

新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.

| Proc | duct I | List                |                                                               | 3        |
|------|--------|---------------------|---------------------------------------------------------------|----------|
| Des  | cripti | on                  |                                                               | 3        |
| Orde | ering  | Informatio          | אראראראראראראראראראראראראראראראראראראר                        | 3        |
| Feat | tures  |                     |                                                               | 3        |
| Pin  | Conf   | iguration .         |                                                               | 4        |
| Bloc | k Dia  | agram               |                                                               | 5        |
| Spe  | cial F | Function R          | egister (SFR)                                                 | 7        |
| Fun  | ction  | Descriptio          | n                                                             | 14       |
| 1.   | (      | General Fe          | atures                                                        | 14       |
|      | 11     | Embe                | added Flash                                                   | 14       |
|      | 12     | IO Pa               | nds                                                           | 14       |
|      | 13     | Instru              | iction timing Selection                                       | 14       |
|      | 1.0    | Clock               | Out Selection                                                 | 15       |
|      | 1.4    | DESI                |                                                               | 15       |
|      | 1.5    | 1 5 1               | - 1<br>Wardward DESET function                                | 15       |
|      |        | 1.0.1               | Software RESET function                                       | 15       |
|      |        | 1.5.2               |                                                               | 10       |
|      |        | 1.5.3               | Resel Sidlus                                                  | 10       |
|      |        | 1.5.4               |                                                               | 10       |
|      |        | 1.5.5               | Software Reset register (SWRES)                               | 17       |
|      |        | 1.5.6               | Example of software reset                                     | 17       |
|      | 1.6    | Clock               | S                                                             | 17       |
| 2.   | I      | nstruction          | Set                                                           | 18       |
| 3.   | N.     | Memory St           | ructure                                                       | 22       |
|      | 3.1    | Progi               | am Memory                                                     | 22       |
|      | 3.2    | Data                | Memory                                                        | 23       |
|      | 3.3    | Data                | memory - lower 128 byte (00h to 7Fh)                          | 23       |
|      | 3.4    | Data                | memory - higher 128 byte (80h to FFh)                         | 23       |
|      | 3.5    | Data                | memory - Expanded 1K Bytes ( 0000h ~ 03FFh)                   | 23       |
| 4.   | (      | CPU Engir           | 1e                                                            | 24       |
|      | 4.1    | Accu                | mulator                                                       | 24       |
|      | 4.2    | B Re                | gister                                                        | 24       |
|      | 4.3    | Prog                | am Status Word                                                | 25       |
|      | 4.4    | Stack               | Pointer                                                       | 25       |
|      | 4.5    | Data                | Pointer                                                       | 25       |
|      | 4.6    | Data                | Pointer 1                                                     | 26       |
|      | 4.7    | Clock               | control register                                              | 26       |
|      | 4.8    | Interf              | ace control register                                          | 27       |
|      | 4.9    | PAGE                | ESEL (Page Select)                                            | 27       |
| 5.   | (      | GPIO                | (* -9)                                                        | 29       |
| 6.   | N      | Multiplicati        | on Division unit                                              | 31       |
| 0.   | 61     | Oper                | ating registers of the MDU                                    | 31       |
|      | 6.2    | Oper                | ation of the MDU                                              | 32       |
|      | 0.2    | 621                 | First phase. I pading the MDx registers                       | 32       |
|      |        | 622                 | Second phase: Executing calculation                           | 32       |
|      |        | 623                 | Third phase: Executing calculation:                           | 32       |
|      | 63     | Norm                | alizing                                                       | 33       |
|      | 6.4    | Shifti              | alizii iy                                                     | 22       |
| 7    | 0.4    | Siniu<br>Fimor O on | 19<br>d Timor 1                                               | 27       |
| 1.   | 71     | Time                | (acuptor mode control register (TMOD)                         | 34<br>24 |
|      | 7.1    |                     | //ounter mode control register (TMOD)                         | ວ4<br>ວ⊑ |
|      | 1.Z    | i ime               | herel Frequency control register                              | 30       |
|      | 1.3    | Perip               | neral Frequency control register                              | 30       |
|      | 1.4    | IVIOde              |                                                               | 30<br>07 |
|      | 1.5    | Mode                |                                                               | 37       |
|      | 1.6    | Mode                | 2 (8-bit auto-reload Counter/Timer)                           | 37       |
| -    | 1.7    | Mode                | e 3 (Timer U acts as two independent 8 bit Timers / Counters) | 38       |
| 8.   |        | I imer 2 an         | d Capture Compare Unit                                        | 39       |



新茂國際科技股份有限公司 SyncMOS Technologies International,Inc.

|     | 8.1 Timer 2 function                                              | 43  |
|-----|-------------------------------------------------------------------|-----|
|     | 8.1.1 Timer mode                                                  | 43  |
|     | 8.1.2 Event counter mode                                          | 44  |
|     | 8.1.3 Gated timer mode                                            | 44  |
|     | 8.1.4 Reload of Timer 2                                           | 44  |
|     | 8.2 Compare function                                              | 45  |
|     | 8.2.1 Compare Mode 0                                              | 45  |
|     | 8.2.2 Compare Mode 1                                              | 46  |
|     | 8.3 Capture function                                              | 46  |
|     | 8.3.1 Capture Mode 0 (by Hardware)                                | 47  |
|     | 8.3.2 Capture Mode 1(by Software)                                 | 47  |
| 9.  | Serial interface                                                  |     |
| •.  | 9.1 Serial interface                                              | 49  |
|     | 911 Mode 0                                                        | 49  |
|     | 912 Mode 1                                                        | 50  |
|     | 913 Mode 2                                                        | 50  |
|     | 0.1.7 Mode 2                                                      | 50  |
|     | 9.2 Multiprocessor Communication of Serial Interface              | 50  |
|     | 0.2 Perinheral Frequency control register                         | 51  |
|     | 9.5 Feipheral Trequency control register                          | 51  |
|     | 0.4.1 Seriel interface modes 1 and 2                              | JZ  |
| 10  | 9.4.1 Serial interface modes 1 and 5                              |     |
| 10. |                                                                   |     |
| 11. | Interrupt                                                         | 57  |
| 40  | TI.1 Priority level structure                                     | 60  |
| 12. | Power Management Unit                                             | 62  |
|     | 12.1 Idle mode                                                    | 62  |
|     | 12.2 Stop mode                                                    | 62  |
| 13. | Pulse Width Modulation (PWM)                                      | 63  |
|     | 13.1 Dead Time                                                    | 70  |
|     | 13.2 FLTCONFIG (Fault Configure)                                  | 75  |
|     | 13.2.1 PWM Fault Inputs                                           | 75  |
|     | 13.2.2 Each of the fault inputs have two modes of operation       | 75  |
| 14. | IIC function                                                      | 77  |
| 15. | SPI Function - Serial Peripheral Interface                        | 82  |
| 16. | LVI & LVR – Low Voltage Interrupt and Low Voltage Reset           | 87  |
| 17. | 10-bit Analog-to-Digital Converter (ADC)                          | 89  |
| 18. | In-System Programming (Internal ISP)                              | 93  |
|     | 18.1 ISP service program                                          | 93  |
|     | 18.2 Lock Bit (N)                                                 | 93  |
|     | 18.3 Program the ISP Service Program                              | 94  |
|     | 18.4 Initiate ISP Service Program                                 | 94  |
|     | 18.5 ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC | 95  |
| 19. | Comparator                                                        | 98  |
| Ope | erating Conditions                                                | 102 |
| DC  | Characteristics                                                   | 102 |
| Cor | nparator Characteristics                                          | 104 |
| LVI | LVR Characteristics                                               | 104 |



# Product List

SM39A16M1U32,

# Description

The SM39A16M1 is a 1T (one machine cycle per clock) single-chip 8-bit microcontroller. It has 16K-byte embedded Flash for program, and executes all ASM51 instructions fully compatible with MCS-51

SM39A16M1 contains 1K+256B on-chip RAM, up to 30 GPIOs (32L package), various serial interfaces and many peripheral functions as described below. It can be programmed via writers. Its on-chip ICE is convenient for users in verification during development stage.

The high performance of SM39A16M1 can achieve complicated manipulation within short time. About one third of the instructions are pure 1T, and the average speed is 8 times of traditional 8051, the fastest one among all the 1T 51-series.Its excellent EMI and ESD characteristics are advantageous for many different applications.

# **Ordering Information**

SM39A16M1ihhkL YWW i: process identifier { U = 1.8V ~ 5.5V} hh: pin count k: package type postfix {as table below } L:PB Free identifier {No text is Non-PB free, "P" is PB free} Y: year WW: week

| Postfix | Package |
|---------|---------|
| V       | LQFP    |

# Features

- Main Flash ROM 16KB, 128B/page
- Working voltage 1.8V~5.5V
- High speed architecture of 1 clock/machine cycle runs up to 25MHz.
- 256 bytes SRAM as standard 8052, plus 1K bytes on-chip expandable SRAM.
- Dual 16-bit Data Pointers (DPTR0 & DPTR1).
- One serial peripheral interfaces in full duplex mode (UART).
  - Synchronous mode, fixed baud rate. Synchronous mode, fixed baud rate.
  - 8-bit UART mode, variable baud rate.
  - 9-bit UART mode, fixed baud rate.
  - 9-bit UART mode, variable baud rate.
- Additional Baud Rate Generator for Serial port.
- Three 16-bit Timer/Counters. (Timer 0, 1, 2).
- Programmable watchdog timer.
- One IIC interface. (Master/Slave mode).
- One SPI interface. (Master/Slave mode)
- 8-channel 14-bit PWM for motor control
- 3 On-Chip Comparator.
- 4-channel 16-bit compare / capture / load functions.
  - Comparator out can be CCU input source internally.
  - Noise filter with CCU input with sample frequency select.
- Auto-triggered by specific PWM interrupts.
- XTAL, Internal RC Oscillator 22.1184MHz
- ISP/IAP/ICP functions.
- EEPROM function.
- On-Chip in-circuit emulator (ICE) functions with On-Chip Debugger (OCD).
- Fast multiplication-division unit (MDU): 16\*16, 32/16, 16/16, 32-bit L/R shifting and 32-bit normalization.
- LVI/LVR (LVR deglitch 500ns)
- Enhance user code protection.
- Power management unit for IDLE and power down modes.



