AUIRFB4610 AUIRFS4610 HEXFET® Power MOSFET ### **Features** - Advanced Process Technology - Ultra Low On-Resistance - Enhanced dV/dT and dI/dT capability - 175°C Operating Temperature - Fast Switching - Repetitive Avalanche Allowed up to Tjmax - Lead-Free, RoHS Compliant - Automotive Qualified * | V _{(BR)DSS} | | 100V | |----------------------|------|--------------| | R _{DS(on)} | typ. | 11m Ω | | | max. | 14m Ω | | I _D | | 73A | | G | D | S | |------|-------|--------| | Gate | Drain | Source | # **Description** Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ## **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified. | | Parameter | Max. | Units | |---|---|----------------------------|-------| | I _D @ T _C = 25°C | Continuous Drain Current, V _{GS} @ 10V | 73 | | | I _D @ T _C = 100°C | Continuous Drain Current, V _{GS} @ 10V | 52 | Α | | I _{DM} | Pulsed Drain Current @ | 290 | ı | | P _D @T _C = 25°C | Maximum Power Dissipation | 190 | W | | | Linear Derating Factor | 1.3 | W/°C | | V_{GS} | Gate-to-Source Voltage | ± 20 | V | | E _{AS} | Single Pulse Avalanche Energy (Thermally limited) ② | 370 | mJ | | I _{AR} | Avalanche Current ① | See Fig. 14, 15, 16a, 16b, | Α | | E _{AR} | Repetitive Avalanche Energy ① | | mJ | | dV/dt | Peak Diode Recovery ③ | 7.6 | V/ns | | T _J | Operating Junction and | -55 to + 175 | | | T _{STG} | Storage Temperature Range | | °C | | | Soldering Temperature, for 10 seconds (1.6mm from case) | 300 | | | | Mounting torque, 6-32 or M3 screw | 10lbf·in (1.1N·m) | | | | | | | # Thermal Resistance | | Parameter | Тур. | Max. | Units | |-----------------|---|------|------|-------| | $R_{\theta JC}$ | Junction-to-Case ® | | 0.77 | | | $R_{\theta CS}$ | Case-to-Sink, Flat Greased Surface , TO-220 | 0.50 | | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient, TO-220 | | 62 | | | $R_{\theta JA}$ | Junction-to-Ambient (PCB Mount), D ² Pak ூ | | 40 | | HEXFET® is a registered trademark of International Rectifier. ^{*}Qualification standards can be found at http://www.irf.com/ # Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------------------------|--------------------------------------|------|-------|------|-------|--| | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | 100 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | 0.085 | | V/°C | Reference to 25°C, I _D = 1mA① | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | 11 | 14 | mΩ | $V_{GS} = 10V, I_D = 44A \oplus$ | | $V_{GS(th)}$ | Gate Threshold Voltage | 2.0 | | 4.0 | V | $V_{DS} = V_{GS}$, $I_D = 100\mu A$ | | gfs | Forward Transconductance | 73 | | | S | $V_{DS} = 50V, I_{D} = 44A$ | | R_G | Gate Input Resistance | | 1.5 | | Ω | f = 1MHz, open drain | | I _{DSS} | Drain-to-Source Leakage Current | | | 20 | | $V_{DS} = 100V, V_{GS} = 0V$ | | | | | | 250 | μΑ | $V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | | | 200 | nA | V _{GS} = 20V | | | Gate-to-Source Reverse Leakage | | | -200 | IIA | $V_{GS} = -20V$ | # Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | | |----------------------------|---|------|------|----------|-------|--| | | Parameter | Min. | Тур. | Max. | Units | Conditions | | Q_g | Total Gate Charge | | 90 | 140 | | I _D = 44A | | Q_{gs} | Gate-to-Source Charge | | 20 | | nC | $V_{DS} = 80V$ | | Q_{gd} | Gate-to-Drain ("Miller") Charge | | 36 | | | V _{GS} = 10V ⊕ | | t _{d(on)} | Turn-On Delay Time | | 18 | | | $V_{DD} = 65V$ | | t _r | Rise Time | | 87 | |] | I _D = 44A | | $t_{d(off)}$ | Turn-Off Delay Time | | 53 | | ns | $R_G = 5.6\Omega$ | | t _f | Fall Time | | 70 | | - | V _{GS} = 10V ⊕ | | C _{iss} | Input Capacitance | | 3550 | | | $V_{GS} = 0V$ | | C _{oss} | Output Capacitance | | 260 | | - | $V_{DS} = 50V$ | | C _{rss} | Reverse Transfer Capacitance | | 150 | | рF | f = 1.0MHz, See Fig. 5 | | C _{oss} eff. (ER) | Effective Output Capacitance (Energy Related) | | 330 | | | $V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$ ©, See Fig.11 | | C _{oss} eff. (TR) | Effective Output Capacitance (Time Related) | | 380 | | 1 | $V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $ | # **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | | |------------------|---------------------------|---------|--|------|-------|--|--| | I _s | Continuous Source Current | | | 73 | | MOSFET symbol | | | | (Body Diode) | | | 73 | A | showing the | | | I _{SM} | Pulsed Source Current | | | 290 | ^ | integral reverse | | | | (Body Diode) ① | | | 290 | | p-n junction diode. | | | V_{SD} | Diode Forward Voltage | | | 1.3 | V | $T_J = 25^{\circ}C, I_S = 44A, V_{GS} = 0V \oplus$ | | | t _{rr} | Reverse Recovery Time | | 35 | 53 | no | $T_{J} = 25^{\circ}C$ $V_{R} = 85V$, | | | | | | 42 | 63 | ns | $T_J = 125^{\circ}C$ $I_F = 44A$ | | | Q_{rr} | Reverse Recovery Charge | | 44 | 66 | _ ~_ | $T_J = 25^{\circ}C$ di/dt = 100A/ μ s ④ | | | | | | 65 | 98 | | $T_J = 125^{\circ}C$ | | | I _{RRM} | Reverse Recovery Current | | 2.1 | | Α | $T_J = 25^{\circ}C$ | | | t _{on} | Forward Turn-On Time | Intrins | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) | | | | | ## Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. - ② Limited by T_{Jmax} , starting T_J = 25°C, L = 0.39mH R_G = 25 Ω , I_{AS} = 44A, V_{GS} =10V. Part not recommended for use above this value. - $\label{eq:loss_def} \ensuremath{\Im} \ I_{SD} \leq 44A, \ di/dt \leq 660A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$ - 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$. - $^{\circ}$ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}. - $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}. - ② When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. - $\ensuremath{\$}\ R_{\theta}$ is measured at T_J approximately 90°C # Qualification Information[†] | | | | Automotive | | | |-------------------|------------------|---|------------------------------|--|--| | | | | (per AEC-Q101) ^{††} | | | | Qualification Lev | rel | Comments: This part number(s) pass
Automotive qualification. IR's Industrial a
Consumer qualification level is granted
extension of the higher Automotive level. | | | | | Moisture Sensiti | vity I evel | TO-220AB | N/A | | | | Moisture Serisiti | vity Level | D ² PAK MSL1 | | | | | | Machine Model | | Class M4(400V) | | | | | | (per AEC-Q101-002) | | | | | 505 | Human Body Model | Class H1C(2000V) | | | | | ESD | | | (per AEC-Q101-001) | | | | | Charged Device | | Class C3 (750V) | | | | Model | | (per AEC-Q101-005) | | | | | RoHS Compliant | RoHS Compliant | | Yes | | | [†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/ ^{††} Exceptions to AEC-Q101 requirements are noted in the qualification report. Fig 1. Typical Output Characteristics Fig 3. Typical Transfer Characteristics **Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage 4 Fig 2. Typical Output Characteristics Fig 4. Normalized On-Resistance vs. Temperature **Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com **Fig 7.** Typical Source-Drain Diode Forward Voltage **Fig 9.