Data Sheet

Rev. 1.2 / August 2011

ZLED7320

High Current 40V LED Driver with Internal Switch

Brief Description

The ZLED7x20 continuous-mode inductive stepdown converter family is part of our line of LEDcontrol ICs. It is designed for applications requiring high brightness and high current. It can efficiently drive a single LED or multiple series-connected LEDs from a voltage input higher than the LED forward voltage: Vin $=6$ to 40 VDC. It provides an adjustable output current $\leq 1.2 \mathrm{~A}$, which is set via an external resistor and controlled by the ZLED7x20's integrated high-side output current-sensing circuit and high speed internal 40V power switch. An external control signal, which can be a DC voltage, PWM, or microcontroller-generated waveform, on the ADJ pin can also be used to linearly adjust a continuous output current or to control a gated output current.
The output can be turned off by applying a voltage lower than 0.2 V to the ADJ pin, which puts the ZLED7x20 in a low-current standby state.
The ZLED7x20 enables diverse industrial and consumer lighting applications requiring high driving currents, wide operating voltage range, high efficiency, and variable brightness control. It offers over-temperature and LED open-circuit protection. The ZLED7x20 can also minimize bill-ofmaterial costs because very few external components are required for most applications. Only a resistor, a diode, an inductor, and three capacitors are needed for a typical basic application.

ZLED7x20 Typical Application Circuit

ZLED7x20 Block Diagram

Typical Applications

* Illuminated LED signs and other displays
* LED street and traffic lighting (low voltage)
* Architecture/building LED lighting
* LED backlighting
* Interior/exterior LED lighting
* MR16 LED spot lights
* Retrofit LED lighting fixtures
* General purpose industrial and consumer LED applications

Ordering Information

Product Sales Code	Description	Package
ZLED7020-ZI1R	ZLED7020 - High Current (1200mA) 40V LED Driver with Internal Switch	SOT89-5 (Tape \& Reel)
ZLED7320-ZI1R	ZLED7320 - High Current (1000mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7520-ZI1R	ZLED7520 - High Current (750mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7720-ZI1R	ZLED7720 - High Current (350mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7020KIT-D1	ZLED7020-D1 Demo Board, 1 ZLED-PCB8 and 5 ZLED7020 ICs	Kit
ZLED-PCB8	Test PCB with one 5W white High Brightness (HB) LED, cascadable to one multiple LED string	Printed Circuit Board (PCB)

Sales and Further Information

Zentrum Mikroelektronik Dresden AG (ZMD AG)

Grenzstrasse 28
01109 Dresden
Germany
Phone +49 (0)351.8822.7.533
Fax $\quad+49(0) 351.8822 .8 .7533$

ZMD America, Inc. 8413 Excelsior Drive Suite 200 Madison, WI 53717
USA

Phone +1 (608) 829-1987
Fax $\quad+1$ (631) 549-2882

www.zmdi.com

Zentrum Mikroelektronik

 Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 JapanFax +81.3.6895.7301

LED_Drivers@zmdi.com

ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan
Fax +886.2.2377.8199

Contents

1 IC Characteristics 6
1.1 Absolute Maximum Ratings 6
1.2 Operating Conditions 6
1.3 Electrical Parameters 7
1.4 Typical Operation Graphs 8
2 Circuit Description 13
2.1 ZLED7x20 Overview 13
2.2 Control of Output Current via External Sense Resistor Rs 13
2.3 Control of Output Current via an External DC Control Voltage on the ADJ Pin. 13
2.4 Control of Output Current via a PWM Signal on the ADJ Pin 14
2.5 Control of Output Current via a Microcontroller Signal on the ADJ Pin 14
2.6 Shutdown Mode 14
2.7 ZLED7x20 Protection Features 14
2.7.1 Thermal Shut-down Protection 14
2.7.2 LED Open Load Protection 14
3 Application Circuit Design 15
3.1 Applications 15
3.2 Thermal Considerations for Application Design 17
3.2.1 Temperature Effects of Load, Layout, and Component Selection. 17
3.2.2 Temperature Effects of Low Supply Voltage V_{IN} 17
3.3 External Component Selection. 17
3.3.1 Sense Resistor Rs 17
3.3.2 Inductor L1 18
3.3.3 Bypass Capacitor C1 19
3.3.4 De-bouncing Capacitor C2 21
3.3.5 Capacitor C3 for Reducing Output Ripple 21
3.3.6 Diode D1 21
3.4 Application Circuit Layout Requirements 21
4 ESD Protection 22
5 Pin Configuration and Package 23
5.1 SOT89-5 Package Pin-out and Dimensions for the ZLED7020 23
5.2 DFN-5 Package Pin-out and Dimensions for the ZLED7320, ZLED7520 and ZLED7720 25
6 Ordering Information 27
7 Document Revision History 27

