

NPN MJ1000 - MJ1001

COMPLEMENTARY POWER DARLINGTONS

The MJ1000, MJ1001 are silicon epitaxial-bas transistors in monolithic Darlington configuration, and are mounted in JEDEC TO-3 metal case. They are intended for use in power linear and switching applications. Their complementary PNP types are the MJ900 and MJ901 respectively. Compliance to RoHS

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings			Value	Unit	
V _{CBO}	Collector-Base Voltage		MJ1000	60	V	
• СВО	Collector-Dase voltage		MJ1001	80	v	
V	V _{CEO} Collector-Emitter Voltage	I _B =0	MJ1000	60	V	
♥ CEO		I _B =0	MJ1001	80	v	
V _{EBO}	Emitter-Base Voltage		MJ1000	5.0	V	
	Emilier-base vollage		MJ1001	5.0	v	
lc	Collector Current		MJ1000	- 8.0	А	
			MJ1001			
1_	Base Current		MJ1000	0.1	А	
I _B	Dase Current		MJ1001		~	
Ρτ	Power Dissipation	@ T _C < 25°	MJ1000	90	W	
FT FOWEI DIS	Fower Dissipation	Derate above 25°C	MJ1001	0.515	W/°C	
T lunction Tomporature			MJ1000			
TJ	Junction Temperature		MJ1001	-65 to +200	°C	
т.	Storage Temperature		MJ1000 -05 10 +200	-05 10 +200	C	
Τs		ge remperature				

THERMAL CHARACTERISTICS

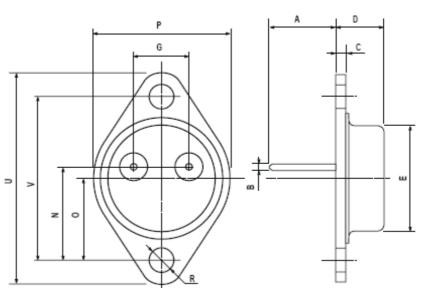
Symbol	Ratings	Value	Unit
R _{thJ-C}	Thermal Resistance, Junction to Case	1.94	°C/W

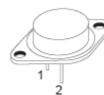
NPN MJ1000 - MJ1001

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Conditio	on(s)	Min	Тур	Max	Unit
V _{CEO}	Collector-Emitter	I _C =100 mA, I _B =0	MJ1000	60	-	-	V
- CEO	Breakdown Voltage (*)	.	MJ1001	80	-	-	, , , , , , , , , , , , , , , , , , ,
I _{CEO}	Collector Cutoff Current	V _{CE} =30 V, I _B =0	MJ1000	-	-	500	μA
-CEO		V _{CE} =40 V, I _B =0	MJ1001	-	-		μι
I _{EBO}	Emitter Cutoff Current	V_{BE} =5.0 V, I _C =0	MJ1000 MJ1001	-	-	2.0	mA
I _{CER}		V _{CB} =60 V, R _{BE} =1.0 kΩ	MJ1000	-	-	1.0	.0 mA .0
	Collector-Emitter Leakage Current	V _{CB} =80 V R _{BE} =1.0 kΩ	MJ1001	-	-	1.0	
		V _{CB} =60 V R _{BE} =1.0 kΩ T _C =150°C	MJ1000	-	-	5.0	
		V _{CB} =80 V R _{BE} =1.0 kΩ T _C =150°C	MJ1001	-	-		
	Collector-Emitter	I _C =3.0 A, I _B =2 mA	MJ1000 MJ1001	-	-	2.0	V
V _{CE(SAT)}	saturation Voltage (*)	I _C =8.0 A, I _B =40 mA	MJ1000 MJ1001	-	-	4.0	
V _F	Forward Voltage (pulse method)	I _F =3 A	MJ1000 MJ1001	-	1.8	-	V
V _{BE}	Base-Emitter Voltage (*)	I_{C} =3.0 A, V_{CE} =3.0 V	MJ1000 MJ1001	-	-	2.5	V
H _{FE}	DC Current Gain (*)	V_{CE} =3.0 V, I _C =3.0 A	MJ1000 MJ1001	1000	-	-	
		V_{CE} =3.0 V, I _C =4.0 A	MJ1000 MJ1001	750	-	-	-


(*) Pulse Width $\approx 300~\mu s,$ Duty Cycle $\angle~2.0\%$


NPN MJ1000 - MJ1001

MECHANICAL DATA CASE TO-3

DIMENSIONS (mm)				
	min	max		
A	11	13.10		
В	0.97	1.15		
С	1.5	1.65		
D	8.32	8.92		
F	19	20		
G	10.70	11.1		
N	16.50	17.20		
Р	25	26		
R	4	4.09		
U	38.50	39.30		
V	30	30.30		

Pin 1 :	Base
Pin 2 :	Emitter
Case :	Collector

Revised September 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com