[Obsolete product] Agilent has a new name Keysight Technologies.

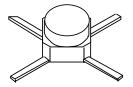
Keysight Technologies Inc. is the world's leading electronic measurement company, transforming today's measurement experience through innovations in wireless, modular, and software solutions. With its HP and Agilent legacy, Keysight delivers solutions in wireless communications, aerospace and defense and semiconductor markets with world-class platforms, software and consistent measurement science.

Agilent AT-42036 Up to 6 GHz Medium Power Silicon Bipolar Transistor

Data Sheet

Description

Agilent's AT-42036 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-42036 is housed in a cost effective surface mount 100 mil micro-X package. The 4 micron emitter-to-emitter pitch enables this transistor to be used in many different functions. The 20 emitter finger interdigitated geometry yields a medium sized transistor with impedances that are easy to match for low noise and medium power applications. This device is designed for use in low noise, wideband amplifier, mixer and


oscillator applications in the VHF, UHF, and microwave frequencies. An optimum noise match near 50 Ω up to 1 GHz, makes this device easy to use as a low noise amplifier.

The AT-42036 bipolar transistor is fabricated using Agilent's 10 GHz f_TSelf-Aligned-Transistor (SAT) process. The die is nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ionimplantation, self-alignment techniques, and gold metalization in the fabrication of this device.

Features

- High output power: 21.0 dBm typical P_{1 dB} at 2.0 GHz 20.5 dBm typical P_{1 dB} at 4.0 GHz
- High gain at 1 dB compression: 14.0 dB typical G_{1 dB} at 2.0 GHz 9.5 dB typical G_{1 dB} at 4.0 GHz
- Low noise figure: 1.9 dB typical NF_o at 2.0 GHz
- High gain-bandwidth product: 8.0 GHz typical f_T
- Cost effective ceramic microstrip package

36 micro-X Package

AT-42036 Absolute Maximum Ratings^[1]

Parameter	Units	Absolute Maximum	
Emitter-Base Voltage	V	1.5	
Collector-Base Voltage	V	20	
Collector-Emitter Voltage	V	12	
Collector Current	mA	80	
Power Dissipation ^[2,3]	mW	600	
Junction Temperature	°C	150	
Storage Temperature ^[4]	°C	-65 to 150	
	Emitter-Base Voltage Collector-Base Voltage Collector-Emitter Voltage Collector Current Power Dissipation ^[2,3] Junction Temperature	Emitter-Base Voltage V Collector-Base Voltage V Collector-Emitter Voltage V Collector Current mA Power Dissipation ^[2,3] mW Junction Temperature °C	

Thermal Resistance^[2,5]:

 $\theta_{jc} = 175^{\circ}C/W$

Notes:

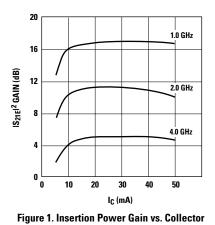
1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{\text{CASE}} = 25^{\circ}\text{C}.$

3. Derate at 5.7 mW/°C for $T_c > 95^{\circ}$ C. 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit.

5. The small spot size of this technique results in a higher, though more accurate determination of θ_{ic} than do alternate methods. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications


 $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions ^[1]	Frequency	Units	Min.	Тур.	Max.
S _{21E} ²	Insertion Power Gain; V_{CE} = 8 V, I_{C} = 35 mA	f = 2.0 GHz	dB	10.0	11.0	
210		f = 4.0 GHz			5.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression	f = 2.0 GHz	dBm		21.0	
	$V_{CE} = 8 V, I_{C} = 35 mA$	f = 4.0 GHz			20.5	
G _{1 dB}	1 dB Compressed Gain; V _{CE} = 8 V, I _C = 35 mA	f = 2.0 GHz	dB		14.0	
		f = 4.0 GHz			9.5	
NF ₀	Optimum Noise Figure: V _{CE} = 8 V, I _C = 10 mA	f = 2.0 GHz	dB		2.0	
		f = 4.0 GHz			3.0	
G _A	Gain @ NF ₀ ; V _{CE} = 8 V, I _C = 10 mA	f = 2.0 GHz	dB		13.5	
		f = 4.0 GHz			10.0	
f _T	Gain Bandwidth Product: V _{CE} = 8 V, I _C = 35 mA		GHz		8.0	
h _{FE}	Forward Current Transfer Ratio; V_{CE} = 8 V, I_{C} = 3	5 mA	_	30	150	270
I _{CBO}	Collector Cutoff Current; $V_{CB} = 8 V$	μΑ			0.2	
I _{EBO}	Emitter Cutoff Current; $V_{EB} = 1 V$		μΑ			2.0
C _{CB}	Collector Base Capacitance ^[1] : $V_{CB} = 8 V$, f = 1 M	Hz	pF		0.28	