List of Figures

Figure 1.1 ZLED7x20 Supply Operating Current vs. Input Supply Voltage ($\mathrm{V}_{\mathrm{IN}}=6$ to 40 V). 8
Figure 1.2 ZLED7x20 Supply Quiescent Shutdown Current vs. Input Supply Voltage (ViN $=6$ to 40 V) 8
Figure 1.3 Efficiency (\%) vs. Input Supply Voltage ($\mathrm{V}_{\mathrm{IN}}=6$ to 40 V) Per Number of LEDs (Rs=0.10 $\mathrm{L}, \mathrm{L} 1=47 \mu \mathrm{H}$) 9
Figure 1.4 Efficiency vs. Input Supply Voltage ($\mathrm{V}_{\mathrm{IN}}=6$ to 40 V) Per Number of LEDs ($\mathrm{Rs}=0.15 \Omega$, $\mathrm{L} 1=47 \mu \mathrm{H}$) 9
Figure $1.5 \quad$ Efficiency vs. Input Supply Voltage $\left(\mathrm{V}_{\mathbb{I N}}=6 \text { to } 40 \mathrm{~V}\right)^{\ddagger}$ Per Number of LEDs (Rs=0.30 Ω, $\mathrm{L} 1=47 \mu \mathrm{H}$) 10
Figure 1.6 Output Current Variation vs. Input Supply Voltage ($\mathrm{V}_{\mathbb{I N}}=6$ to 40 V) Per Number of LEDs (Rs=0.15 Ω, L1=47 $\mu \mathrm{H}$) 10
Figure 1.7 Sense Voltage vs. Operating Temperature ($\mathrm{Rs}=0.10 \Omega, \mathrm{~L} 1=47 \mu \mathrm{H}, \mathrm{V} \mathbb{I N}=40 \mathrm{~V}$) 11
Figure 1.8 Dimming Rate with 100 Hz Square Wave Control Signal (PWM) at ADJ Pin (current rise time $=7.85 \mu \mathrm{~s}$) 11
Figure 1.9 LED Open-Circuit Protection (Rs $=0.30 \Omega, L 1=47 \mu \mathrm{H}, \mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$) 12
Figure 3.1 Basic ZLED7x20 Application Circuit with Output Current Determined only by Rs 15
Figure 3.2 Basic ZLED7x20 Application Circuit with Output Current Controlled by External DC Voltage 16
Figure 3.3 Basic ZLED7x20 Application Circuit with Output Current Set by External Square Wave Voltage (PWM) 16
Figure 3.4 Basic ZLED7x20 Application Circuit with Output Current Controlled by External Microcontroller Signal. 17
Figure 5.1 ZLED7020 Pin Configuration - SOT89-5 Package 23
Figure 5.2 SOT89-5 Package Dimensions for the ZLED7020 24
Figure 5.3 ZLED7320, ZLED7520 \& ZLED7720 Pin Configuration - DFN-5 Package 25
Figure 5.4 DFN-5 (DFN4*4-05L) Package Dimensions for the ZLED7320, ZLED7520 \& ZLED7720 26
List of Tables
Table 3.1 Recommended Values for Sense Resistor Rs (ADJ pin floating at nominal voltage $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$). 18
Table 5.1 ZLED7020 Pin Descriptions-SOT89-5 Package 23
Table 5.2 ZLED7320, ZLED7520 \& ZLED7720 Pin Descriptions — DFN-5 Package 25

1 IC Characteristics

Note: Exceeding the maximum ratings given in this section could cause operation failure and/or cause permanent damage to the ZLED7x20. Exposure to these conditions for extended periods may affect device reliability.

1.1 Absolute Maximum Ratings

No.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
1.1.1	Input voltage (also see specification 1.2.2)	$\mathrm{V}_{\text {IN }}$		-0.3		50	V
1.1.2	ISENSE pin voltage	VISENSE	$\mathrm{V}_{1 \mathrm{~N}} \geq 5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}-5 \mathrm{~V}}$		$\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$	V
			$\mathrm{V}_{\mathrm{IN}}<5 \mathrm{~V}$	-0.3V		$\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$	V
1.1.3	LX pin output voltage	$V_{\text {LX }}$		-0.3		50	V
1.1.4	ADJ pin input voltage	$\mathrm{V}_{\text {ADJ }}$		-0.3		6	V
1.1.5	LX pin switch output current	ILX				1.5	A
1.1.6	Power dissipation	P тот				0.5	W
1.1.7	ESD performance		Human Body Model	± 3.5			kV
1.1.8	Junction temperature	T_{J}				150	${ }^{\circ}$
1.1.9	Junction to ambient thermal resistance	RөjA				100	K/W
1.1.10	Storage temperature	Ts		-55		150	${ }^{\circ}$

1.2 Operating Conditions

No.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
1.2 .1	Operating temperature	$\mathrm{T}_{\text {AMB }}$		-40		105	\circ
1.2 .2	Input voltage (also see specification 1.1.1)	$\mathrm{V}_{\text {IN }}$		6		40	V

1.3 Electrical Parameters

Test conditions for the following specifications are $T_{\text {amb }}=25^{\circ} \mathrm{C}$ typical and $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ unless otherwise noted.
Production testing of the chip is performed at $25^{\circ} \mathrm{C}$ unless otherwise stated. Functional operation of the chip and specified parameters at other temperatures are guaranteed by design, characterization, and process control.

