

plerow[™] ALN2575T1 Internally Matched LNA Module

Features


- · S₂₁ = 23.7 dB @ 2560 MHz
 - = 23.3 dB @ 2590 MHz
- NF of 0.80 dB over Frequency
- · Unconditionally Stable
- Single 3V Supply
- · High OIP3 @ Low Current

Description

The plerow[™] ALN-series is the compactly designed surface-mount module for the use of the LNA with or without the following gain blocks in the infrastructure equipment of the mobile wireless (CDMA, GSM, PCS, PHS, WCDMA, DMB, WLAN, WiBro, WiMAX), GPS, satellite communication terminals, CATV and so on. It has an exceptional performance of low noise figure, high gain, high OIP3, and low bias current. The stability factor is always kept more than unity over the application band in order to ensure its unconditionally stable implementation to the application system environment. The surface-mount module package including the completed matching circuit and other components necessary just in case allows very simple and convenient implementation onto the system board in mass production level.

2-stage Single Type

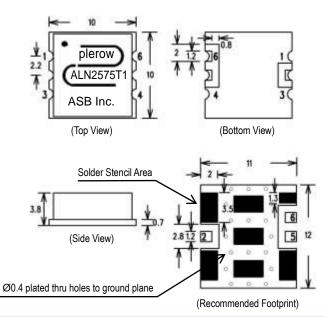
More Information

Website: www.asb.co.kr E-mail: sales@asb.co.kr

Tel: (82) 42-528-7223 Fax: (82) 42-528-7222

Specifications (in Production)

Typ. @ T = 25° C, V_s = 3 V, Freq. = 2575 MHz, Z_{o.sys} = 50 ohm

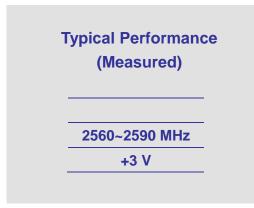

	· 7F ·	o · o , · o ·			
Parameter	Unit	Specifications			
Falameter	Unit	Min	Тур	Max	
Frequency Range	MHz	2560		2590	
Gain	dB	22.5	23.5		
Gain Flatness	dB		± 0.2	± 0.3	
Noise Figure	dB		0.80	0.85	
Output IP3 (1)	dBm	30	31		
S11 / S22 ⁽²⁾	dB			-18 / -10	
Output P1dB	dBm	14	15		
Switching Time (3)	μsec		-		
Supply Current	mA		70	80	
Supply Voltage	V		3		
Impedance	Ω		50		
Package Type & Size	mm	Surface Mount Type, 10Wx10Lx3.8H			

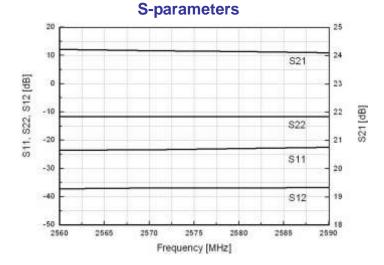
3) Switching time means the time that takes for output power to get stabilized to its final level after switching DC voltage from 0 V to Vs.

Outline Drawing (Unit: mm)

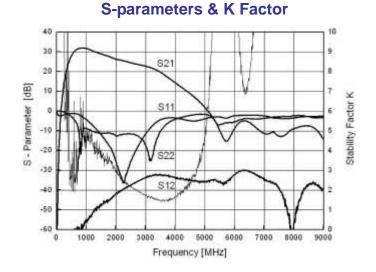
OIP3 is measured with two tones at an output power of 0 dBm / tone separated by 1 MHz.
S11/S22 (max) is the worst value within the frequency band.

Operating temperature is -40°C to +85°C.

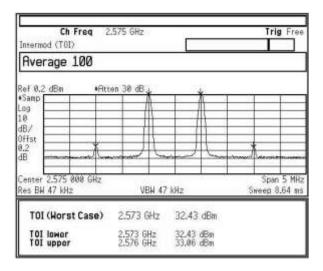

Pin Number	Function		
2	RF In		
5	RF Out		
6	+Vcc		
Others	Ground		


Note: 1. The number and size of ground via holes in a circuit board is critical for thermal RF grounding considerations.

