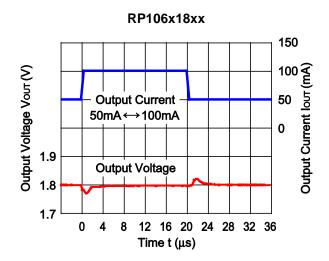
NO.EA-180-131017

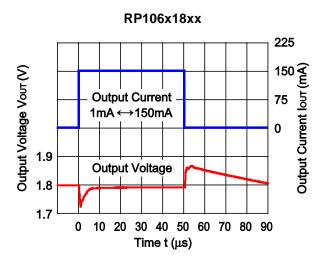

11) Input Transient Response (C1=none, C2=1.0μF, Ιουτ=30mA, tr=tf=5μs, Topt=25°C)



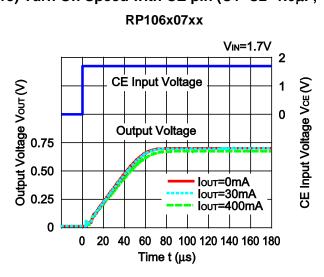

RP106x18xx 5 4 Output Voltage Vour (V) Input Voltage Vin (V) 3 Input Voltage 2 1 1.82 1.80 **Output Voltage** 1.78 1.76 10 20 30 40 50 60 70 80 90 Time t (µs)

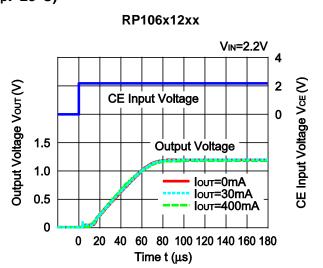

12) Load Transient Response (C1=C2=1.0μF, tr=tf=5μs, Topt=25°C)

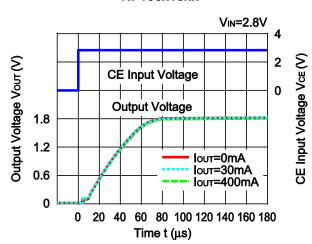




NO.EA-180-131017

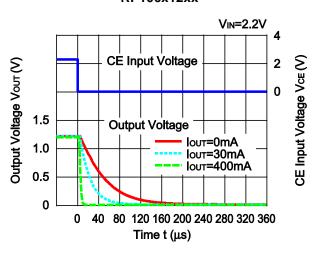




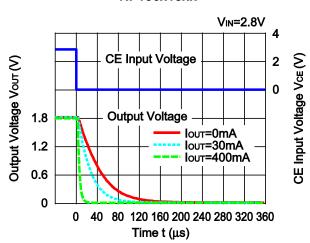

13) Turn On Speed with CE pin (C1=C2=1.0µF, Topt=25°C)

NO.EA-180-131017

RP106x18xx

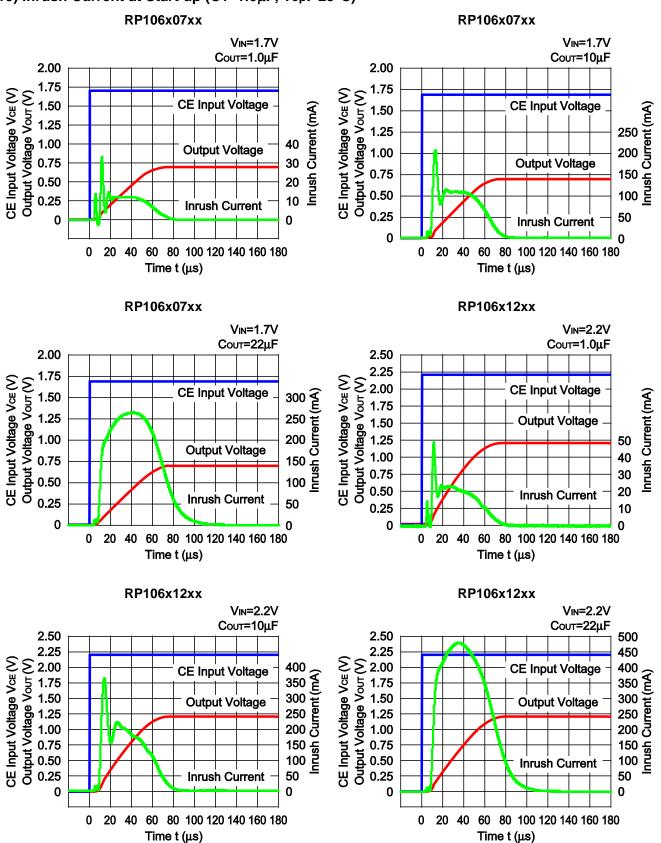


14) Turn Off Speed with CE pin (C1=C2=1.0μF, Topt=25°C)

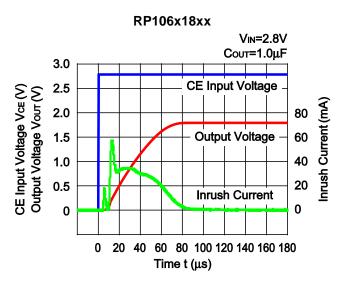

RP106x07xx

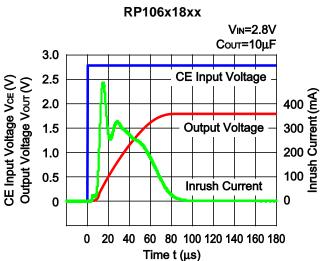
VIN=1.7V 2 **CE Input Voltage** 1 CE Input Voltage Vce (V) Output Voltage Vour (V) 0 0.75 **Output Voltage** 0.50 IOUT=0mA Iout=30mA 0.25 Iout=400mA 0 -0.25 40 80 120 160 200 240 280 320 360 Time t (µs)

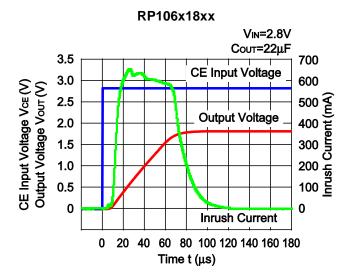
RP106x12xx



RP106x18xx


NO.EA-180-131017





Time t (µs)

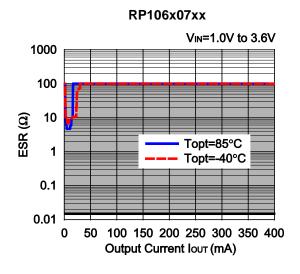
NO.EA-180-131017

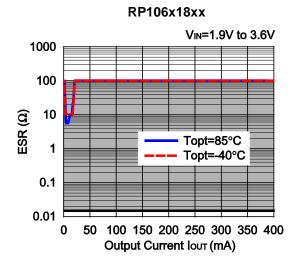
NO.EA-180-131017

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between IOUT (Output Current) and ESR of an output capacitor are shown below.


The conditions when the white noise level is under 40 µV (Avg.) are marked as the hatched area in the graph.


Measurement conditions

Frequency Band: 10Hz to 3MHz Temperature : -40°C to 85°C

C1, C2 : 1.0μF MURATA GRM155B31A105KE15

If other than ceramic capacitors such as tantalum, the ESR of the capacitor might be higher than expected. This graph shows the stable area with ESR limit. In the actual evaluation, we used Murata GRM155B31A105KE15, therefore, bias characteristics of the same kind of ceramic capacitors are considered.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

http://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

RICOH ELECTRONIC DEVICES KOREA CO., LTD.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Kore Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH ELECTRONIC DEVICES CO., LTD.

Taipei office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623