No.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
1.3.1	Quiescent supply current	INQoff	Output off—ADJ pin grounded	90	120	160	$\mu \mathrm{A}$
		IINQon	Output switching—ADJ pin floating		450	600	$\mu \mathrm{A}$
1.3.2	Mean current sense threshold voltage	$\mathrm{V}_{\text {SENSE }}$		97	100	103	mV
1.3.3	Sense threshold hysteresis	$\mathrm{V}_{\text {SENSEHYS }}$			± 15		\%
1.3.4	ISENSE pin input current	Isense	$\mathrm{V}_{\text {SENSE }}=\mathrm{V}_{\text {IN }}-0.1 \mathrm{~V}$		8		$\mu \mathrm{A}$
1.3.5	Internal reference voltage measured at ADJ pin	$V_{\text {REF }}$	ADJ pin floating		1.2		V
1.3.6	Resistance between $V_{\text {REF }}$ and ADJ pin	$\mathrm{R}_{\text {ADJ }}$			500		K Ω
1.3.7	External DC brightness control voltage on ADJ pin	$V_{\text {ADJ }}$		0.3		1.2	V
1.3.8	DC on-off control voltage on ADJ pin for switching ZLED7x20 from active state to quiescent state	$\mathrm{V}_{\text {ADJoff }}$	$\mathrm{V}_{\text {ADJ }}$ falling	0.15	0.2	0.25	V
1.3.9	DC off-on control voltage on ADJ pin for switching ZLED7x20 from quiescent state to active state	$\mathrm{V}_{\text {ADJon }}$	$\mathrm{V}_{\text {ADJ }}$ rising	0.2	0.25	0.3	V
1.3.10	LX switch continuous current	ILXmean_0	ZLED7020			1.2	A
		ILXmean_3	ZLED7320			1.0	A
		ILXmean_5	ZLED7520			0.75	A
		ILXmean_7	ZLED7720			0.35	A
1.3.11	LX switch leakage current	ILX(Ieak)				1	$\mu \mathrm{A}$
1.3.12	LX switch on resistance	R_{LX}			0.27	0.4	Ω
1.3.13	Minimum switch on time	tonmin	LX switch on		200		ns
1.3.14	Minimum switch off time	toffmin	LX switch off		200		ns
1.3.15	Dimming rate	D ${ }_{\text {DIM }}$	$\begin{aligned} & 1 \text { LED, } \mathrm{f}=100 \mathrm{~Hz}, \mathrm{Vin}=15 \mathrm{~V}, \\ & \mathrm{~L} 1=27 \mu \mathrm{H} \end{aligned}$		1200:1		
1.3.16	Recommended operating frequency maximum	$\mathrm{f}_{\text {LX }}^{\text {max }}$				1	MHz
1.3.17	Recommended output switch duty cycle range at $f_{\text {LX }}$ max	D_{LX}		0.3		0.9	

Data Sheet

August 12, 2011

No.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
1.3 .18	Propagation delay of internal comparator	tPD			50		ns
1.3 .19	Thermal shutdown temperature	$T_{\text {SD }}$		150		C	
1.3 .20	Thermal shutdown hysteresis	TSD-HYS		20		K	

1.4 Typical Operation Graphs

The curves are valid for the typical application circuit and $T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Figure 1.1 ZLED7x20 Supply Operating Current vs. Input Supply Voltage (VIN =6 to 40 V)

Figure 1.2 ZLED7x20 Supply Quiescent Shutdown Current vs. Input Supply Voltage (ViN =6 to 40 V)

Figure 1.3 Efficiency (\%) vs. Input Supply Voltage (ViN $=6$ to $40 V)^{\dagger}$ Per Number of LEDs (Rs=0.10』, L1=47 μH)

Figure 1.4 Efficiency vs. Input Supply Voltage ($V_{I N}=6$ to 40 V) ${ }^{\ddagger}$ Per Number of LEDs (Rs=0.15,$\left.~ L 1=47 \mu H\right)$

[^0]

Figure 1.5 Efficiency vs. Input Supply Voltage ($V_{I N}=6$ to 40 V) ${ }^{\ddagger}$ Per Number of LEDs (Rs=0.30,$~ L 1=47 \mu H$)

Figure 1.6 Output Current Variation vs. Input Supply Voltage (ViN $=6$ to 40 V) $)^{\S}$ Per Number of LEDs (Rs=0.15 , L1=47 μH)

[^1]

Figure 1.7 Sense Voltage vs. Operating Temperature (Rs=0.10 , L1=47 $\mu \mathrm{H}, V_{I N}=40 \mathrm{~V}$)

Figure 1.8 Dimming Rate with 100Hz Square Wave Control Signal (PWM) at ADJ Pin (current rise time=7.85 ${ }^{2}$)

The Analog Mixed Signal Company

Figure 1.9 LED Open-Circuit Protection (Rs=0.30 $\left., ~ L 1=47 \mu H, V_{I N}=24 V\right)$

2 Circuit Description

2.1 ZLED7x20 Overview

The ZLED7x20 is a continuous-mode inductive step-down converter LED driver for driving single or multiple series-connected LEDs from a voltage input higher than the LED voltage (Vin $=6$ to 40 VDC; see section 3.2.2 for important details). The ZLED7x20 provides an adjustable output current (1.2A maximum for ZLED7020; 1.0A maximum for ZLED7320; 0.75A maximum for ZLED7520; 0.35A maximum for ZLED7720), which is nominally set via an external sense resistor Rs and controlled by the ZLED7x20's integrated high-side output current-sensing circuit and output switch. An external control signal (e.g., DC voltage, PWM waveform, or microprocessor signal) on the ADJ pin can be used to linearly adjust the output for continuous, variable, or gated-output current. See page 3 for a block diagram of the ZLED7x20.
The output can be turned off by applying a voltage $\leq 0.2 \mathrm{~V}$ (typical) to the ADJ pin, which puts the ZLED7x20 in a low-current standby state. See section 2.6 for a description of this shutdown mode.
Only a resistor, a diode, an inductor, and three capacitors are needed for a typical basic application. Refer to the application circuits in section 3 for the location of the components referenced in the following sections.