# **Pin Configuration**

## 32 Pin LQFP



### Notes :

- (1) The pin Reset/P3.4 factory default is GPIO (P3.4), user must keep this pin at low during power-up. User can configure it to reset by a flash programmer.
- (2) To avoid accidentally entering ISP-Mode(refer to section 18.4), care must be taken not asserting pulse signal at RXD P1.0 during power-up while P1.2,P1.3 or P1.4 are set to high.
- (3) To apply ICP function, OCI\_SDA/P3.2 and OCI\_SCL/P3.3 must be set to Bi-direction mode if they are configured as GPIO in system.



# **Block Diagram**





# **Pin Description**

| 32L<br>LQFP | Symbol                           | I/O | Description                                                                                                                  |
|-------------|----------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| 1           | P1.4/ADC4/SS/CC3                 | I/O | Bit 4 of port 1 & ADC input channel 4 & SPI interface Slave<br>Select pin & Timer 2 compare/capture Channel 3                |
| 2           | P1.5/ADC5/MOSI/F<br>LTB          | I/O | Bit 5 of port 1 & ADC input channel 5 & SPI interface Serial Data<br>Master Output or Slave Input pin & Fault B              |
| 3           | P1.6/ADC6/MISO/I<br>NT0          | I/O | Bit 6 of port 1 & ADC input channel 6 & SPI interface Serial Data<br>Master Input or Slave Output pin & External interrupt 0 |
| 4           | P1.7/ADC7/SPI_CL<br>K/T0         | I/O | Bit 7 of port 1 & ADC input channel 7 & SPI interface Clock pin & Timer 0 external input                                     |
| 5           | P3.0/RXD                         | I/O | Bit 0 of port 3 & Serial interface channel Receive data                                                                      |
| 6           | P3.1/TXD                         | I/O | Bit 1 of port 3 & Serial interface channel Transmit data or receive clock in mode 0                                          |
| 7           | P3.2/TRIGADC/IIC_<br>SDA/OCI_SDA | I/O | Bit 2 of port 3 & external pin to trigger ADC & IIC SDA pin & On-<br>Chip Instrumentation SDA                                |
| 8           | P3.3/IIC_SCL/OCI_<br>SCL         | I/O | Bit 3 of port 3 & IIC SCL pin & On-Chip Instrumentation SCL                                                                  |
| 9           | P3.4/RESET                       | I/O | Bit 4 of port 3 & Reset pin                                                                                                  |
| 10          | P3.5/XTAL2/CLKO<br>UT            | I/O | Bit 5 of port 3 & Crystal output & clock out                                                                                 |
| 11          | P3.6/XTAL1                       | I/O | Bit 6 of port 3 & Crystal input                                                                                              |
| 12          | VSS                              |     | Ground                                                                                                                       |
| 13          | P2.0<br>/Cmp0NIn/CC0             | I/O | Bit 0 of port 2 & Cmp0 Negative Input & Timer 2 compare/<br>capture Channel 0                                                |
| 14          | P2.1<br>/Cmp0PIn/CC1             | I/O | Bit 1 of port 2 & Cmp0 Positive Input & Timer 2 compare/capture<br>Channel 1                                                 |
| 15          | P2.2/Cmp1NIn/CC2                 | I/O | Bit 2 of port 2 & Cmp1 Negative Input & Timer 2 compare/<br>capture Channel 2                                                |
| 16          | P2.3/Cmp1PIn/CC3                 | I/O | Bit 3 of port 2 & Cmp1 Positive Input & Timer 2 compare/capture Channel 3                                                    |
| 17          | P2.4/Cmp2NIn                     | I/O | Bit 4 of port 2 & Cmp2 Negative Input                                                                                        |
| 18          | P2.5/Cmp2PIn                     | I/O | Bit 5 of port 2 & Cmp2 Positive Input                                                                                        |
| 19          | P2.6/FLTA                        | I/O | Bit 6 of port 2 & Fault_A                                                                                                    |
| 20          | P0.7/PWM7/T1                     | I/O | Bit 7 of port 0 & PWM Channel 7 & Timer 1 external input                                                                     |
| 22          | P0.5/PWM5                        | I/O | Bit 5 of port 0 & PWM Channel 5                                                                                              |
| 23          | P0.4/PWM4                        | I/O | Bit 4 of port 0 & PWM Channel 4                                                                                              |
| 24          | P0.3/PWM3                        | I/O | Bit 3 of port 0 & PWM Channel 3                                                                                              |
| 25          | P0.2/PWM2                        | I/O | Bit 2 of port 0 & PWM Channel 2                                                                                              |
| 26          | P0.1/PWM1                        | I/O | Bit 1 of port 0 & PWM Channel 1                                                                                              |
| 27          | P0.0/PWM0                        | 1/0 | Bit 0 of port 0 & PWM Channel 0                                                                                              |
| 28          | VDD                              |     | Power supply                                                                                                                 |
| 29          | P1.0/ADC0/RXD                    | I/O | Bit 0 of port 1 & ADC input channel 0 & Serial interface channel receive data                                                |
| 30          | P1.1/ADC1/TXD/CC<br>0            | I/O | Bit 1 of port 1 & ADC input channel 1 & Serial interface channel<br>Transmit data & Timer 2 compare/capture Channel 0        |
| 31          | P1.2/ADC2/T2/CC1                 | I/O | Bit 2 of port 1 & ADC input channel 2 & Timer 2 external input clock & Timer 2 compare/capture Channel 1                     |
| 32          | P1.3/ADC3/T2EX/C<br>C2           | I/O | Bit 3 of port 1 & ADC input channel 3 & Timer 2 capture trigger & Timer 2 compare/capture Channel 2                          |



# Special Function Register (SFR)

A map of the Special Function Registers is shown as below:

|         | In-direct access Mode |        |             |             |        |        |         |         |         |  |  |
|---------|-----------------------|--------|-------------|-------------|--------|--------|---------|---------|---------|--|--|
| Hex\Bin | X000                  | X001   | X010        | X011        | X100   | X101   | X110    | X111    | Bin/Hex |  |  |
| F8      | IICS                  | IICCTL | IICA1       | IICA2       | IICRWD | IICEBT | Cmp0CON | Cmp1CON | FF      |  |  |
| F0      | В                     | SPIC1  | SPIC2       | SPITXD      | SPIRXD | SPIS   | OpPin   | TAKEY   | F7      |  |  |
| E8      |                       | MD0    | MD 1        | MD 2        | MD 3   | MD 4   | MD 5    | ARCON   | EF      |  |  |
| E0      | ACC                   | ISPFAH | ISPFAL      | ISPFD       | ISPFC  |        | IvC     | SWRES   | E7      |  |  |
| D8      |                       | PFCON  | P3M0        | P3M1        |        |        |         |         | DF      |  |  |
| D0      | PSW                   | CCEN2  | P0M0        | P0M1        | P1M0   | P1M1   | P2M0    | P2M1    | D7      |  |  |
| C8      | T2CON                 | CCCON  | CRCL        | CRCH        | TL2    | TH2    | OpPin2  | Cmp2CON | CF      |  |  |
| C0      | IRCON                 | CCEN   | CCL1        | CCH1        | CCL2   | CCH2   | CCL3    | CCH3    | C7      |  |  |
| B8      | IEN1                  | IP1    | SRELH       |             |        |        | PAGESEL |         | BF      |  |  |
| B0      | P3                    |        |             |             |        |        | WDTC    | WDTK    | B7      |  |  |
| A8      | IEN0                  | IP0    | SRELL       | ADCC1       | ADCC2  | ADCDH  | ADCDL   | ADCCS   | AF      |  |  |
| A0      | P2                    | RSTS   | PWM<br>ADDR | PWM<br>DATA |        |        |         |         | A7      |  |  |
| 98      | SCON                  | SBUF   | IEN2        |             |        |        |         |         | 9F      |  |  |
| 90      | P1                    | AUX    | AUX2        |             |        |        |         | IRCON2  | 97      |  |  |
| 88      | TCON                  | TMOD   | TL0         | TL1         | TH0    | TH1    | CKCON   | IFCON   | 8F      |  |  |
| 80      | P0                    | SP     | DPL         | DPH         | DPL1   | DPH1   | RCON    | PCON    | 87      |  |  |
| Hex\Bin | X000                  | X001   | X010        | X011        | X100   | X101   | X110    | X111    | Bin/Hex |  |  |