Note:

1. For this test, the emitter is grounded.

AT-42036 Typical Performance, $\rm T_{A}$ = 25°C

Current and Frequency. $V_{CE} = 8 V$.

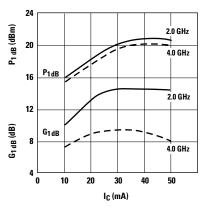


Figure 2. Output Power and 1 dB Compressed Gain vs. Collector Current and Frequency. $V_{\mbox{CE}}$ = 8 V.

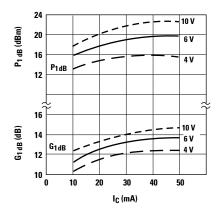
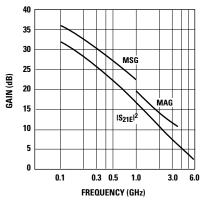



Figure 3. Output Power and 1 dB Compressed Gain vs. Collector Current and Voltage. f = 2.0 GHz.

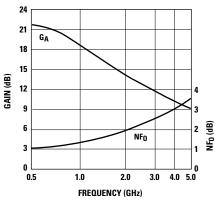
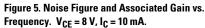



Figure 4. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. V_{CE} = 8 V, I_C = 35 mA.

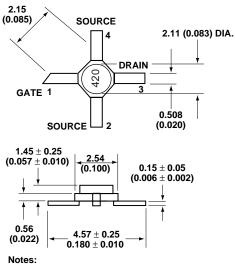
AT-42036 Typical Scattering Parameters,

Freq. GHz	S ₁₁ Mag.	S ₁₁ Ang.	S ₂₁ dB	S ₂₁ Mag.	S ₂₁ Ang.	S ₁₂ dB	S ₁₂ Mag.	S ₁₂ Ang.	S ₂₂ Mag.	S ₂₂ Ang.
0.1	.72	-46	28.3	26.09	152	-37.0	.014	73	.92	-14
0.5	.59	-137	20.9	11.13	102	-31.0	.028	44	.58	-27
1.0	.56	-171	15.4	5.91	80	-28.2	.039	47	.51	-29
1.5	.56	169	12.1	4.03	67	-26.6	.047	52	.50	-33
2.0	.58	155	9.7	3.06	55	-24.2	.062	55	.48	-38
2.5	.59	147	8.0	2.50	48	-22.6	.074	61	.47	-42
3.0	.61	137	6.5	2.10	38	-20.8	.092	65	.46	-51
3.5	.63	128	5.2	1.82	27	-19.6	.105	62	.47	-63
4.0	.63	117	4.0	1.60	17	-18.0	.126	57	.49	-72
4.5	.63	106	3.1	1.43	7	-16.5	.149	53	.51	-80
5.0	.64	93	2.3	1.30	-3	-15.4	.169	48	.52	-87
5.5	.67	79	1.5	1.19	-13	-14.3	.193	41	.51	-94
6.0	.72	70	0.6	1.07	-23	-13.4	.215	35	.46	-105

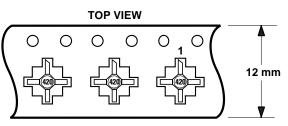
AT-42036 Typical Scattering Parameters, Common Emitter, Z_0 = 50 $\Omega,$ T_A = 25°C, V_{CE} = 8 V, I_C = 35 mA