2.2 Control of Output Current via External Sense Resistor Rs

External sense resistor Rs, which is connected between the $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{I}_{\text {SENSE }}$ pins as shown in Figure 3.1, sets loutnom, the nominal average output current. Equation (1) can be used to calculate the nominal output current, which is the LX switch output current $I_{L X}$ if the ADJ pin is floating $\left(V_{\text {ADJ }}=V_{\text {REF }}=1.2 \mathrm{~V}\right)$. See section 3.3.1 for recommended values for Rs in a typical basic application and section 3.4 for layout guidelines for Rs. Note that the peak $\mathrm{I}_{\text {outnom }}$ including ripple (see section 3.3.5) must not exceed the maximum current specifications (1.3.10).

$$
\begin{equation*}
\mathrm{I}_{\text {OUTnom }}=\frac{0.1 \mathrm{~V}}{\mathrm{Rs}} \tag{1}
\end{equation*}
$$

2.3 Control of Output Current via an External DC Control Voltage on the ADJ Pin

An external $D C$ voltage ($\mathrm{V}_{A D J}$) input on the ADJ pin can control brightness by setting the output current to a value below the nominal average current $\mathrm{I}_{\text {outnom }}$ determined by R_{S}. With this method, the output current can be adjusted from 25% to 100% of $\mathrm{I}_{\text {OUTnom. }}$. The DC voltage source must be capable of driving the ADJ pin's input impedance $\mathrm{R}_{\text {ADJ }}\left(500 \mathrm{k} \Omega \pm\right.$ approximately 25%; internal pull-up resistor to $\left.\mathrm{V}_{\text {REF }}\right)$. See Figure 3.2 for a typical application circuit.
The nominal average output current $l_{\text {outdc }}$ resulting from an external $D C$ control voltage $V_{A D J}$ can be calculated via equation (2) where $0.3 \mathrm{~V} \leq \mathrm{V}_{\text {ADJ }} \leq 1.2 \mathrm{~V}$:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OUTdc}}=\frac{0.083 * \mathrm{~V}_{\mathrm{ADJ}}}{\mathrm{R}_{\mathrm{S}}} \tag{2}
\end{equation*}
$$

Brightness is 100% if $\mathrm{V}_{\text {ADJ }}=\mathrm{V}_{\text {REF }}$, the internal reference voltage, which can be measured on the ADJ pin when it is floating (1.2 V , typical). If $\mathrm{V}_{\text {ADJ }} \geq 1.2 \mathrm{~V}$, current is automatically clamped at 100% brightness. Note: Absolute maximum $V_{A D J}=6 \mathrm{~V}$.

2.4 Control of Output Current via a PWM Signal on the ADJ Pin

An external pulse width modulation (PWM) control signal input on the ADJ pin can be used for brightness or gated on/off control of the output current by driving the output current to a value below the nominal average current determined by R_{s}. See Figure 3.3 for a typical application circuit. The PWM or gated on/off control signal can be within the range of 0 to 5 V . The logic high level must be higher than 1.2 V and the logic low level must be below 0.2 V . It must be capable of driving the ADJ pin's input impedance $\mathrm{R}_{\text {ADJ }}$ (approximately $500 \mathrm{k} \Omega$; internal pull-up resistor to $\mathrm{V}_{\text {REF }}$).

2.5 Control of Output Current via a Microcontroller Signal on the ADJ Pin

An external control signal from the open drain output of a microcontroller can provide on/off or PWM brightness control by driving the ADJ pin. See Figure 3.4 for a typical application circuit. Diode D2 and resistor R1 shown in Figure 3.4 suppress any negative high-amplitude spikes on the ADJ input due to the drain-source capacitance of the FET in the microcontroller's output. Negative spikes on the ADJ input could cause output current errors or unintended ZLED7x20 operation. The signal input to the ADJ pin must be capable of driving the ADJ pin's input impedance $\mathrm{R}_{\text {ADJ }}$ (approximately $500 \mathrm{k} \Omega$; internal pull-up resistor to VREF).

2.6 Shutdown Mode

If the ADJ pin voltage $V_{A D J}$ is $\leq V_{\text {ADJoff }}(0.2 \mathrm{~V} \pm 0.05 \mathrm{~V})$, the supply current and output on the $L X$ pin are quiescent at a low standby level ($l_{\text {NQooff }}=120 \mu \mathrm{~A}$ nominal). Raising the ADJ pin voltage so that $\mathrm{V}_{\mathrm{ADJ}} \geq \mathrm{V}_{\text {ADJion }}(0.25 \mathrm{~V} \pm 0.05 \mathrm{~V})$ will switch the output back to full operational mode.

2.7 ZLED7x20 Protection Features

2.7.1 Thermal Shut-down Protection

The ZLED7x20 automatically protects itself from damage due to over-temperature conditions. If the ZLED7x20's temperature exceeds the thermal shutdown threshold ($T_{\text {SD }}=150^{\circ} \mathrm{C}$, typical), the ZLED7x20 will shutdown. To avoid erratic ZLED7x20 operation, a 20K hysteresis (TsD-Hys) is applied that prevents it from returning to operation until its temperature falls below the hysteresis threshold ($\mathrm{T}_{\mathrm{SD}}-\mathrm{T}_{\mathrm{SD} \text {-Hvs }}$). Also refer to section 3.2 for additional thermal considerations.

2.7.2 LED Open Load Protection

As a step-down converter, the ZLED7x20 has inherent open-load circuit protection. Since the L1 inductor is connected in series with the LED string, the current flow is interrupted if the load is open and the LX output of the ZLED7x20 will not be damaged. This provides an advantage over other products such as boost converters, for which the internal switch can be damaged by back EMF forcing the drain above its breakdown voltage.