| Page Mode: page0 |       |        |        |        |        |        |         |         |         |  |
|------------------|-------|--------|--------|--------|--------|--------|---------|---------|---------|--|
| Hex\Bin          | X000  | X001   | X010   | X011   | X100   | X101   | X110    | X111    | Bin/Hex |  |
| F8               | IICS  | IICCTL | IICA1  | IICA2  | IICRWD | IICEBT | Cmp0CON | Cmp1CON | FF      |  |
| F0               | В     | SPIC1  | SPIC2  | SPITXD | SPIRXD | SPIS   | OpPin   | TAKEY   | F7      |  |
| E8               |       | MD0    | MD1    | MD2    | MD3    | MD4    | MD5     | ARCON   | EF      |  |
| E0               | ACC   | ISPFAH | ISPFAL | ISPFD  | ISPFC  |        | lvC     | SWRES   | E7      |  |
| D8               |       | PFCON  | P3M0   | P3M1   |        |        |         |         | DF      |  |
| D0               | PSW   | CCEN2  | P0M0   | P0M1   | P1M0   | P1M1   | P2M0    | P2M1    | D7      |  |
| C8               | T2CON | CCCON  | CRCL   | CRCH   | TL2    | TH2    | OpPin2  | Cmp2CON | CF      |  |
| C0               | IRCON | CCEN   | CCL1   | CCH1   | CCL2   | CCH2   | CCL3    | CCH3    | C7      |  |
| B8               | IEN1  | IP1    | SRELH  |        |        |        | PAGESEL |         | BF      |  |
| B0               | P3    |        |        |        |        |        | WDTC    | WDTK    | B7      |  |
| A8               | IEN0  | IP0    | SRELL  | ADCC1  | ADCC2  | ADCDH  | ADCDL   | ADCCS   | AF      |  |
| A0               | P2    | RSTS   |        |        |        |        |         |         | A7      |  |
| 98               | SCON  | SBUF   | IEN2   |        |        |        |         |         | 9F      |  |
| 90               | P1    | AUX    | AUX2   |        |        |        |         | IRCON2  | 97      |  |
| 88               | TCON  | TMOD   | TL0    | TL1    | TH0    | TH1    | CKCON   | IFCON   | 8F      |  |
| 80               | P0    | SP     | DPL    | DPH    | DPL1   | DPH1   | RCON    | PCON    | 87      |  |
| Hex\Bin          | X000  | X001   | X010   | X011   | X100   | X101   | X110    | X111    | Bin/Hex |  |



| Page Mode: page1 |       |               |               |               |                |                 |                        |                |         |  |
|------------------|-------|---------------|---------------|---------------|----------------|-----------------|------------------------|----------------|---------|--|
| Hex\Bin          | X000  | X001          | X010          | X011          | X100           | X101            | X110                   | X111           | Bin/Hex |  |
| F8               |       | PWMTB<br>C0   | PWMTB<br>C1   | PWMOP<br>MOD  | TBCOUN<br>TERL | TBCOUN<br>TERH  |                        |                | FF      |  |
| F0               | В     | PERIOD<br>L   | PERIOD<br>H   | SEVTCM<br>PL  | SEVTCM<br>PH   | PWMEN           |                        | TAKEY          | F7      |  |
| E8               |       | DEADTI<br>ME0 | DEADTI<br>ME1 | DEADTI<br>ME2 | DEADTI<br>ME3  | PWMSE<br>V      | PWMTB<br>POST<br>SCALE |                | EF      |  |
| E0               | ACC   | ISPFAH        | ISPFAL        | ISPFD         | ISPFC          |                 | IvC                    | SWRES          | E7      |  |
| D8               |       | PFCON         |               | FLTCON<br>FIG | FLTNF          | PWMPO<br>LARITY | OVRIDEDI<br>S          | OVRIDEDA<br>TA | DF      |  |
| D0               | PSW   | DUTYOL        | DUTY0H        | DUTY1L        | DUTY1H         | DUTY2L          | DUTY2H                 | DUTY3L         | D7      |  |
| C8               | T2CON | DUTY3H        |               |               | TL2            | TH2             |                        |                | CF      |  |
| C0               | IRCON |               |               |               |                |                 |                        |                | C7      |  |
| B8               | IEN1  | IP1           | SRELH         |               | PWMINT<br>F    |                 | PAGESEL                |                | BF      |  |
| B0               | P3    |               |               |               |                |                 | WDTC                   | WDTK           | B7      |  |
| A8               | IEN0  | IP0           | SRELL         | ADCC1         | ADCC2          | ADCDH           | ADCDL                  | ADCCS          | AF      |  |
| A0               | P2    |               |               |               |                |                 |                        |                | A7      |  |
| 98               | SCON  | SBUF          | IEN2          |               |                |                 |                        |                | 9F      |  |
| 90               | P1    | AUX           | AUX2          |               |                |                 |                        | IRCON2         | 97      |  |
| 88               | TCON  | TMOD          | TL0           | TL1           | TH0            | TH1             | CKCON                  | IFCON          | 8F      |  |
| 80               | P0    | SP            | DPL           | DPH           | DPL1           | DPH1            | RCON                   | PCON           | 87      |  |
| Hex\Bin          | X000  | X001          | X010          | X011          | X100           | X101            | X110                   | X111           | Bin/Hex |  |

Note: Special Function Registers reset values and description for SM39A16M1.

|          | Loc      | ation: 80h ~       | 8Fh                | Reset    | -                                       |  |  |  |  |  |  |
|----------|----------|--------------------|--------------------|----------|-----------------------------------------|--|--|--|--|--|--|
| Register | Method 1 | Method 2<br>Page 0 | Method 2<br>Page 1 | value    | Description                             |  |  |  |  |  |  |
|          | SYSTEM   |                    |                    |          |                                         |  |  |  |  |  |  |
| SP       | 81h      | 81h                | 81h                | 07h      | Stack Pointer                           |  |  |  |  |  |  |
| ACC      | E0h      | E0h                | E0h                | 00h      | Accumulator                             |  |  |  |  |  |  |
| PSW      | D0h      | D0h                | D0h                | 00h      | Program Status Word                     |  |  |  |  |  |  |
| В        | F0h      | F0h                | F0h                | 00h      | B Register                              |  |  |  |  |  |  |
| DPL      | 82h      | 82h                | 82h                | 00h      | Data Pointer 0 low byte                 |  |  |  |  |  |  |
| DPH      | 83h      | 83h                | 83h                | 00h      | Data Pointer 0 high byte                |  |  |  |  |  |  |
| DPL1     | 84h      | 84h                | 84h                | 00h      | Data Pointer 1 low byte                 |  |  |  |  |  |  |
| DPH1     | 85h      | 85h                | 85h                | 00h      | Data Pointer 1 high byte                |  |  |  |  |  |  |
| AUX      | 91h      | 91h                | 91h                | 00h      | Auxiliary register                      |  |  |  |  |  |  |
| PCON     | 87h      | 87h                | 87h                | 40h      | Power Control                           |  |  |  |  |  |  |
| CKCON    | 8Eh      | 8Eh                | 8Eh                | 10h      | Clock control register                  |  |  |  |  |  |  |
| PAGESEL  | BEh      | BEh                | BEh                | 00h      | Page select                             |  |  |  |  |  |  |
|          | -        | INTE               | ERRUPT & PI        | RIORITY  |                                         |  |  |  |  |  |  |
| IRCON    | C0h      | C0h                | C0h                | 00h      | Interrupt Request Control Register      |  |  |  |  |  |  |
| IRCON2   | 97h      | 97h                | 97h                | 00h      | Interrupt Request Control Register 2    |  |  |  |  |  |  |
| IEN0     | A8h      | A8h                | A8h                | 00h      | Interrupt Enable Register 0             |  |  |  |  |  |  |
| IEN1     | B8h      | B8h                | B8h                | 00h      | Interrupt Enable Register 1             |  |  |  |  |  |  |
| IEN2     | 9Ah      | 9Ah                | 9Ah                | 00h      | Interrupt Enable Register 2             |  |  |  |  |  |  |
| IP0      | A9h      | A9h                | A9h                | 00h      | Interrupt Priority Register 0           |  |  |  |  |  |  |
| IP1      | B9h      | B9h                | B9h                | 00h      | Interrupt Priority Register 1           |  |  |  |  |  |  |
|          | -        | ÷                  | UART               |          | •                                       |  |  |  |  |  |  |
| PCON     | 87h      | 87h                | 87h                | 40h      | Power Control                           |  |  |  |  |  |  |
| AUX      | 91h      | 91h                | 91h                | 00h      | Auxiliary register                      |  |  |  |  |  |  |
| SCON     | 98h      | 98h                | 98h                | 00h      | Serial Port, Control Register           |  |  |  |  |  |  |
| SBUF     | 99h      | 99h                | 99h                | 00h      | Serial Port, Data Buffer                |  |  |  |  |  |  |
| SRELL    | AAh      | AAh                | AAh                | 00h      | Serial Port, Reload Register, low byte  |  |  |  |  |  |  |
| SRELH    | BAh      | BAh                | BAh                | 00h      | Serial Port, Reload Register, high byte |  |  |  |  |  |  |
| PFCON    | D9h      | D9h                | D9h                | 00h      | Peripheral Frequency control register   |  |  |  |  |  |  |
|          | <u>.</u> | -                  | ADC                | <u>-</u> |                                         |  |  |  |  |  |  |
| ADCC1    | ABh      | ABh                | ABh                | 00h      | ADC Control 1 Register                  |  |  |  |  |  |  |
| ADCC2    | ACh      | ACh                | ACh                | 08h      | ADC Control 2 Register                  |  |  |  |  |  |  |
| ADCDH    | ADh      | ADh                | ADh                | 00h      | ADC data high byte                      |  |  |  |  |  |  |
| ADCDL    | AEh      | AEh                | AEh                | 00h      | ADC data low byte                       |  |  |  |  |  |  |
| ADCCS    | AFh      | AFh                | AFh                | 00h      | ADC clock select                        |  |  |  |  |  |  |
|          |          |                    | WDT                |          |                                         |  |  |  |  |  |  |
| RSTS     | A1h      | A1h                |                    | 00h      | Reset status register                   |  |  |  |  |  |  |
| WDTC     | B6h      | B6h                | B6h                | 04h      | Watchdog timer control register         |  |  |  |  |  |  |



