Zibo Seno Electronic Engineering Co., Ltd.

1A1G - 1A7G

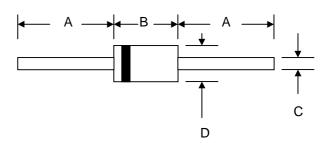
1.0A GLASS PASSIVATED RECTIFIER

Features

- Glass Passivated Die Construction
- Low Forward Voltage Drop
- High Current Capability
- High Reliability
- High Surge Current Capability

Mechanical Data

Case: R-1, Molded Plastic


 Terminals: Plated Leads Solderable per MIL-STD-202, Method 208

Polarity: Cathode Band

Weight: 0.181 grams (approx.)

Mounting Position: AnyMarking: Type Number

Lead Free: For RoHS / Lead Free Version

R-1						
Dim	Min	Max				
Α	20.0	_				
В	2.90	3.50				
С	0.53	0.64				
D	2.20	2.60				
All Dimensions in mm						

Maximum Ratings and Electrical Characteristics @TA=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	1A1G	1A2G	1A3G	1A4G	1A5G	1A6G	1A7G	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current (Note 1) @T _A = 75°C	lo	1.0						А	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	25						А	
Forward Voltage @I _F = 1.0A	VFM	1.0							V
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	IRM	5.0 50						μΑ	
Typical Junction Capacitance (Note 2)	Cj	15						pF	
Typical Thermal Resistance Junction to Ambient (Note 1)	RθJA	50					°C/W		
Operating Temperature Range	Tj	-65 to +150						°C	
Storage Temperature Range	Тѕтс	-65 to +150							°C

Note: 1. Leads maintained at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and Applied Reverse Voltage of 4.0V D.C.

Zibo Seno Electronic Engineering Co., Ltd.

1A1G – 1A7G

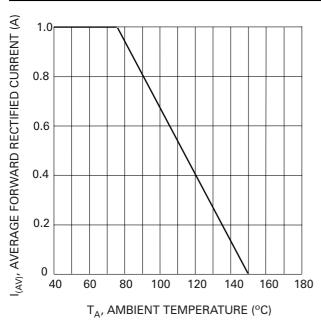
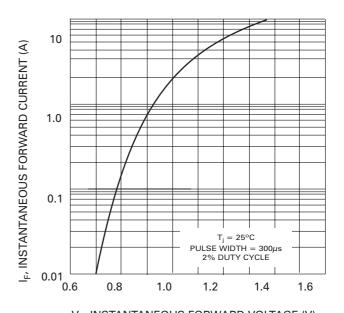



Fig. 1 Forward Current Derating Curve

V_F, INSTANTANEOUS FORWARD VOLTAGE (V)

Fig. 2 Typical Forward Characteristics

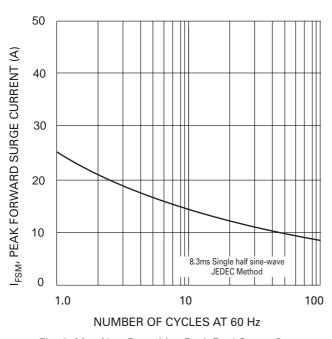


Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

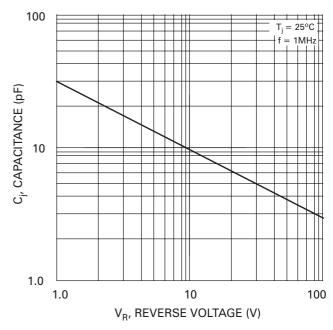


Fig. 4 Typical Junction Capacitance