3 Application Circuit Design

3.1 Applications

The ZLED7x20 is designed for applications requiring features such as high-speed switching, variable brightness control, operation with voltages up to 40 V , high efficiency, or protection from over-temperature, or open LED circuit conditions.
Typical applications include MR16/MR11 LED spot lights, LED street lights, parabolic aluminized reflector (PAR) LED lights, and other general purpose industrial and consumer LED applications.
Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4 demonstrate basic application circuits for the four options for controlling output current described in section 2.

Figure 3.1 Basic ZLED7x20 Application Circuit with Output Current Determined only by Rs

Figure 3.2 Basic ZLED7x20 Application Circuit with Output Current Controlled by External DC Voltage

Figure 3.3 Basic ZLED7x20 Application Circuit with Output Current Set by External Square Wave Voltage (PWM)

Figure 3.4 Basic ZLED7x20 Application Circuit with Output Current Controlled by External Microcontroller Signal

3.2 Thermal Considerations for Application Design

3.2.1 Temperature Effects of Load, Layout, and Component Selection

Do not exceed the package power dissipation limits by driving high load currents or by operating the chip at high ambient temperatures. Power dissipation also increases if the efficiency of the circuit is low as could result from selecting the wrong coil or from excessive parasitic output capacitance on the switch output. See the layout guidelines in section 3.4.

3.2.2 Temperature Effects of Low Supply Voltage $\mathbf{V}_{\mathbf{I N}}$

Until the supply input voltage on the $\mathrm{V}_{\mathbb{I N}}$ pin has risen above the internally-set startup threshold, the ZLED7x20's internal regulator disables the drive to the internal power MOSFET output switch. Above this threshold, the MOSFET on-resistance is low enough for the chip to start to operate; however, if the supply voltage remains below the specified minimum (6V), the duty cycle of the output switch will be high and the ZLED7x20 power dissipation will be at a maximum. Avoid operating the ZLED7x20 under such conditions to reduce the risk of damage due to exceeding the maximum die temperature. When driving multiple LEDs, their combined forward voltage drop is typically high enough to prevent the chip from switching when $\mathrm{V}_{\text {IN }}$ is below 6 V , so there is less risk of thermal damage.

3.3 External Component Selection

Note: Also see section 3.4 for layout guidelines for the following external components.

3.3.1 Sense Resistor Rs

Table 3.1 gives values for Rs under normal operating conditions in the typical application shown in Figure 3.1. These values assume that the ADJ pin is floating and at the nominal voltage of $\mathrm{V}_{\mathrm{REF}}=1.2 \mathrm{~V}$.
Note: Under the conditions given in Table 3.1, in order to maintain the switch current below the maximum value specified in section $1,0.082 \Omega$ is the minimum value for Rs for the ZLED7020, 0.1Ω for the ZLED7320, 0.13Ω for the ZLED7520 and 0.27Ω for the ZLED7720. It is possible to use different values of Rs if the ADJ pin is driven from an external voltage.

Data Sheet August 12, 2011	© 2011 Zentrum Mikroelektronik Dresden AG - Rev. 1.2 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	17 Of 27

To ensure stable output current, use a 1% accuracy resistor with adequate power tolerance and a good temperature characteristic for Rs.
Table 3.1 Recommended Values for Sense Resistor Rs (ADJ pin floating at nominal voltage $V_{R E F=1.2 V)}$

Nominal Average Output Current (mA)	Value for Rs (Ω)
1200 (maximum for ZLED7020)	0.082
1000 (maximum for ZLED7320)	0.1
750 (maximum for ZLED7520)	0.13
667	0.15
350 (maximum for ZLED7720)	0.27
333	0.3

3.3.2 Inductor L1

The recommended range for the L 1 inductor is $33 \mu \mathrm{H}$ to $220 \mu \mathrm{H}$. Select the inductor value for L 1 as needed to ensure that switch on/off times are optimized across the load current and supply voltage ranges. If the application requires a high supply voltage and low output current, inductance values at the high end of this range are recommended to minimize errors due to switching delays, which can reduce efficiency and increase ripple on the output. Also see section 3.4 for layout considerations for L1. Equations (3) and (4) can be used to calculate t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$.

On Time for LX Switch (tonmin $>200 \mathrm{~ns}$):

$$
\begin{equation*}
t_{O N}=\frac{L^{*} \Delta I}{V_{I N}-V_{L E D}-I_{A V G} *\left(R_{S}+r_{L}+R_{L X}\right)} \tag{3}
\end{equation*}
$$

Off Time for LX Switch ($\mathrm{t}_{\text {OFFmin }}>200 \mathrm{~ns}$):

$$
\begin{equation*}
t_{O F F}=\frac{L^{* \Delta I}}{V_{L E D}+V_{D}+I_{A V G} *\left(R_{S}+r_{L}\right)} \tag{4}
\end{equation*}
$$

Where:

Symbol	
L	L1 coil inductance in H
$\Delta \mathrm{I}$	L1 coil peak-peak ripple current in A (internally set to $0.3 * \mathrm{I}_{\mathrm{AVG}}$)
V_{IN}	Supply voltage in V
$\mathrm{V}_{\mathrm{LED}}$	Total forward voltage in V for LED string
$\mathrm{I}_{\mathrm{AVG}}$	Nominal average LED current in A
Rs	External current sense resistor in Ω
r_{L}	L1 coil resistance in Ω
R_{LX}	LX switch resistance in Ω
V_{D}	D1 diode forward voltage at the required load current in V

