Package Types

MCP6V61

MCP6V61U

MCP6V64

Typical Application Circuit

FIGURE 1:
Input Offset Voltage vs. Ambient Temperature with $V_{D D}=1.8 \mathrm{~V}$.

FIGURE 2: Input Offset Voltage vs.
Ambient Temperature with $V_{D D}=5.5 \mathrm{~V}$.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings \dagger

Note 1: \quad Section 4.2.1 "Rail-to-Rail Inputs"

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

| Electrical Characteristics: | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Parameters | Sym. | Min. | Typ. | Max. | Units | Conditions |
| Input Offset | | | | | | |
| | | | | | | |
| | (Note 1) | | | | | |
| | | | | | | |
| | | | | | | |

Note 1:
2:
3:
4:

MCP6V61/1U/2/4

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics:

Ω						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Input Bias Current and Impedance						
						(Note 3)
						(Note 4)
					Ω	
					Ω	
Common Mode						
						Note 2
						Note 2
						(Note 2)
						(Note 2)
Open-Loop Gain						

Note 1:
2 :
$3:$
4:

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics:						
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Amplifier AC Response						
Amplifier Noise Response						
					\checkmark	
					\checkmark	
Amplifier Distortion (Note 1)						
Amplifier Step Response						
						(Note 2)
						(Note 3)
EMI Protection						

Note 1:

2:
Section 4.3.3 "Offset at Power-Up"
3:
TABLE 1-3: TEMPERATURE SPECIFICATIONS
Electrical Characteristics:

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Temperature Ranges						
						Note 1
Thermal Package Resistances						

Note 1:

1.3 Timing Diagrams

FIGURE 1-1: Amplifier Start-Up.

FIGURE 1-2: Offset Correction Settling
Time.

FIGURE 1-3: Output Overdrive Recovery.

1.4 Test Circuits

Section 4.3.10 "Supply Bypassing and Filtering"

FIGURE 1-4: $\quad A C$ and DC Test Circuit for Most Non-Inverting Gain Conditions.

FIGURE 1-5: $\quad A C$ and DC Test Circuit for Most Inverting Gain Conditions.

FIGURE 1-6:
Test Circuit for Dynamic Input Behavior.

2.0 TYPICAL PERFORMANCE CURVES

Note:

Note:

Ω

2.1 DC Input Precision

FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: Input Offset Voltage Drift.

FIGURE 2-3: Input Offset Voltage
Quadratic Temp. Co.

FIGURE 2-4: Input Offset Voltage vs. Power Supply Voltage with $V_{C M}=V_{C M L}$.

FIGURE 2-5: Input Offset Voltage vs.
Power Supply Voltage with $V_{C M}=V_{C M H}$.

FIGURE 2-6: Input Offset Voltage vs. Output Voltage with $V_{D D}=1.8 \mathrm{~V}$.

Note:
Ω

FIGURE 2-7: Input Offset Voltage vs.
Output Voltage with $V_{D D}=5.5 \mathrm{~V}$.

FIGURE 2-8: Input Offset Voltage vs.
Common Mode Voltage with $V_{D D}=1.8 \mathrm{~V}$.

FIGURE 2-9: Input Offset Voltage vs.
Common Mode Voltage with $V_{D D}=5.5 \mathrm{~V}$.

FIGURE 2-10: Common Mode Rejection Ratio.

FIGURE 2-11: Power Supply Rejection Ratio.

FIGURE 2-12: DC Open-Loop Gain.

Note:
Ω

2.2 Other DC Voltages and Currents

FIGURE 2-19: Input Common Mode Voltage Headroom (Range) vs. Ambient Temperature.

FIGURE 2-20: Output Voltage Headroom vs. Output Current.

FIGURE 2-21: Output Voltage Headroom vs. Ambient Temperature.

FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage.

FIGURE 2-23: Supply Current vs. Power Supply Voltage.

FIGURE 2-24: Power-On Reset Trip Voltage.

Note:

FIGURE 2-25: Power-On Reset Voltage vs.
Ambient Temperature.

Note:
Ω

FIGURE 2-32: Closed-Loop Output Impedance vs. Frequency with $V_{D D}=1.8 \mathrm{~V}$.