|                    | Loc      | ation: 80h ~       | 8Fh                | Reset |                                  |  |  |  |
|--------------------|----------|--------------------|--------------------|-------|----------------------------------|--|--|--|
| Register           | Method 1 | Method 2<br>Page 0 | Method 2<br>Page 1 | value | Description                      |  |  |  |
| WDTK               | B7h      | B7h                | B7h                | 00h   | Watchdog timer refresh key.      |  |  |  |
| TAKEY              |          | F7h                |                    | 00h   | Time Access Key register         |  |  |  |
| PWM                |          |                    |                    |       |                                  |  |  |  |
| ADCC2              | ACh      | ACh                | ACh                | 08h   | ADC control 2 Reg.               |  |  |  |
| PWMTBC0            |          |                    | F9h                | 00h   | PWM Time Base Control 0 Reg.     |  |  |  |
| PWMTBC1            |          |                    | FAh                | 10h   | PWM Time Base Control 1 Reg.     |  |  |  |
| PWMOPMOD           |          |                    | FBh                | 00h   | PWM Output Pair Mode Reg.        |  |  |  |
| TBCOUNTERL         |          |                    | FCh                | 00h   | Time Base Counter<br>(Low)       |  |  |  |
| TBCOUNTERH         |          |                    | FDh                | 00h   | Time Base Counter<br>(High)      |  |  |  |
| PERIODL            |          |                    | F1h                | FFh   | PWM Period (Low) Reg.            |  |  |  |
| PERIODH            |          |                    | F2h                | 3Fh   | PWM Period(High) Reg.            |  |  |  |
| SEVTCMPL           |          |                    | F3h                | FFh   | Special Event Compare Low Reg.   |  |  |  |
| SEVTCMPH           |          |                    | F4h                | 3Fh   | Special Event Compare High Reg.  |  |  |  |
| PWMEN              |          |                    | F5h                | 00h   | PWM Output Enable Reg.           |  |  |  |
| PWMSEV             |          |                    | EDh                | 00h   | PWM Special Event Reg.           |  |  |  |
| PWMTBPOST<br>SCALE |          |                    | EEh                | 00h   | PWM TIME BASE POST SCALE<br>Reg. |  |  |  |
| PWMINTF            |          |                    | BCh                | 00h   | PWM INT Flag Reg.                |  |  |  |
| DEADTIME0          |          |                    | E9h                | 00h   | Dead Time 0 Reg.                 |  |  |  |
| DEADTIME1          |          |                    | EAh                | 00h   | Dead Time 1 Reg.                 |  |  |  |
| DEADTIME2          |          |                    | EBh                | 00h   | Dead Time 2 Reg.                 |  |  |  |
| DEADTIME3          |          |                    | ECh                | 00h   | Dead Time 3 Reg.                 |  |  |  |
| FLTCONFIG          |          |                    | DBh                | 80h   | Fault Config Reg.                |  |  |  |
| FLTNF              |          |                    | DCh                | 00h   | Fault noise filter Reg.          |  |  |  |
| PWMPOLARITY        |          |                    | DDh                | FFh   | PWM Polarity Reg.                |  |  |  |
| OVRIDEDIS          |          |                    | DEh                | FFh   | Override Disable Reg.            |  |  |  |
| OVRIDEDATA         |          |                    | DFh                | 00H   | Override Data Reg.               |  |  |  |
| DUTY0L             |          |                    | D1h                | 00h   | PWM 0 Duty Low byte Reg.         |  |  |  |
| DUTY0H             |          |                    | D2h                | 00h   | PWM 0 Data High byte Reg.        |  |  |  |
| DUTY1L             |          |                    | D3h                | 00h   | PWM 1 Duty Low byte Reg.         |  |  |  |
| DUTY1H             |          |                    | D4h                | 00h   | PWM 1 Data High byte Reg.        |  |  |  |
| DUTY2L             |          |                    | D5h                | 00h   | PWM 2 Duty Low byte Reg.         |  |  |  |
| DUTY2H             |          |                    | D6h                | 00h   | PWM 2 Duty High byte Reg.        |  |  |  |
| DUTY3L             |          |                    | D7h                | 00h   | PWM 3 Duty Low byte Reg.         |  |  |  |
| DUTY3H             |          |                    | C9h                | 00h   | PWM 3 Duty High byte Reg.        |  |  |  |
| PWMADDR            | A2h      |                    |                    | 00h   | PWM Address Register             |  |  |  |
| PWMDATA            | A3h      |                    |                    | 00h   | PWM Data Register                |  |  |  |
|                    | <u>.</u> | <u>.</u>           | TIMER0/TIM         | ER1   | ÷                                |  |  |  |
| TCON               | 88h      | 88h                | 88h                | 00h   | Timer/Counter Control            |  |  |  |



|          | Loc      | ation: 80h ~       | 8Fh                | Reset          |                                               |  |
|----------|----------|--------------------|--------------------|----------------|-----------------------------------------------|--|
| Register | Method 1 | Method 2<br>Page 0 | Method 2<br>Page 1 | value          | Description                                   |  |
| TMOD     | 89h      | 89h                | 89h                | 00h            | Timer Mode Control                            |  |
| TL0      | 8Ah      | 8Ah                | 8Ah                | 00h            | Timer 0, low byte                             |  |
| TL1      | 8Bh      | 8Bh                | 8Bh                | 00h            | Timer 1, low byte                             |  |
| TH0      | 8Ch      | 8Ch                | 8Ch                | 00h            | Timer 0, high byte                            |  |
| TH1      | 8Dh      | 8Dh                | 8Dh                | 00h            | Timer 1, high byte                            |  |
| PFCON    | D9h      | D9h                | D9h                | 00h            | Peripheral Frequency control register         |  |
|          |          |                    | PCA(TIMER          | R2)            |                                               |  |
| AUX2     | 92h      | 92h                | 92h                | 00h            | Auxiliary 2 register                          |  |
| CCEN     | C1h      | C1h                |                    | 00h            | Compare/Capture Enable Register               |  |
| CCL1     | C2h      | C2h                |                    | 00h            | Compare/Capture Register 1, low byte          |  |
| CCH1     | C3h      | C3h                |                    | 00h            | Compare/Capture Register 1, high byte         |  |
| CCL2     | C4h      | C4h                |                    | 00h            | Compare/Capture Register 2, low byte          |  |
| CCH2     | C5h      | C5h                |                    | 00h            | Compare/Capture Register 2, high byte         |  |
| CCL3     | C6h      | C6h                |                    | 00h            | Compare/Capture Register 3, low byte          |  |
| CCH3     | C7h      | C7h                |                    | 00h            | Compare/Capture Register 3, high byte         |  |
| T2CON    | C8h      | C8h                | C8h                | 00h            | Timer 2 Control                               |  |
| CCCON    | C9h      | C9h                |                    | 00h            | Compare/Capture Control                       |  |
| CRCL     | CAh      | CAh                |                    | 00h            | Compare/Reload/Capture Register, low byte     |  |
| CRCH     | CBh      | CBh                |                    | 00h            | Compare/Reload/Capture Register,<br>high byte |  |
| TL2      | CCh      | CCh                | CCh                | 00h            | Timer 2, low byte                             |  |
| TH2      | CDh      | CDh                | CDh                | 00h            | Timer 2, high byte                            |  |
| CCEN2    | D1h      | D1h                |                    | 00h            | Compare/Capture Enable 2 register             |  |
|          | -        |                    | GPIO               | _              |                                               |  |
| P0       | 80h      | 80h                | 80h                | User<br>define | Port 0                                        |  |
| P1       | 90h      | 90h                | 90h                | FFh            | Port 1                                        |  |
| P2       | A0h      | A0h                | A0h                | 7Fh            | Port 2                                        |  |
| P3       | B0h      | B0h                | B0h                | 7Fh            | Port 3                                        |  |
| P0M0     | D2h      | D2h                |                    | User<br>define | Port 0 output mode 0                          |  |
| P0M1     | D3h      | D3h                |                    | 00h            | Port 0 output mode 1                          |  |
| P1M0     | D4h      | D4h                |                    | 00h            | Port 1 output mode 0                          |  |
| P1M1     | D5h      | D5h                |                    | 00h            | Port 1 output mode 1                          |  |
| P2M0     | D6h      | D6h                |                    | 00h            | Port 2 output mode 0                          |  |
| P2M1     | D7h      | D7h                |                    | 00h            | Port 2 output mode 1                          |  |
| P3M0     | DAh      | DAh                |                    | 00h            | Port 3 output mode 0                          |  |
| P3M1     | DBh      | DBh                |                    | 00h            | Port 3 output mode 1                          |  |
|          |          |                    | SP/IAP/EEPI        | ROM            |                                               |  |