Freq. GHz	S _{₁1} Mag.	S ₁₁ Ang.	S ₂₁ dB	S ₂₁ Mag.	S ₂₁ Ang.	S ₁₂ dB	S ₁₂ Mag.	S₁₂ Ang.	S ₂₂ Mag.	S ₂₂ Ang.
0.1	.50	-88	33.2	45.64	135	-42.0	.008	68	.77	-22
0.5	.52	-164	22.4	13.24	92	-32.8	.023	57	.45	-25
1.0	.53	174	16.6	6.75	76	-28.2	.039	63	.42	-26
1.5	.53	160	13.1	4.55	64	-25.6	.053	66	.41	-30
2.0	.55	148	10.8	3.45	53	-23.2	.069	65	.41	-36
2.5	.57	142	9.0	2.81	47	-21.6	.084	67	.39	-40
3.0	.59	134	7.5	2.37	37	-20.0	.101	64	.38	-49
3.5	.60	125	6.3	2.06	27	-18.4	.120	61	.39	-61
4.0	.60	116	5.2	1.81	17	-17.0	.141	57	.41	-71
4.5	.60	104	4.2	1.62	7	-16.0	.158	50	.43	-78
5.0	.61	92	3.4	1.47	-2	-14.9	.179	45	.44	-84
5.5	.64	79	2.6	1.35	-13	-14.1	.198	37	.43	-91
6.0	.69	70	1.7	1.21	-23	-13.2	.219	30	.38	-102

A model for this device is available in the DEVICE MODELS section.


AT-42036 Noise Parameters, $V_{CE}\!=$ 8 V, $I_{C}\!=$ 10 mA

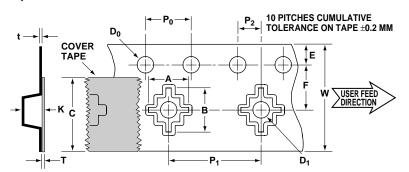
Freq. GHz	NF _O dB	Г _{орt} Mag	Г _{орt} Ang	R _N /50
0.1	1.0	.04	10	0.13
0.5	1.1	.04	66	0.12
1.0	1.3	.07	150	0.12
2.0	2.0	.20	-178	0.12
4.0	3.0	.51	-110	0.36


Part Number Ordering Information

Part Number	Devices per Reel	Reel Size		
AT-42036-TR1	1000	7″		
AT-42036-BLK	10	STRIP		

36 micro-X Package Dimensions

Device Orientation


1 INDICATES PIN 1 ORIENTATION.

1. Dimensions are in millimeters (inches)

2. Tolerances: in $.xxx = \pm 0.005$

mm .xx = ± 0.13

Tape Dimensions

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	Α	5.77 ± 0.10	$\textbf{0.227} \pm \textbf{0.004}$
	WIDTH	в	$\textbf{6.10} \pm \textbf{0.10}$	$\textbf{0.240} \pm \textbf{0.004}$
	DEPTH	ĸ	$\textbf{1.70} \pm \textbf{0.10}$	$\textbf{0.067} \pm \textbf{0.004}$
	PITCH	P1	$\textbf{8.00} \pm \textbf{0.10}$	$\textbf{0.314} \pm \textbf{0.004}$
	BOTTOM HOLE DIAMETER	D ₁	1.50 min.	0.059 min.
PERFORATION	DIAMETER	D ₀	1.50 + 0.10/-0.05	0.059 + 0.004/-0.002
	PITCH	P ₀	$\textbf{4.00} \pm \textbf{0.10}$	$\textbf{0.157} \pm \textbf{0.004}$
	POSITION	E	$\textbf{1.75} \pm \textbf{0.10}$	$\textbf{0.069} \pm \textbf{0.004}$
CARRIER TAPE	WIDTH	w	$\textbf{12.00} \pm \textbf{0.20}$	$\textbf{0.472} \pm \textbf{0.008}$
	THICKNESS	t	$\textbf{0.30} \pm \textbf{0.05}$	$\textbf{0.012} \pm \textbf{0.002}$
COVER TAPE	WIDTH	С	$\textbf{9.30} \pm \textbf{0.10}$	$\textbf{0.366} \pm \textbf{0.004}$
	TAPE THICKNESS	т	$\textbf{0.065} \pm \textbf{0.010}$	$\textbf{0.0026} \pm \textbf{0.0004}$
DISTANCE BETWEEN	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	$\textbf{5.50} \pm \textbf{0.05}$	$\textbf{0.217} \pm \textbf{0.002}$
CENTERLINE	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	$\textbf{2.00} \pm \textbf{0.05}$	$\textbf{0.079} \pm \textbf{0.002}$

www.semiconductor.agilent.com Data subject to change. Copyright © 2001 Agilent Technologies, Inc. Obsoletes 5980-1854E October 31, 2001 5988-4735EN

Agilent Technologies