Data Sheet August 12, 2011	© 2011 Zentrum Mikroelektronik Dresden AG - Rev. 1.2 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	18 of 27

The inductance value has an equivalent effect on t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ and therefore affects the switching frequency. For the same reason, the inductance has no influence on the duty cycle, for which the relationship of the summed LED forward voltages $n * V_{F}$ to the input voltage $\mathrm{V}_{\mathbb{N}}$ is a reasonable approximation. Because the input voltage is a factor in the on time, variations in the input voltage affect the switching frequency and duty cycle.
To achieve optimum performance, duty cycles close to 0.5 at the nominal average supply voltage are preferable for improving the temperature stability of the output current.
Equations (5), (6), (7), and (8) provide an example of calculating $t_{\text {os, }}$, toff, operating frequency $f_{\text {Lx, }}$, and duty cycle D_{LX} when using a $220 \mu \mathrm{H}$ inductor for L 1 and $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{Rs}=0.30 \Omega, \mathrm{r}_{\mathrm{L}}=0.26 \Omega, \mathrm{~V}_{\mathrm{LED}}=3.4 \mathrm{~V}, \mathrm{I}_{\mathrm{AVG}}=333 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.36 \mathrm{~V}$, and $R_{\mathrm{LX}}=0.27 \Omega$.

Example:

$$
\mathrm{t}_{\mathrm{ON}}=\frac{220 \mu \mathrm{H}^{*} 0.3 * 0.333 \mathrm{~A}}{12 \mathrm{~V}-3.4 \mathrm{~V}-0.333 \mathrm{~A}^{*}(0.3 \Omega+0.26 \Omega+0.27 \Omega)}=2.64 \mu \mathrm{~s}
$$

$$
\mathrm{t}_{\text {OFF }}=\frac{220 \mu \mathrm{H}^{*} 0.3 * 0.333 \mathrm{~A}}{3.4 \mathrm{~V}+0.36 \mathrm{~V}+0.333 \mathrm{~A}^{*}(0.30 \Omega+0.26 \Omega)}=5.56 \mu \mathrm{~s}
$$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{LX}}=\frac{1}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}=\frac{1}{2.64 \mu \mathrm{~s}+5.56 \mu \mathrm{~s}}=121.8 \mathrm{kHz} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{D}_{\mathrm{LX}}=\frac{\mathrm{V}_{\mathrm{LED}}}{\mathrm{~V}_{\mathrm{IN}}}=\frac{3.4 \mathrm{~V}}{12 \mathrm{~V}} \approx \frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}=\frac{2.64 \mu \mathrm{~s}}{2.64 \mu \mathrm{~s}+5.56 \mu \mathrm{~s}} \approx 0.3 \tag{8}
\end{equation*}
$$

For the L1 inductor, use a coil with a continuous current rating higher than the required mean output current and a saturation current that exceeds the peak output current by 30% to 50% for robustness against transient conditions; e.g., during start-up.

3.3.3 Bypass Capacitor C1

The bypass capacitor C1 has two functions: maintaining operating voltage and bypassing the current ripple of the switching converter. In general low ESR capacitors must be used.
If the circuit is supplied by rectified line voltage, C1 must provide enough charge to maintain the ZLED7x20's minimum operating voltage as well as the forward voltage of the LED string to keep the application working even if the rectified supply voltage periodically drops below these values. A rough estimate for the minimum capacity needed can be calculated with equation (9).

$$
\begin{equation*}
\mathrm{C}_{1_{\mathrm{MIN}}}=\frac{I_{\mathrm{AVG}}{ }^{*} \mathrm{t}_{\mathrm{D}}}{\Delta \mathrm{~V}_{\mathrm{MAX}}}=\frac{\mathrm{I}_{\mathrm{F}}^{*}{ }^{*} \mathrm{D}_{\mathrm{LX}}}{\Delta \mathrm{~V}_{\mathrm{MAX}}{ }^{*} \mathrm{f}_{\mathrm{LX}}} \tag{9}
\end{equation*}
$$

Where:

Symbol	Description
$\mathrm{I}_{\text {AVG }}$	Average nominal LED string current assuming that the contribution of the IC supply current is negligible.
t_{D}	Discharge time at given AC frequency. Will be a maximum of $10 \mathrm{~ms}(1 / 2$ period duration $)$ at 50 Hz.
$\Delta \mathrm{~V}_{\text {MAX }}$	Peak rectified supply voltage minus LED string forward voltage or minimum ZLED7x20 supply voltage, whichever is greater.

Example: For an application with 3 LEDs with 3.2 V forward voltage each driven at 0.33 A and supplied with rectified 24 VAC , a minimum bypass capacitor C 1 of $220 \mu \mathrm{~F}$ or $330 \mu \mathrm{~F}$ might be adequate. Compared to the calculation, a safety margin of about 50% must be added to consider temperature effects and aging.

$$
\begin{equation*}
\mathrm{C} 1_{\mathrm{MIN}}=\frac{0.33 \mathrm{~A} * 10 \mathrm{~ms}}{24 \mathrm{~V} * \sqrt{2}-3 * 3.2 \mathrm{~V}}=135 \mu \mathrm{~F} \tag{10}
\end{equation*}
$$