|          | Loc      | ation: 80h ~       | 8Fh                | Reset |                                        |  |
|----------|----------|--------------------|--------------------|-------|----------------------------------------|--|
| Register | Method 1 | Method 2<br>Page 0 | Method 2<br>Page 1 | value | Description                            |  |
| IFCON    | 8Fh      | 8Fh                | 8Fh                | 00h   | Interface control register             |  |
| ISPFAH   | E1h      | E1h                | E1h                | FFh   | ISP Flash Address-High register        |  |
| ISPFAL   | E2h      | E2h                | E2h                | FFh   | ISP Flash Address-Low register         |  |
| ISPFD    | E3h      | E3h                | E3h                | FFh   | ISP Flash Data register                |  |
| ISPFC    | E4h      | E4h                | E4h                | 00h   | ISP Flash control register             |  |
| TAKEY    | F7h      | F7h                | F7h                | 00h   | Time Access Key register               |  |
|          |          | LV                 | I/LVR/SOFTI        | RESET |                                        |  |
| RSTS     | A1h      | A1h                |                    | 00h   | Reset status register                  |  |
| LVC      | E6h      | E6h                | E6h                | 20h   | Low voltage control register           |  |
| SWRES    | E7h      | E7h                | E7h                | 00h   | Software Reset register                |  |
| TAKEY    | F7h      | F7h                | F7h                | 00h   | Time Access Key register               |  |
|          | -        |                    | SPI                |       |                                        |  |
| SPIC1    | F1h      | F1h                |                    | 08h   | SPI control register 1                 |  |
| SPIC2    | F2h      | F2h                |                    | 00h   | SPI control register 2                 |  |
| SPITXD   | F3h      | F3h                |                    | 00h   | SPI Transmit data buffer               |  |
| SPIRXD   | F4h      | F4h                |                    | 00h   | SPI receive data buffer                |  |
| SPIS     | F5h      | F5h                |                    | 40h   | SPI status register                    |  |
|          |          |                    | IIC                |       |                                        |  |
| IICS     | F8h      | F8h                |                    | 00h   | IIC status register                    |  |
| IICCTL   | F9h      | F9h                |                    | 04h   | IIC control register                   |  |
| IICA1    | FAh      | FAh                |                    | A0h   | IIC channel 1 Address 1 register       |  |
| IICA2    | FBh      | FBh                |                    | 60h   | IIC channel 1 Address 2 register       |  |
| IICRWD   | FCh      | FCh                |                    | 00h   | IIC channel 1 Read / Write Data buffer |  |
| IICEBT   | FDh      | FDh                |                    | 00h   | IIC Enable Bus Transaction register    |  |
|          | -        | -                  | OPA                | -     |                                        |  |
| OPPIN    | F6h      | F6h                |                    | 00h   | Comparator Pin Select register         |  |
| OPPIN2   | CEh      | CEh                |                    | 00h   | Comparator Pin Select2 register        |  |
| CMP0CON  | FEh      | FEh                |                    | 00h   | Comparator 0 Control register          |  |
| CMP1CON  | FFh      | FFh                |                    | 00h   | Comparator 1 Control register          |  |
| CMP2CON  | CFh      | CFh                |                    | 00h   | Comparator 2 Control register          |  |



# **Function Description**

## 1. General Features

SM39A16M1 is an 8-bit micro-controller. All of its functions and the detailed meanings of SFR will be given in the following sections.

### 1.1 Embedded Flash

The program can be loaded into the embedded 16KB Flash memory via its writer or In-System Programming (ISP). The high-quality Flash suitable for re-programming and data recording as EEPROM.

### 1.2 IO Pads

The SM39A16M1 has Four I/O ports: Port 0, Port 1, Port 2 and Port 3. Ports 0, 1 are 8-bit ports and Port 2, 3 are 7-bit ports. These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. As description in section 5.

All the pads for P0, P1, P2 and P3 are with slew rate to reduce EMI. The IO pads can withstand 4KV ESD in human body mode guaranteeing the SM39A16M1's quality in high electro-static environments.

The RESET Pin can define as General I/O P3.4 when user use Internal RESET.

The XTAL2 and XTAL1 can define as P3.5 and P3.6 by writer or ISP, when user use internal OSC as system clock. When user use external OSC as system clock and input into XTAL1, Only XTAL2 can be defined as P3.5.

### **1.3 Instruction timing Selection**

The conventional 52-series MCUs are 12T, i.e., 12 oscillator clocks per machine cycle. SM39A16M1 is a 1T to 8T MCU, i.e., its machine cycle is one-clock to eight-clock. In the other words, it can execute one instruction within one clock to only eight clocks.

| Mnemonic: CKCON Address: 8Eh |  |          |  |   |   |       |         |     |  |  |
|------------------------------|--|----------|--|---|---|-------|---------|-----|--|--|
| 7 6 5 4 3 2 1 0              |  |          |  |   |   |       |         |     |  |  |
| -                            |  | ITS[2:0] |  | - | - | CLKOU | JT[1:0] | 10H |  |  |

ITS: Instruction timing select.

| ITS [2:0]   | Instruction timing |
|-------------|--------------------|
| 000         | 1T mode            |
| 001         | 2T mode (default)  |
| 010         | 3T mode            |
| 011         | 4T mode            |
| 100         | 5T mode            |
| 101         | 6T mode            |
| 110 7T mode |                    |
| 111         | 8T mode            |

The default is in 2T mode, and it can be changed to another Instruction timing mode if CKCON [6:4] (at address 8Eh) is change any time. Not every instruction can be executed with one machine cycle. The exact machine cycle number for all the instructions are given in the next section.



## 1.4 Clock Out Selection

The SM39A16M1 can Generator a clock out signal at P3.5, when user use Oscillator (XTAL1 as clock input) or internal OSC as system clock. The CKCON [1:0] (at address 8Eh) can change any time.

| CLKOUT: | Clock | output | select. |
|---------|-------|--------|---------|
|---------|-------|--------|---------|

| CKCON [1:0] | Mode.         |
|-------------|---------------|
| 00          | GPIO(default) |
| 01          | Fosc          |
| 10          | Fosc/2        |
| 11          | Fosc/4        |

It can be used when the system clock is the internal RC oscillator.

### 1.5 RESET

### 1.5.1 Hardware RESET function

SM39A16M1 provides Internal reset circuit inside, the Internal reset time can set by writer or ISP.

| Internal Reset time |
|---------------------|
| 25ms (default)      |
| 200ms               |
| 100ms               |
| 50ms                |
| 16ms                |
| 8ms                 |
| 4ms                 |

### 1.5.2 Software RESET function

SM39A16M1 provides one software reset mechanism to reset whole chip. To perform a software reset, the firmware must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the Software Reset register (SWRES) write attribute. After SWRES register obtain the write authority, the firmware can write FFh to the SWRES register. The hardware will decode a reset signal that "OR" with the other hardware reset. The SWRES register is self-reset at the end of the software reset procedure.

| Mnemonic                | Description                 | Dir. | Bit 7 | Bit 6         | Bit 5      | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RST |
|-------------------------|-----------------------------|------|-------|---------------|------------|-------|-------|-------|-------|-------|-----|
| Software Reset function |                             |      |       |               |            |       |       |       |       |       |     |
| RSTS                    | Reset status<br>register    | A1h  | -     | LVRLP<br>INTF | LVRLP<br>F | PDRF  | WDTF  | SWRF  | LVRF  | PORF  | 00H |
| TAKEY                   | Time Access<br>Key register | F7h  |       | TAKEY [7:0]   |            |       |       |       |       | 00H   |     |
| SWRES                   | Software Reset<br>register  | E7h  |       | SWRES [7:0]   |            |       |       |       |       | 00H   |     |



### 1.5.3 Reset status

| Mnemonic: RSTS |   |               |        |      |      |      |      | Addre | ess: A1h |
|----------------|---|---------------|--------|------|------|------|------|-------|----------|
|                | 7 | 6             | 5      | 4    | 3    | 2    | 1    | 0     | Reset    |
|                | - | LVRLP<br>INTF | LVRLPF | PDRF | WDTF | SWRF | LVRF | PORF  | 00H      |

LVRLPINTF: "Internal" Low voltage reset flag.

When MCU is reset by LVR\_LP\_INT, LVRLPINTF flag will be set to one by hardware. This flag clear by software.

LVRLPF: Low voltage reset(Low Power) flag.

When MCU is reset by LVR(Low Power), LVRLPF flag will be set to one by hardware. This flag clear by software.

PDRF: Pad reset flag.

When MCU is reset by reset pad, PDRF flag will be set to one by hardware. This flag clear by software.

WDTF: Watchdog timer reset flag.

When MCU is reset by watchdog, WDTF flag will be set to one by hardware. This flag clear by software.

SWRF: Software reset flag.

When MCU is reset by software, SWRF flag will be set to one by hardware. This flag clear by software.

LVRF: Low voltage reset flag.

When MCU is reset by LVR, LVRF flag will be set to one by hardware. This flag clear by software.

PORF: Power on reset flag.