** Maximum Drain Current vs. Case Temperature **Fig 11.** Typical C_{OSS} Stored Energy www.irf.com Fig 8. Maximum Safe Operating Area Fig 10. Drain-to-Source Breakdown Voltage Fig 12. Maximum Avalanche Energy Vs. DrainCurrent Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Fig 14. Typical Avalanche Current vs. Pulsewidth Fig 15. Maximum Avalanche Energy vs. Temperature Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) - Avalanche failures assumption: - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type. - 2. Safe operation in Avalanche is allowed as long as neither T_{jmax} nor $I_{av\ (max)}$ is exceeded. - 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. - 4. P_{D (ave)} = Average power dissipation per single avalanche pulse. - 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). - 6. I_{av} = Allowable avalanche current. - 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15). - t_{av =} Average time in avalanche. - $D = Duty cycle in avalanche = t_{av} \cdot f$ $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) $$\begin{split} P_{D\;(ave)} = 1/2\;(\;1.3\text{·BV·I}_{av}) = \triangle T/\,Z_{thJC}\\ I_{av} = 2\triangle T/\,[1.3\text{·BV·Z}_{th}]\\ E_{AS\;(AR)} = P_{D\;(ave)}\cdot t_{av} \end{split}$$ Fig 16. Threshold Voltage Vs. Temperature Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 17 - Typical Recovery Current vs. di_f/dt Fig. 19 - Typical Stored Charge vs. di_f/dt Fig. 20 - Typical Stored Charge vs. dif/dt Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 22a. Unclamped Inductive Test Circuit Fig 23a. Switching Time Test Circuit Fig 24a. Gate Charge Test Circuit Fig 22b. Unclamped Inductive Waveforms Fig 23b. Switching Time Waveforms Fig 24b. Gate Charge Waveform # TO-220AB Package Outline Dimensions are shown in millimeters (inches) ### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994. - DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]. LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. - DIMENSION D & E DO NOT INCLUDE MOLD FLASH, WOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - DIMENSION b1 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION : INCHES. - THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 DIMENSIONS ING | 3 | DIMEN | SION | E2 | ΧЬ | I1 [| DEFINE | Α | ZONE | WHER | E STAN | ΛPI | |---|-------|------|------|-----|------|--------|-----|--------|--------|--------|-----| | | AND | SING | JLAT | ION | IRR | REGULA | RIT | IFS AF | RE ALL | OWFD. | | ## LEAD ASSIGNMENTS ### HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE IGBTs, CoPACK 1,- GATE 2,- COLLECTOR 3,- EMITTER ### DIODES 1.- ANODE/OPEN 2.- CATHODE 3.- ANODE | MILLIMETERS INCHES NOTES A 3.56 4.82 .140 .190 A1 0.51 1.40 .020 .055 A2 2.04 2.92 .080 .115 b1 0.38 1.01 .015 .038 5 b2 1.15 1.77 .045 .070 5 b3 1.15 1.73 .045 .068 6 4 7 7 7 7 7 7 7 7 7 7 1 1 0 1 1 0 6 6 6 6 6 6 6 6 | SYMBOL | | | | | | |--|---------|-------------|--------------|------|--------------|-------| | A 3.56 4.82 .140 .190 A1 0.51 1.40 .020 .055 A2 2.04 2.92 .080 .115 b 0.38 1.01 .015 .040 b1 0.38 0.96 .015 .070 b2 1.15 1.77 .045 .070 b3 1.15 1.73 .045 .068 c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC .100 BSC e1 5.08 | STINDOL | MILLIMETERS | | INC | HES | | | A1 0.51 1.40 .020 .055 A2 2.04 2.92 .080 .115 b 0.38 1.01 .015 .040 b1 0.38 0.96 .015 .038 5 b2 1.15 1.77 .045 .070 b3 1.15 1.73 .045 .068 c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.85 6.55 2.30 .270 7,8 | | MIN. | MAX. | MIN. | MAX. | NOTES | | AZ 2.04 2.92 .080 .115 b 0.38 1.01 .015 .040 b1 0.38 0.96 .015 .038 5 b2 1.15 1.77 .045 .068 .070 .070 .045 .068 .068 .068 .068 .014 .024 .024 .014 .024 .014 .024 .014 .024 .014 .022 .08 .014 .022 .08 .014 .022 .08 .014 .022 .08 .08 .014 .022 .08 .09 .014 .022 .08 .09 .014 .022 .08 .09 .08 .09 .014 .022 .09 .09 .02 .09 .02 .03 .09 | Α | 3.56 | 4.82 | .140 | .190 | | | b 0.38 1.01 .015 .040 b1 0.38 0.96 .015 .038 5 b2 1.15 1.77 .045 .070 5 b3 1.15 1.73 .045 .068 0.24 .024 .024 .024 .024 .024 .014 .022 5 D 14.22 16.51 .560 .650 4 .022 5 D1 8.38 9.02 .330 .355 .357 7 7 E 9.66 10.66 .380 .420 4.7 7 7 E1 8.38 8.89 .330 .350 7 7 e1 5.08 .100 BSC .100 BSC 7 e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 .580 L 12.70 14.73 .500 .580 </td <td>A1</td> <td>0.51</td> <td>1.40</td> <td>.020</td> <td>.055</td> <td></td> | A1 | 0.51 | 1.40 | .020 | .055 | | | b1 0.38 0.96 .015 .038 5 b2 1.15 1.77 .045 .070 5 b3 1.15 1.73 .045 .068 6 .068 .014 .024 .024 .014 .024 .014 .022 .014 .014 .022 .014 .014 .014 .014 <t< td=""><td>A2</td><td>2.04</td><td>2.92</td><td>.080</td><td>.115</td><td></td></t<> | A2 | 2.04 | 2.92 | .080 | .115 | | | b2 1.15 1.77 .045 .070 b3 1.15 1.73 .045 .068 c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.08 .200 BSC H1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 oP 3.54 4.08 .139 .161 0 2.54 3.42 .100 .135 | b | 0.38 | 1.01 | .015 | .040 | | | b3 1.15 1.73 .045 .068 c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .350 .550 e 2.54 BSC .100 BSC e1 5.08 .200 BSC H1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 oP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | ь1 | 0.38 | 0.96 | .015 | .038 | 5 | | c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.99 .350 .350 7 e 2.54 BSC .100 BSC .100 BSC 100 BSC e1 5.08 .200 BSC .200 BSC 7,8 L 12,70 14,73 .500 .580 .250 3 dP 3.54 4.08 .139 .161 0 2.54 3.42 .100 .135 | b2 | 1,15 | 1,77 | .045 | .070 | | | c1 0.36 0.56 .014 .022 5 D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 7 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | b3 | 1,15 | 1.73 | .045 | .068 | | | D 14.22 16.51 .560 .650 4 D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.666 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 .250 .300 .270 .580 .100 .100 .100 BSC | С | 0.36 | 0.61 | .014 | .024 | | | D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 oP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | c1 | 0.36 | 0.56 | .014 | .022 | 5 | | D1 8.38 9.02 .330 .355 D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 oP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | | | | | | | | D2 12.19 12.88 .480 .507 7 E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.08 .200 BSC L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | D | 14.22 | 16.51 | .560 | .650 | 4 | | E 9.66 10.66 .380 .420 4,7 E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 .580 L1 - 6.35 - .250 3 ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | D1 | 8.38 | 9.02 | .330 | .355 | | | E1 8.38 8.89 .330 .350 7 e 2.54 BSC .100 BSC .200 BSC e1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 L1 - 6.35 - .250 3 ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | D2 | 12,19 | 12,88 | .480 | .507 | 7 | | e 2,54 BSC .100 BSC e1 5.08 .200 BSC H1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 .580 L1 - 6.35 - .250 3 ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | E | 9.66 | 10.66 | .380 | .420 | 4,7 | | e1 5.08 .200 BSC H1 5.85 6.55 .230 .270 7,8 L 12.70 14.73 .500 .580 .50 .580 .250 3 L1 - 6.35 - .250 3 .250 3 .161 .135 .161 .135 .139 .161 .135 </td <td>E1</td> <td>8.38</td> <td>8.89</td> <td>.330</td> <td>.350</td> <td>7</td> | E1 | 8.38 | 8.89 | .330 | .350 | 7 | | H1 5.85 6.55 2.30 2.70 7,8