A second function of $C 1$ is to bypass the current ripple of the switching converter and thus prevent it from disturbing a stable IC supply or backlash on the power supply circuit. For this reason, even in DC-supplied applications, the use of an adequate C 1 might be useful. The defining parameters are now as shown in equation (11):

$$
\begin{equation*}
\mathrm{C}_{\mathrm{MIN}}=\frac{I_{\mathrm{AVG}} * \mathrm{t}_{\mathrm{ON}}}{\mathrm{~V}_{\mathrm{RIPPLE}}} \tag{11}
\end{equation*}
$$

Where:

Symbol	Description
$I_{\text {AVG }}$	Average nominal LED string current.
$t_{\text {ON }}$	On time of the internal MOSFET output switch. Note: ton must be longer than toNmin=200ns.
$V_{\text {RIPPLE }}$	Permissible voltage ripple on the supply voltage.

| Data Sheet
 August 12, 2011 | © 2011 Zentrum Mikroelektronik Dresden AG - Rev. 1.2
 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without
 the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. |
| :--- | :--- | :--- |

Example: For an application of 3 LEDs driven at 0.33 A and supplied with 24 VDC , a maximum ripple of 10% is allowed. The ZLED7x20 is operated at 150 kHz with a duty cycle of 0.4 leading to an on time of $2.67 \mu \mathrm{~s}$. As calculated in equation 12, a capacitor C1 of 470 nF may be adequate, again including a safety margin of about 50\%.

$$
\begin{equation*}
\mathrm{C} 1_{\mathrm{MIN}}=\frac{0.33 \mathrm{~A}^{*} 2.67 \mu \mathrm{~s}}{24 \mathrm{~V} * 0.1}=367 \mathrm{nF} \tag{12}
\end{equation*}
$$

To achieve maximum stability over temperature and voltage, an $\mathrm{X} 7 \mathrm{R}, \mathrm{X} 5 \mathrm{R}$, or better dielectric is recommended while Y5V must be avoided.

3.3.4 De-bouncing Capacitor C2

External capacitor C2 minimizes ground bounce during switching of the internal MOSFET output switch. Ground bounce is typically caused by parasitic inductance and resistance due to the distance between the grounds for the power supply and the ZLED7x20 GND pin. Use a $0.1 \mu \mathrm{~F}$, X7R ceramic capacitor to ground for C 2 .

3.3.5 Capacitor C3 for Reducing Output Ripple

If required, the C3 can be used to reduce peak-to-peak ripple current in the LED string. Low ESR capacitors should be used because the efficiency of C3 largely depends on its ESR and the dynamic resistance of the LEDs. For an increased number of LEDs, using the same capacitor will be more effective. Lower ripple can be achieved with higher capacitor values, but this will increase start-up delay by reducing the slope of the LED voltage as well as cause increased current during converter start-up. The capacitor will not affect operating frequency or efficiency. For a simulation or bench optimization, C3 values of a few $\mu \mathrm{F}$ are an applicable starting point for the given configuration. Ripple current reduction is approximately proportional to the value of C3.

3.3.6 Diode D1

The flyback diode D1 must have a continuous current rating greater than the maximum output load current and a peak current rating higher than the peak L1 coil current. Important: Use a low-capacitance, fast Schottky diode that has low reverse leakage at the maximum operating temperature and maximum operating voltage for the application to avoid excess power dissipation and optimize performance and efficiency. For silicon diodes, there is a concern that the higher forward voltage and increased overshoot from reverse recovery time could increase the peak LX pin voltage $\left(\mathrm{V}_{\mathrm{LX}}\right)$. The total voltage V_{LX} (including ripple voltage) must not be $>50 \mathrm{~V}$.

3.4 Application Circuit Layout Requirements

The following guidelines are strongly recommended when laying out application circuits:

- Important: Locate the L1 inductor and the C1 input decoupling capacitor as close as possible to the ZLED7x20 to minimize parasitic inductance and resistance, which can compromise efficiency. Use low resistance connections from L1 to the LX and $\mathrm{V}_{\text {IN }}$ pins.
- All circuit board traces to the LX pin must be as short as possible because it is a high-speed switching node.
- If the ADJ pin floats, all circuit board traces to the ADJ pin must be as short as possible to reduce noise pickup.

Data Sheet August 12, 2011	© 2011 Zentrum Mikroelektronik Dresden AG - Rev. $\mathbf{1 . 2}$ All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	21 of 27

- Do not lay out high-voltage traces near the ADJ pin because if the board is contaminated, leakage current can affect the ADJ pin voltage and cause unintended output current. To further reduce this risk, use a ground ring around the ADJ pin. (Also see section 2.7 regarding the ZLED7x20's protection circuitry for preventing excessive output current.)
- To minimize ground bounce, locate the $0.1 \mu \mathrm{~F}$ external capacitor C 2 as close as possible to the $\mathrm{V}_{\mathbb{I N}}$ pin and solder the ZLED7x20's GND pin directly to the ground plane. (Also, see section 3.3.4 regarding ground bounce.)
- Because Rs is typically a low value resistor, it is important to consider the resistance of the traces in series with R_{S} as part of the total current sense resistance. Use traces that are as short and wide as possible to minimize this effect.
- The ZLED7x20's thermal pad must be grounded.

4 ESD Protection

All pins have an ESD protection of $\geq \pm 3500 \mathrm{~V}$ according to the Human Body Model (HBM). The ESD test follows the Human Body Model with $1.5 \mathrm{k} \Omega / 100 \mathrm{pF}$ based on MIL 883-H, Method 3015.8.