When MCU is reset by POR, PORF flag will be set to one by hardware. This flag clear by software.

### 1.5.4 Time Access Key register (TAKEY)

| Mnemor | nic: TAKE | ΞY |      |         |   |   | Add | ress:F7H |
|--------|-----------|----|------|---------|---|---|-----|----------|
| 7      | 6         | 5  | 4    | 3       | 2 | 1 | 0   | Reset    |
|        |           |    | TAKE | Y [7:0] |   |   |     | 00H      |

Software reset register (SWRES) is read-only by default, software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the SWRES register write attribute.

That is:

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah



### 1.5.5 Software Reset register (SWRES)

| Mner | nonic: S  | WRES     |            |             |            |             | Ad           | dress:E7H       |               |
|------|-----------|----------|------------|-------------|------------|-------------|--------------|-----------------|---------------|
| 7    | 6         | 5        | 4          | 3           | 2          | 1           | 0            | Reset           |               |
|      |           |          | SW         | RES [7:0]   |            |             |              | 00H             |               |
| SWRE | ES [7:0]: | Software | reset regi | ster bit. T | hese 8-bit | is self-res | set at the e | end of the rese | et procedure. |
|      |           | SWRES    | [7:0] = FF | h, softwar  | e reset.   |             |              |                 |               |

SWRES [7:0] = 00h ~ FEh, MCU no action.

### 1.5.6 Example of software reset

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah ; enable SWRES write attribute MOV SWRES, #0FFh ; software reset MCU

### 1.6 Clocks

The default clock is the 22.1184MHz Internal OSC. This clock is used during the initialization stage. The major work of the initialization stage is to determine the clock source used in normal operation.

The internal clock sources are from the internal OSC with difference frequency division As shown in Table 1-1, the clock source can set by writer or ICP.

There may be having a little variance in the frequency from the internal OSC. The max variance as giving in Table 1-2.

Table 1-2: Temperature with variance

| Temperature | Max Variance |
|-------------|--------------|
| <b>25</b> ℃ | ±2%          |



## 2. Instruction Set

All SM39A16M1 instructions are binary code compatible and perform the same functions as they do with the industry standard 8051. The following tables give a summary of the instruction set cycles of the SM39A16M1 Microcontroller core. As given in Table

| Mnemonic       | Description                                 | Code  | Bytes | Cycles |
|----------------|---------------------------------------------|-------|-------|--------|
| ADD A,Rn       | Add register to accumulator                 | 28-2F | 1     | 1      |
| ADD A, direct  | Add direct byte to accumulator              | 25    | 2     | 2      |
| ADD A,@Ri      | Add indirect RAM to accumulator             | 26-27 | 1     | 2      |
| ADD A,#data    | Add immediate data to accumulator           | 24    | 2     | 2      |
| ADDC A,Rn      | Add register to accumulator with carry flag | 38-3F | 1     | 1      |
| ADDC A, direct | Add direct byte to A with carry flag        | 35    | 2     | 2      |
| ADDC A,@Ri     | Add indirect RAM to A with carry flag       | 36-37 | 1     | 2      |
| ADDC A,#data   | Add immediate data to A with carry flag     | 34    | 2     | 2      |
| SUBB A,Rn      | Subtract register from A with borrow        | 98-9F | 1     | 1      |
| SUBB A, direct | Subtract direct byte from A with borrow     | 95    | 2     | 2      |
| SUBB A,@Ri     | Subtract indirect RAM from A with borrow    | 96-97 | 1     | 2      |
| SUBB A,#data   | Subtract immediate data from A with borrow  | 94    | 2     | 2      |
| INC A          | Increment accumulator                       | 04    | 1     | 1      |
| INC Rn         | Increment register                          | 08-0F | 1     | 2      |
| INC direct     | Increment direct byte                       | 05    | 2     | 3      |
| INC @Ri        | Increment indirect RAM                      | 06-07 | 1     | 3      |
| INC DPTR       | Increment data pointer                      | A3    | 1     | 1      |
| DEC A          | Decrement accumulator                       | 14    | 1     | 1      |
| DEC Rn         | Decrement register                          | 18-1F | 1     | 2      |
| DEC direct     | Decrement direct byte                       | 15    | 2     | 3      |
| DEC @Ri        | Decrement indirect RAM                      | 16-17 | 1     | 3      |
| MUL AB         | Multiply A and B                            | A4    | 1     | 5      |
| DIV            | Divide A by B                               | 84    | 1     | 5      |
| DA A           | Decimal adjust accumulator                  | D4    | 1     | 1      |

Table 2-1: Arithmetic operations



| Table 2-2: Logic operations |                                            |       |       |        |  |  |  |
|-----------------------------|--------------------------------------------|-------|-------|--------|--|--|--|
| Mnemonic                    | Description                                | Code  | Bytes | Cycles |  |  |  |
| ANL A,Rn                    | AND register to accumulator                | 58-5F | 1     | 1      |  |  |  |
| ANL A, direct               | AND direct byte to accumulator             | 55    | 2     | 2      |  |  |  |
| ANL A,@Ri                   | AND indirect RAM to accumulator            | 56-57 | 1     | 2      |  |  |  |
| ANL A,#data                 | AND immediate data to accumulator          | 54    | 2     | 2      |  |  |  |
| ANL direct,A                | AND accumulator to direct byte             | 52    | 2     | 3      |  |  |  |
| ANL direct,#data            | AND immediate data to direct byte          | 53    | 3     | 4      |  |  |  |
| ORL A,Rn                    | OR register to accumulator                 | 48-4F | 1     | 1      |  |  |  |
| ORL A, direct               | OR direct byte to accumulator              | 45    | 2     | 2      |  |  |  |
| ORL A,@Ri                   | OR indirect RAM to accumulator             | 46-47 | 1     | 2      |  |  |  |
| ORL A,#data                 | OR immediate data to accumulator           | 44    | 2     | 2      |  |  |  |
| ORL direct,A                | OR accumulator to direct byte              | 42    | 2     | 3      |  |  |  |
| ORL direct,#data            | OR immediate data to direct byte           | 43    | 3     | 4      |  |  |  |
| XRL A,Rn                    | Exclusive OR register to accumulator       | 68-6F | 1     | 1      |  |  |  |
| XRL A, direct               | Exclusive OR direct byte to accumulator    | 65    | 2     | 2      |  |  |  |
| XRL A,@Ri                   | Exclusive OR indirect RAM to accumulator   | 66-67 | 1     | 2      |  |  |  |
| XRL A,#data                 | Exclusive OR immediate data to accumulator | 64    | 2     | 2      |  |  |  |
| XRL direct,A                | Exclusive OR accumulator to direct byte    | 62    | 2     | 3      |  |  |  |
| XRL direct,#data            | Exclusive OR immediate data to direct byte | 63    | 3     | 4      |  |  |  |
| CLR A                       | Clear accumulator                          | E4    | 1     | 1      |  |  |  |
| CPL A                       | Complement accumulator                     | F4    | 1     | 1      |  |  |  |
| RL A                        | Rotate accumulator left                    | 23    | 1     | 1      |  |  |  |
| RLC A                       | Rotate accumulator left through carry      | 33    | 1     | 1      |  |  |  |
| RR A                        | Rotate accumulator right                   | 03    | 1     | 1      |  |  |  |
| RRC A                       | Rotate accumulator right through carry     | 13    | 1     | 1      |  |  |  |
| SWAP A                      | Swap nibbles within the accumulator        | C4    | 1     | 1      |  |  |  |



| Mnemonic             | Description                                    | Code  | Bytes | Cycles |
|----------------------|------------------------------------------------|-------|-------|--------|
| MOV A,Rn             | Move register to accumulator                   | E8-EF | 1     | 1      |
| MOV A, direct        | Move direct byte to accumulator                | E5    | 2     | 2      |
| MOV A,@Ri            | Move indirect RAM to accumulator               | E6-E7 | 1     | 2      |
| MOV A,#data          | Move immediate data to accumulator             | 74    | 2     | 2      |
| MOV Rn,A             | Move accumulator to register                   | F8-FF | 1     | 2      |
| MOV Rn, direct       | Move direct byte to register                   | A8-AF | 2     | 4      |
| MOV Rn,#data         | Move immediate data to register                | 78-7F | 2     | 2      |
| MOV direct,A         | Move accumulator to direct byte                | F5    | 2     | 3      |
| MOV direct,Rn        | Move register to direct byte                   | 88-8F | 2     | 3      |
| MOV direct1, direct2 | Move direct byte to direct byte                | 85    | 3     | 4      |
| MOV direct,@Ri       | Move indirect RAM to direct byte               | 86-87 | 2     | 4      |
| MOV direct,#data     | Move immediate data to direct byte             | 75    | 3     | 3      |
| MOV @Ri,A            | Move accumulator to indirect RAM               | F6-F7 | 1     | 3      |
| MOV @Ri,direct       | Move direct byte to indirect RAM               | A6-A7 | 2     | 5      |
| MOV @Ri,#data        | Move immediate data to indirect RAM            | 76-77 | 2     | 3      |
| MOV DPTR,#data16     | Load data pointer with a 16-bit constant       | 90    | 3     | 3      |
| MOVC A,@A+DPTR       | Move code byte relative to DPTR to accumulator | 93    | 1     | 3      |
| MOVC A,@A+PC         | Move code byte relative to PC to accumulator   | 83    | 1     | 3      |
| MOVX A,@Ri           | Move external RAM (8-bit addr.) to A           | E2-E3 | 1     | 3      |
| MOVX A,@DPTR         | Move external RAM (16-bit addr.) to A          | E0    | 1     | 3      |
| MOVX @Ri,A           | Move A to external RAM (8-bit addr.)           | F2-F3 | 1     | 4      |
| MOVX @DPTR,A         | Move A to external RAM (16-bit addr.)          | F0    | 1     | 4      |
| PUSH direct          | Push direct byte onto stack                    | C0    | 2     | 4      |
| POP direct           | Pop direct byte from stack                     | D0    | 2     | 3      |
| XCH A,Rn             | Exchange register with accumulator             | C8-CF | 1     | 2      |
| XCH A, direct        | Exchange direct byte with accumulator          | C5    | 2     | 3      |
| XCH A,@Ri            | Exchange indirect RAM with accumulator         | C6-C7 | 1     | 3      |
| XCHD A,@Ri           | Exchange low-order nibble indir. RAM with A    | D6-D7 | 1     | 3      |