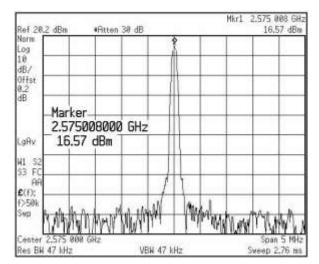
 We recommend that the ground via holes be placed on the bottom of all ground pins for better RF and thermal performance, as shown in the drawing at the left side.



plerow[™] ALN2575T1 Internally Matched LNA Module



Noise Figure

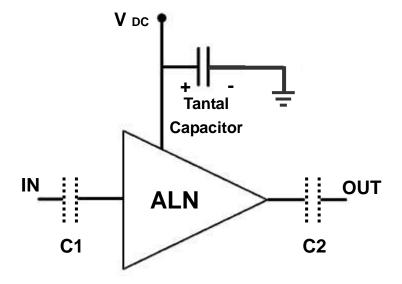


1%r1 2,56 6Hz 2,575 6Hz 3,59 6Hz 6,755 dB 6,752 dB 6,754 dB 24,555 85 9,88 NF1G Scale/ 1.886 dB å à 1,000 88 GHz BH 4 MHz Span 60,00 Loss Off onts 51 etite Att 8/-- dB Tcold 305.18 K Avgn 10 Con

OIP3

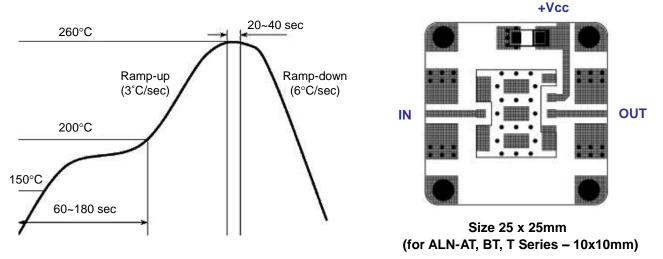
P1dB

ltem Voltage	S11 (dB)	S22 (dB)	S21 (dB)	G/F (dB)	NF (dB)	P1dB (dBm)	OIP3 (dBm)	Current (mA)
2.5	-13.32	-11.78	22.46	0.14	0.932	14.72	24.54	22
2.6	-14.95	-11.48	23.20	0.15	0.853	14.68	25.75	28
2.7	-16.73	-11.17	23.74	0.14	0.805	14.82	27.54	35
2.8	-18.28	-10.94	24.15	0.16	0.771	15.21	29.41	42
2.9	-19.49	-10.68	24.47	0.15	0.756	15.60	30.89	50
3.0	-20.22	-10.47	24.64	0.16	0.770	16.08	32.10	58
3.1	-20.63	-10.27	24.84	0.17	0.765	16.28	33.21	68
3.2	-20.56	-10.06	24.96	0.18	0.763	16.63	33.54	78
3.3	-20.30	-9.92	25.06	0.16	0.776	16.91	34.18	88
3.4	-19.91	-9.75	25.10	0.17	0.791	17.20	34.10	99
3.5	-19.36	-9.62	25.11	0.19	0.807	17.42	33.98	109


RF Performance with Voltage Change

RF Performance with Operating Temperature

ltem Temp.	S11 (dB)	S22 (dB)	S21 (dB)	G/F (dB)	NF (dB)	P1dB (dBm)	OIP3 (dBm)	Current (mA)
- 40°C	-18.39	-10.38	24.80	0.15	0.493	15.47	30.71	50
- 20°C	-18.93	-10.73	24.72	0.12	0.569	15.56	31.35	53
0°C	19.54	-10.63	24.70	0.15	0.652	15.54	31.74	54
25°C	-20.29	-10.68	24.49	0.17	0.776	15.69	32.10	59
40°C	-20.66	-10.55	24.51	0.16	0.840	15.66	32.11	60
60°C	-20.81	-10.60	24.41	0.18	0.940	15.68	32.15	63
80°C	-21.13	-10.54	24.29	0.16	1.049	15.72	32.02	68
100°C	-21.11	-10.53	24.15	0.18	1.193	15.74	31.90	72


Application Circuit

- The tantal capacitor is optional and for bypassing the AC noise introduced from the DC supply. The capacitance value may be determined by customer's DC supply status.
- 2) So-called DC blocking capacitors are always necessarily placed at the input and output port for allowing only the RF signal to pass and blocking the DC component in the signal. The DC blocking capacitors are included inside the LNA module. Therefore, C1 & C2 capacitors may not be necessary, but can be added just in case that the customer wants. The value of C1 & C2 is determined by considering the application frequency.

Recommended Soldering Reflow Process

Copyright ©2009-2017 ASB Inc. All rights reserved. Datasheet subject to change without notice. ASB assumes no responsibility for any errors which may appear in this datasheet. No part of the datasheet may be copied or reproduced in any form or by any means without the prior written consent of ASB.