L 12.70 14.73 5.00 5.80
L1 - 6.35 - 2.50 3
ØP 3.54 4.08 .139 .161
Q 2.54 3.42 .100 .135 | е | | | | | | | L 12.70 14.73 .500 .580
L1 - 6.35250 3
ØP 3.54 4.08 .139 .161
Q 2.54 3.42 .100 .135 | e1 | 5. | 08 | .200 | BSC | | | L1 - 6.35250 3
ØP 3.54 4.08 .139 .161
Q 2.54 3.42 .100 .135 | H1 | 5.85 | 6.55 | .230 | .270 | 7,8 | | ØP 3.54 4.08 .139 .161 Q 2.54 3.42 .100 .135 | L | 12.70 | 14.73 | .500 | .580 | | | Q 2.54 3.42 .100 .135 | L1 | - | 6.35 | - | .250 | 3 | | | øΡ | 3.54 | 4.08 | .139 | .161 | | | ø 90°-93° 90°-93° | | 2.54 | 3.42 | .100 | .135 | | | | ø | 90°- | -93 ° | 90"- | -93 ° | | | | | | | | | | # TO-220AB Part Marking Information Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ # $D^2 Pak \ \ Package \ \ Outline \ \ (\hbox{\tiny Dimensions are shown in millimeters (inches)})$ ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 - 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H. 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1. 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY. - 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H. - 7, CONTROLLING DIMENSION: INCH. - 8, OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB. | S
Y
M
B | DIMENSIONS | | | | | | | | |------------------|------------|-------|------|------|-----------|--|--|--| | B | MILLIM | ETERS | INC | HES | N O T E S | | | | | L | MIN. | MAX. | MIN. | MAX. | S | | | | | Α | 4.06 | 4.83 | .160 | .190 | | | | | | A1 | 0.00 | 0.254 | .000 | .010 | | | | | | ь | 0.51 | 0.99 | .020 | .039 | | | | | | ь1 | 0.51 | 0.89 | .020 | .035 | 5 | | | | | b2 | 1,14 | 1.78 | .045 | .070 | | | | | | b3 | 1,14 | 1.73 | .045 | .068 | 5 | | | | | С | 0.38 | 0.74 | .015 | .029 | | | | | | c1 | 0.38 | 0,58 | .015 | .023 | 5 | | | | | c2 | 1.14 | 1.65 | .045 | .065 | | | | | | D | 8.38 | 9.65 | .330 | .380 | 3 | | | | | D1 | 6.86 | - | .270 | | 4 | | | | | E | 9.65 | 10.67 | .380 | .420 | 3,4 | | | | | E1 | 6.22 | - | .245 | | 4 | | | | | e | 2.54 | BSC | .100 | BSC | | | | | | Н | 14.61 | 15.88 | .575 | .625 | | | | | | L | 1,78 | 2.79 | .070 | .110 | | | | | | L1 | - | 1.65 | - | .066 | 4 | | | | | L2 | 1,27 | 1.78 | - | .070 | | | | | | L3 | 0.25 | BSC | .010 | BSC | | | | | | L4 | 4.78 | 5,28 | .188 | .208 | | | | | # LEAD ASSIGNMENTS ### **HEXFET** 1.- GATE 2. 4.- DRAIN 3.- SOURCE ### IGBTs, CoPACK 1.- GATE 2, 4.- COLLECTOR 3.- EMITTER ## DIODES 1.- ANODE * 2, 4.- CATHODE 3.- ANODE * PART DEPENDENT. # D²Pak Part Marking Information Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ # D²Pak (TO-263AB) Tape & Reel Information # NOTES: - 1. COMFORMS TO EIA-418. - CONTROLLING DIMENSION: MILLIMETER. - DIMENSION MEASURED @ HUB. - INCLUDES FLANGE DISTORTION @ OUTER EDGE. **Ordering Information** | Base part | Package Type | Standard Pack | | Complete Part Number | |------------|--------------|---------------------|----------|----------------------| | | | Form | Quantity | | | AUIRFB4610 | TO-220 | Tube | 50 | AUIRFB4610 | | AUIRFS4610 | D2Pak | Tube | 50 | AUIRFS4610 | | | | Tape and Reel Left | 800 | AUIRFS4610STRL | | | | Tape and Reel Right | 800 | AUIRFS4610STRR | ## IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ ## **WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105