|                     | Table 2-4: Program branches                    |       |       |        |  |  |  |  |
|---------------------|------------------------------------------------|-------|-------|--------|--|--|--|--|
| Mnemonic            | Description                                    | Code  | Bytes | Cycles |  |  |  |  |
| ACALL addr11        | Absolute subroutine call                       | xxx11 | 2     | 6      |  |  |  |  |
| LCALL addr16        | Long subroutine call                           | 12    | 3     | 6      |  |  |  |  |
| RET                 | from subroutine                                | 22    | 1     | 4      |  |  |  |  |
| RETI                | from interrupt                                 | 32    | 1     | 4      |  |  |  |  |
| AJMP addr11         | Absolute jump                                  | xxx01 | 2     | 3      |  |  |  |  |
| LJMP addr16         | Long iump                                      | 02    | 3     | 4      |  |  |  |  |
| SJMP rel            | Short jump (relative addr.)                    | 80    | 2     | 3      |  |  |  |  |
| JMP @A+DPTR         | Jump indirect relative to the DPTR             | 73    | 1     | 2      |  |  |  |  |
| JZ rel              | Jump if accumulator is zero                    | 60    | 2     | 3      |  |  |  |  |
| JNZ rel             | Jump if accumulator is not zero                | 70    | 2     | 3      |  |  |  |  |
| JC rel              | Jump if carry flag is set                      | 40    | 2     | 3      |  |  |  |  |
| JNC                 | Jump if carry flag is not set                  | 50    | 2     | 3      |  |  |  |  |
| JB bit,rel          | Jump if direct bit is set                      | 20    | 3     | 4      |  |  |  |  |
| JNB bit,rel         | Jump if direct bit is not set                  | 30    | 3     | 4      |  |  |  |  |
| JBC bit, direct rel | Jump if direct bit is set and clear bit        | 10    | 3     | 4      |  |  |  |  |
| CJNE A, direct rel  | Compare direct byte to A and jump if not equal | B5    | 3     | 4      |  |  |  |  |
| CJNE A,#data rel    | Compare immediate to A and jump if not equal   | B4    | 3     | 4      |  |  |  |  |
| CJNE Rn,#data rel   | Compare immed. to reg. and jump if not equal   | B8-BF | 3     | 4      |  |  |  |  |
| CJNE @Ri,#data rel  | Compare immed. to ind. and jump if not equal   | B6-B7 | 3     | 4      |  |  |  |  |
| DJNZ Rn,rel         | Decrement register and jump if not zero        | D8-DF | 2     | 3      |  |  |  |  |
| DJNZ direct,rel     | Decrement direct byte and jump if not zero     | D5    | 3     | 4      |  |  |  |  |
| NOP                 | No operation                                   | 00    | 1     | 1      |  |  |  |  |

### Table 2-5: Boolean manipulation

| Mnemonic   | Description                           | Code | Bytes | Cycles |
|------------|---------------------------------------|------|-------|--------|
| CLR C      | Clear carry flag                      | C3   | 1     | 1      |
| CLR bit    | Clear direct bit                      | C2   | 2     | 3      |
| SETB C     | Set carry flag                        | D3   | 1     | 1      |
| SETB bit   | Set direct bit                        | D2   | 2     | 3      |
| CPL C      | Complement carry flag                 | B3   | 1     | 1      |
| CPL bit    | Complement direct bit                 | B2   | 2     | 3      |
| ANL C,bit  | AND direct bit to carry flag          | 82   | 2     | 2      |
| ANL C,/bit | AND complement of direct bit to carry | B0   | 2     | 2      |
| ORL C,bit  | OR direct bit to carry flag           | 72   | 2     | 2      |
| ORL C,/bit | OR complement of direct bit to carry  | A0   | 2     | 2      |
| MOV C,bit  | Move direct bit to carry flag         | A2   | 2     | 2      |
| MOV bit,C  | Move carry flag to direct bit         | 92   | 2     | 3      |



## 3. Memory Structure

The SM39A16M1 memory structure follows general 8052 structure. It is integrate the expanded 1KB data memory and 16KB program memory.

## 3.1 Program Memory

The SM39A16M1 has 16KB on-chip flash memory which can be used as general program memory or EEPROM, on which include up to 1K byte specific ISP service program memory space. The address range for the 16K byte is \$0000 to \$3FFF. The address range for the ISP service program is \$3C00 to \$3FFF. The ISP service program size can be partitioned as N blocks of 128 byte (N=0 to 8). When N=0 means no ISP service program space available, total 16K byte memory used as program memory. When N = 1 means address \$3F80 to \$3FFF reserved for ISP service program. When N=2 means memory address \$3F00 to \$3FFF reserved for ISP service program...etc. Value N can be set and programmed into SM39A16M1 information block by writer. As shown in Fig. 3-1





### 3.2 Data Memory

The SM39A16M1 has 1K + 256B on-chip SRAM, 256B of it are the same as general 8052 internal memory structure while the expanded 1K Bytes on-chip SRAM can be accessed by external memory addressing method ( by instruction MOVX.). As shown in Fig. 3-2

| FF<br>80 | Higher 128 Bytes (Accessed by indirect addressing mode only)    | SFR (Accessed by direct addressing mode only) | FF |
|----------|-----------------------------------------------------------------|-----------------------------------------------|----|
| 7F       | Lower 128 Bytes (Accessed by direct & indirect addressing mode) |                                               |    |





### 3.3 Data memory - lower 128 byte (00h to 7Fh)

Data memory 00h to FFh is the same as 8052. The address 00h to 7Fh can be accessed by direct and indirect addressing modes. Address 00h to 1Fh is register area. Address 20h to 2Fh is memory bit area. Address 30h to 7Fh is for general memory area.

### 3.4 Data memory - higher 128 byte (80h to FFh)

The address 80h to FFh can be accessed by indirect addressing mode. Address 80h to FFh is data area.

### 3.5 Data memory - Expanded 1K Bytes (0000h ~ 03FFh)

From external address 0000h to 03FFh is the on-chip expanded SRAM area, total 1K Bytes. This area can be accessed by external direct addressing mode (by instruction MOVX). The address space of instruction MOVX @Ri, i=0, 1 is determined by RCON [7:0] of special function register \$86 RCON (internal RAM control register). The default setting of RCON [7:0] is 00h (page0). One page of data RAM is 256 bytes. When EMEN = 0, the internal 1K expanded RAM is enabled.

| 103 | Sartown can not access (on-chip) external traw. |                           |  |  |  |  |  |  |
|-----|-------------------------------------------------|---------------------------|--|--|--|--|--|--|
|     | MOVX @Ri, A                                     | $0 \leq PCONI7(0) \leq 3$ |  |  |  |  |  |  |
|     | MOVX A, @Ri                                     |                           |  |  |  |  |  |  |
|     |                                                 | Addr [15:8] <= RCON[7:0]  |  |  |  |  |  |  |

| Note: SM39A16M1 | can not access | (off-chip) | external RAM. |
|-----------------|----------------|------------|---------------|
|                 |                |            |               |



# 4. CPU Engine

The SM39A16M1 engine is composed of four components:

- (1) Control unit
- (2) Arithmetic logic unit
- (3) Memory control unit
- (4) RAM and SFR control unit

The SM39A16M1 engine allows to fetch instruction from program memory and to execute using RAM or SFR. The following chapter describes the main engine register.