FIGURE 2-33: Closed-Loop Output Impedance vs. Frequency with $V_{D D}=5.5 \mathrm{~V}$.

FIGURE 2-34: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-35: EMIRR vs. Frequency.

FIGURE 2-36: EMIRR vs. Input Voltage.

FIGURE 2-37: Channel-to-Channel
Separation vs. Frequency.

MCP6V61/1U/2/4

Note:
Ω

2.4 Input Noise and Distortion

FIGURE 2-38: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency.

FIGURE 2-39: Input Noise Voltage Density vs. Input Common Mode Voltage.

FIGURE 2-40: Intermodulation Distortion vs. Frequency with $V_{C M}$ Disturbance (see Figure 1-6).

FIGURE 2-41: Inter-Modulation Distortion vs. Frequency with $V_{D D}$ Disturbance (see Figure 1-6).

FIGURE 2-42: Input Noise vs. Time with 1 Hz and 10 Hz Filters and $V_{D D}=1.8 \mathrm{~V}$.

FIGURE 2-43: Input Noise vs. Time with 1 Hz and 10 Hz Filters and $V_{D D}=5.5 \mathrm{~V}$.

Note:
Ω

FIGURE 2-50: Inverting Large Signal Step Response.

FIGURE 2-51: Slew Rate vs. Ambient Temperature.

FIGURE 2-52: Output Overdrive Recovery
vs. Time with $G=-10 \mathrm{~V} / \mathrm{V}$.

FIGURE 2-53: Output Overdrive Recovery Time vs. Inverting Gain.

4.0 APPLICATIONS

4.1 Overview of Zero-Drift Operation

FIGURE 4-1: Simplified Zero-Drift Op Amp Functional Diagram.

FIGURE 4-2: First Chopping Clock Phase; Equivalent Amplifier Diagram.

FIGURE 4-3: Second Chopping Clock Phase; Equivalent Amplifier Diagram.

4.2 Other Functional Blocks

Section 1.1 "Absolute Maximum Ratings †"

FIGURE 4-4: Simplified Analog Input ESD Structures.

FIGURE 4-5:
Protecting the Analog Inputs Against High Voltages.

MCP6V61/1U/2/4

4.3 Application Tips

Section 1.1 "Absolute
Maximum Ratings †"

$\min \left(R_{1}, R_{2}\right)>\frac{V_{S S}-\min \left(V_{1}, V_{2}\right)}{2 m A}$
$\min \left(R_{1}, R_{2}\right)>\frac{\max \left(V_{1}, V_{2}\right)-V_{D D}}{2 m A}$
FIGURE 4-6:
Protecting the Analog Inputs
Against High Currents.
not

FIGURE 4-7: Output Resistor, RISO, Stabilizes Capacitive Loads.

FIGURE 4-8: Recommended $R_{\text {ISO }}$ values for Capacitive Loads.
Ω

FIGURE 4-9: Output Load.

MCP6V61/1U/2/4

FIGURE 4-10: Amplifier with Parasitic
Capacitance.
π

Section 4.3.6 "Capacitive
Loads"

EQUATION 4-2:

$$
R_{F} \quad 10 k \quad \frac{3.5 p F}{C_{G}} \quad G_{N}^{2}
$$

4.4 Typical Applications

Op Amp Precision Design: PCB

FIGURE 4-11: Simple Design.

FIGURE 4-12: RTD Sensor.

MCP6V61/1U/2/4

FIGURE 4-13: Offset Correction.

FIGURE 4-14: Precision Comparator.

5.0 DESIGN AIDS

5.1 SPICE Macro Model

5.2 FilterLab ${ }^{\circledR}$ Software

5.5 Application Notes

5.3 Microchip Advanced Part Selector (MAPS)

5.4 Analog Demonstration and Evaluation Boards

MCP6V61/1U/2/4

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

(MCP6V61, MCP6V61U)

(MCP6V62)

Legend:
*

Note
(MCP6V62)

Note:

(MCP6V64)

5-Lead Plastic Small Outine Transistor (LTY) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
	N	5		
Number of Pins	e	0.65 BSC		
Pitch	A	0.80	-	1.10
Overall Height	A2	0.80	-	1.00
Molded Package Thickness	A1	0.00	-	0.10
Standoff	E	1.80	2.10	2.40
Overall Width	E1	1.15	1.25	1.35
Molded Package Width	D	1.80	2.00	2.25
Overall Length	L	0.10	0.20	0.46
Foot Length	c	0.08	-	0.26
Lead Thickness	b	0.15	-	0.40
Lead Width				