5 Pin Configuration and Package

5.1 SOT89-5 Package Pin-out and Dimensions for the ZLED7020

Figure 5.1 ZLED7020 Pin Configuration - SOT89-5 Package

Table 5.1 ZLED7020 Pin Descriptions-SOT89-5 Package

Pin	No.	Description (Also see section 3.3 for layout guidelines)
LX	1	Drain of internal power switch
GND	2	Ground
ADJ	3	On/off and brightness control input
Isense	4	Current adjustment input. Resistor R_{S} from $\mathrm{I}_{\text {SENSE }}$ to $\mathrm{V}_{\text {IN }}$ determines the nominal average output current. Ioutnom $=0.1 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$
Thermal Pad		Connect to GND.
$\mathrm{V}_{\text {IN }}$	5	Input voltage (6 V to 40 V).

Figure 5.2 SOT89-5 Package Dimensions for the ZLED7020

Symbol	Dimension (mm)	
	Min	Max
A	1.400	1.600
b	0.320	0.520
b1	0.360	0.560
c	0.350	0.440
D	4.400	4.600
D1	1.400	1.800
E	2.300	2.600
E1	3.940	4.250
e	1.500 Typical	
e1	2.900	3.100
L	0.900	1.100

5.2 DFN-5 Package Pin-out and Dimensions for the ZLED7320, ZLED7520 and ZLED7720

Figure 5.3 ZLED7320, ZLED7520 \& ZLED7720 Pin Configuration — DFN-5 Package

Table 5.2 ZLED7320, ZLED7520 \& ZLED7720 Pin Descriptions - DFN-5 Package

Pin	No.	Description (Also see section 3.3 for layout guidelines)
LX	1	Drain of internal power switch
GND	2	Ground
ADJ	3	On/off and brightness control input
Isense	4	Current adjustment input. Resistor Rs from ISENSE to $\mathrm{V}_{\text {IN }}$ determines the nominal average output current. loutnom $=0.1 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$
Thermal Pad		Connect to GND.
$\mathrm{V}_{\text {IN }}$	5	Input voltage (6 V to 40 V).

Figure 5.4 DFN-5 (DFN4*4-05L) Package Dimensions for the ZLED7320, ZLED7520 \& ZLED7720

Symbol	Dimension (mm)		
	Min	Max	
A	3.95	4.05	
B	3.95	4.05	
C	0.70	0.80	
D	0.37	0.47	
e	0.75	0.95	
f	2.17	2.42	
g	1.50		
h	0.41	0.51	
i	1.40	1.70	
j	0.000	1.75	
k			
k1	0.200		
m			

6 Ordering Information

Ordering Information

Product Sales Code	Description	Package
ZLED7020-ZI1R	ZLED7020 - High Current (1200mA) 40V LED Driver with Internal Switch	SOT89-5 (Tape \& Reel)
ZLED7320-ZI1R	ZLED7320 - High Current (1000mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7520-ZI1R	ZLED7520 - High Current (750mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7720-ZI1R	ZLED7720 - High Current (350mA) 40V LED Driver with Internal Switch	DFN-5 (Tape \& Reel)
ZLED7020KIT-D1	ZLED7020-D1 Demo Board, 1 ZLED-PCB8 and 5 ZLED7020 ICs	Kit
ZLED-PCB8	Test PCB with one 5W white High Brightness (HB) LED, cascadable to one multiple LED string	Printed Circuit Board (PCB)
ZLED-PCB2	10 unpopulated test PCBs for modular LED string with footprints of 9 common HB LED types	Printed Circuit Board (PCB)

7 Document Revision History

Revision	Date	Description
1.0	June 27, 2011	First issue.
1.1	August 9, 2011	Second issue. Updated Demo Kit description.
1.2	August 12, 2011	Third issue. Updated to include ZLED7520 \& ZLED7720. Updated Demo Kit description

Sales and Further Information			www.zmdi.com		LED_Drivers@zmdi.com	
Zentrum Mikroelektronik Dresden AG (ZMD AG) Grenzstrasse 28 01109 Dresden Germany	ZMD 8413 E Suite Madis USA	nerica, Inc. celsior Drive WI 53717	Zentru Dresd 4-21-3, Tokyo, Japan	m Mikroelektronik n AG, Japan Office or, Shinbashi Tokyu Bldg. Shinbashi, Minato-ku 105-0004	$\begin{aligned} & \text { ZMD F } \\ & \text { FF, No. } \\ & \text { Keelung } \\ & 11052 \\ & \text { Taiwan } \end{aligned}$	FAR EAST, Ltd. 51, Sec. 2, goad Taipei
$\begin{array}{ll} \text { Phone } & +49 \\ \text { Fax } & \text { (0) } 351.8822 .7 .533 \\ \text { F49 (0) } 351.8822 .8 .7533 \end{array}$	Phone Fax	$\begin{aligned} & +1 \text { (608) 829-1987 } \\ & +1(631) 549-2882 \end{aligned}$	Phone Fax	$\begin{array}{r} +81.3 .6895 .7410 \\ +81.3 .6895 .7301 \end{array}$	$\begin{aligned} & \text { Phone } \\ & \text { Fax } \end{aligned}$	$\begin{array}{r} +886.2 .2377 .8189 \\ +886.2 .2377 .8199 \end{array}$

Data Sheet

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ZMDI:
ZLED7320ZI1R

[^0]: ${ }^{\dagger}$ Minimum $\mathrm{V}_{\text {in }}$ depends on number of LEDs.
 ${ }^{\ddagger}$ Minimum $V_{\text {in }}$ depends on number of LEDs.

[^1]: § Minimum $\mathrm{V}_{\text {in }}$ depends on number of LEDs