Notes:

1. Dimensions D and E 1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

5-Lead Plastic Small Outine Transistor (LTY) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	C		2.20	
Contact Pad Width	X			0.45
Contact Pad Length	Y			0.95
Distance Between Pads	G	1.25		
Distance Between Pads	Gx	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	5		
Lead Pitch	e	0.95 BSC		
Outside Lead Pitch	e1	1.90 BSC		
Overall Height	A	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	E	2.20	-	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.10	-	0.60
Footprint	L1	0.35	-	0.80
Foot Angle	ϕ	0°	-	30°
Lead Thickness	c	0.08	-	0.26
Lead Width	b	0.20	-	0.51

Notes:

1. Dimensions D and $E 1$ do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
MAX				
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	C		2.80	
Contact Pad Width (X5)	X			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2091A

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits			MIN	
NOM		MAX		
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	C		4.40	
Overall Width	Z			5.85
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G1	2.95		
Distance Between Pads	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2111A

8-Lead Plastic Dual Flat, No Lead Package (MN) - $2 \times 3 \times 0.75 \mathrm{~mm}$ Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW
Microchip Technology Drawing No. C04-129C Sheet 1 of 2

8-Lead Plastic Dual Flat, No Lead Package (MN) - $2 \times 3 \times 0.75 m m$ Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension Limits		MINLIMETERS		
	N	NOM		
Number of Pins	e	0.50 BSC		
Pitch	A	0.70	0.75	0.80
Overall Height	A1	0.00	0.02	0.05
Standoff	A3	0.20 REF		
Contact Thickness	D	2.00 BSC		
Overall Length	E	3.00 BSC		
Overall Width	D 2	1.20	-	1.60
Exposed Pad Length	E2	1.20	-	1.60
Exposed Pad Width	b	0.20	0.25	0.30
Contact Width	L	0.25	0.30	0.45
Contact Length	K	0.20	-	-
Contact-to-Exposed Pad				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing No. C04-129C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS								
Dimension Limits							MIN		NOM	MAX
Contact Pitch	E	0.65 BSC								
Contact Pad Spacing	C1		5.90							
Contact Pad Width (X14)	X1			0.45						
Contact Pad Length (X14)	Y1			1.45						
Distance Between Pads	G	0.20								

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2087A

MCP6V61/1U/2/4

APPENDIX A: REVISION HISTORY

Revision B (September 2015)

Section 3.0 "Pin
Descriptions"
Section 6.0 "Packaging
Information"

Revision A (December 2014)

MCP6V61/1U/2/4

NOTES:

MCP6V61/1U/2/4

NOTES:

Note the following details of the code protection feature on Microchip devices:

Trademarks

Microchip

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	China - Xiamen	Austria - Wels
		China - Zhuhai	Denmark - Copenhagen
	Hong Kong		
		India - Bangalore	France - Paris
	Australia - Sydney		
Atlanta		India - New Delhi	Germany - Dusseldorf
			Germany - Karlsruhe
		India - Pune	
Austin, TX	China - Chengdu		Germany - Munich
		Japan - Osaka	
Boston	China - Chongqing		Italy - Milan
		Japan - Tokyo	
Chicago	China - Dongguan		Italy - Venice
		Korea - Daegu	
	China - Hangzhou		Netherlands - Drunen
Cleveland		Korea - Seoul	
	China - Hong Kong SAR		Poland - Warsaw
Dallas			Spain - Madrid
	China - Nanjing	Malaysia - Kuala Lumpur	
			Sweden - Stockholm
	China - Qingdao	Malaysia - Penang	
Detroit			UK - Wokingham
	China - Shanghai	Philippines - Manila	
Houston, TX			
Indianapolis	China - Shenyang	Singapore	
	China - Shenzhen	Taiwan - Hsin Chu	
Los Angeles			
	China - Wuhan	Taiwan - Kaohsiung	
New York, NY		Taiwan - Taipei	
San Jose, CA			
		Thailand - Bangkok	
Canada - Toronto			