| Mnemonic | Description                   | Dir. | Bit 7                  | Bit 6   | Bit 5  | Bit 4 | Bit 3  | Bit 2 | Bit 1 | Bit 0 | RST |
|----------|-------------------------------|------|------------------------|---------|--------|-------|--------|-------|-------|-------|-----|
|          |                               |      |                        | 805     | 1 Core |       |        |       |       |       |     |
| ACC      | Accumulator                   | E0h  | ACC.7                  | ACC.6   | ACC.5  | ACC.4 | ACC.3  | ACC.2 | ACC.1 | ACC.0 | 00H |
| В        | B register                    | F0h  | B.7                    | B.6     | B.5    | B.4   | B.3    | B.2   | B.1   | B.0   | 00H |
| PSW      | Program status word           | D0h  | CY                     | AC      | F0     | RS[   | 1:0]   | OV    | PSW.1 | Р     | 00H |
| SP       | Stack Pointer                 | 81h  |                        | SP[7:0] |        |       |        |       |       |       | 07H |
| DPL      | Data pointer low 0            | 82h  |                        |         |        | DPL   | [7:0]  |       |       |       | 00H |
| DPH      | Data pointer high 0           | 83h  |                        |         |        | DPH   | [7:0]  |       |       |       | 00H |
| DPL1     | Data pointer low 1            | 84h  |                        |         |        | DPL   | 1[7:0] |       |       |       | 00H |
| DPH1     | Data pointer high 1           | 85h  |                        |         |        | DPH   | 1[7:0] |       |       |       | 00H |
| AUX      | Auxiliary register            | 91h  | BRGS                   | P21CC   | -      | P1UR  | -      | -     | -     | DPS   | 00H |
| CKCON    | Clock control<br>register     | 8Eh  | - ITS[2:0] CLKOUT[1:0] |         |        |       |        | 10H   |       |       |     |
| IFCON    | Interface control<br>register | 8Fh  | -                      | CDPR    | -      | -     | -      | -     | -     | ISPE  | 00H |

### 4.1 Accumulator

ACC is the Accumulator register. Most instructions use the accumulator to store the operand.

| Mnemonic: ACC |       |       |       |       |       |       |       | ess: E0h |
|---------------|-------|-------|-------|-------|-------|-------|-------|----------|
| 7             | 6     | 5     | 4     | 3     | 2     | 1     | 0     | Reset    |
| ACC.7         | ACC.6 | ACC05 | ACC.4 | ACC.3 | ACC.2 | ACC.1 | ACC.0 | 00h      |

ACC[7:0]: The A (or ACC) register is the standard 8052 accumulator.

### 4.2 B Register

The B register is used during multiply and divide instructions. It can also be used as a scratch pad register to store temporary data.

| Mnemo | Add | Address: F0h |     |     |     |     |     |       |
|-------|-----|--------------|-----|-----|-----|-----|-----|-------|
| 7     | 6   | 5            | 4   | 3   | 2   | 1   | 0   | Reset |
| B.7   | B.6 | B.5          | B.4 | B.3 | B.2 | B.1 | B.0 | 00h   |

B[7:0]: The B register is the standard 8052 register that serves as a second accumulator.



## 4.3 Program Status Word

| Mnemo | nic: PSW |    |    |       |    |    | Add | ress: D0h |
|-------|----------|----|----|-------|----|----|-----|-----------|
| 7     | 6        | 5  | 4  | 3     | 2  | 1  | 0   | Reset     |
| CY    | AC       | F0 | RS | [1:0] | OV | F1 | Р   | 00h       |

CY: Carry flag.

AC: Auxiliary Carry flag for BCD operations.

F0: General purpose Flag 0 available for user.

RS[1:0]: Register bank select, used to select working register bank.

| RS[1:0] | Bank Selected | Location  |
|---------|---------------|-----------|
| 00      | Bank 0        | 00h – 07h |
| 01      | Bank 1        | 08h – 0Fh |
| 10      | Bank 2        | 10h – 17h |
| 11      | Bank 3        | 18h – 1Fh |

OV: Overflow flag.

F1: General purpose Flag 1 available for user.

P: Parity flag, affected by hardware to indicate odd/even number of "one" bits in the

Accumulator, i.e. even parity.

### 4.4 Stack Pointer

The stack pointer is a 1-byte register initialized to 07h after reset. This register is incremented before PUSH and CALL instructions, causing the stack to start from location 08h.

| Mnemonic: SP Address: |   |   |    |       |   |   |   | ss: 81h |
|-----------------------|---|---|----|-------|---|---|---|---------|
| 7                     | 6 | 5 | 4  | 3     | 2 | 1 | 0 | Reset   |
|                       |   |   | SP | [7:0] |   |   |   | 07h     |

SP[7:0]: The Stack Pointer stores the scratchpad RAM address where the stack begins. In other words, it always points to the top of the stack.

### 4.5 Data Pointer

The data pointer (DPTR) is 2-bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as a 2-byte register (e.g. MOV DPTR, #data16) or as two separate registers (e.g. MOV DPL,#data8). It is generally used to access the external code or data space (e.g. MOVC A, @A+DPTR or MOVX A,@DPTR respectively).

| Mnemonic: DPL Address |   |   |   |   |   |   |   |       |
|-----------------------|---|---|---|---|---|---|---|-------|
| 7                     | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Reset |
| DPL [7:0]             |   |   |   |   |   |   |   |       |

DPL[7:0]: Data pointer Low 0

| Mnemo | nic: DPH  |   |   |   |   |   | Addre | ess: 83h |  |
|-------|-----------|---|---|---|---|---|-------|----------|--|
| 7     | 6         | 5 | 4 | 3 | 2 | 1 | 0     | Reset    |  |
|       | DPH [7:0] |   |   |   |   |   |       |          |  |

DPH [7:0]: Data pointer High 0



### 4.6 Data Pointer 1

The Dual Data Pointer accelerates the moves of data block. The standard DPTR is a 16-bit register that is used to address external memory or peripherals. In the SM39A16M1 core the standard data pointer is called DPTR, the second data pointer is called DPTR1. The data pointer select bit chooses the active pointer. The data pointer select bit is located in LSB of AUX register (DPS).

The user switches between pointers by toggling the LSB of AUX register. All DPTR-related instructions use the currently selected DPTR for any activity.

| Mnemo | nic: DPL1 | 1 |     |         |   |   | Addre | ess: 84h |
|-------|-----------|---|-----|---------|---|---|-------|----------|
| 7     | 6         | 5 | 4   | 3       | 2 | 1 | 0     | Reset    |
|       |           |   | DPL | 1 [7:0] |   |   |       | 00h      |

DPL1[7:0]: Data pointer Low 1

| Mnemonic: DPH1 Addres |   |   |   |   |   |   |   | ss: 85h |  |
|-----------------------|---|---|---|---|---|---|---|---------|--|
| 7                     | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Reset   |  |
| DPH1 [7:0]            |   |   |   |   |   |   |   |         |  |

DPH1[7:0]: Data pointer High 1

| Mnemor | Inemonic: AUX Address: 9 |   |      |   |   |   |     |       |
|--------|--------------------------|---|------|---|---|---|-----|-------|
| 7      | 6                        | 5 | 4    | 3 | 2 | 1 | 0   | Reset |
| BRGS   | P21CC                    | - | P1UR | - | - | - | DPS | 00H   |

DPS: Data Pointer select register.

DPS = 1 is selected DPTR1.

### 4.7 Clock control register

| Mnemo | nic: CKC | ON       |   |   |   |      | Addre   | ss: 8Eh |
|-------|----------|----------|---|---|---|------|---------|---------|
| 7     | 6        | 5        | 4 | 3 | 2 | 1    | 0       | Reset   |
| -     |          | ITS[2:0] |   | - | - | CLKO | UT[1:0] | 10H     |

ITS[2:0]: Instruction timing select.

| ITS [2:0] | Mode              |  |  |  |  |  |
|-----------|-------------------|--|--|--|--|--|
| 000       | 1T mode           |  |  |  |  |  |
| 001       | 2T mode (default) |  |  |  |  |  |
| 010       | 3T mode           |  |  |  |  |  |
| 011       | 4T mode           |  |  |  |  |  |
| 100       | 5T mode           |  |  |  |  |  |
| 101       | 6T mode           |  |  |  |  |  |
| 110       | 7T mode           |  |  |  |  |  |
| 111       | 8T mode           |  |  |  |  |  |

CLKOUT[1:0]: Clock output select.

| CLKOUT[1:0] | Mode          |
|-------------|---------------|
| 00          | GPIO(default) |
| 01          | Fosc          |
| 10          | Fosc/2        |
| 11          | Fosc/4        |

It can be used when the system clock is the internal RC oscillator.



### 4.8 Interface control register

| Mnemo | nic: IFCO | Ν |   |   |   |   | Addres | ss: 8Fh |
|-------|-----------|---|---|---|---|---|--------|---------|
| 7     | 6         | 5 | 4 | 3 | 2 | 1 | 0      | Reset   |
| -     | CDPR      | - | - | - | - | - | ISPE   | 00H     |

CDPR: Code protect (Read Only)

ISPE: ISP function enable bit

ISPE = 1, enable ISP function.

ISPE = 0, disable ISP function.

### 4.9 PAGESEL (Page Select)

The SM39A16M1 provide two different methods to set Special Function Register (SFR) are as follow:

 SFR Method 1 (Indirect Mode): This method is only an SFR page. If you want to use PWM registers of the Method 2, can be used indirectly addressable setting. Example: Write a data 0x80h to PWMEN Register in Method 1. PAGESEL = 0x00; // Method 1.
PWMADDR = 0xF5; // PWMEN indirect address: 0xF5 (Indirect mode) // (Refer Page1 Table of the Method 2)
PWMDATA = 0x80; // Write data 0x80 to PWMEN.
SFR Method 2 (Page Mode): This method provides two SFR page to set the registers.

Example: Write a data 0x80 to PWMEN Register in Method 2, Page 1.

PAGESEL = 0x03; // Method 2, Page 1 (Page mode)

PWMEN = 0x80; // Write data 0x80 to PWMEN.

• SFR Page Mode Table:

| Page_mode | Page_num | SFR Select           |  |  |  |  |
|-----------|----------|----------------------|--|--|--|--|
| 0         | 0        | SFR Method 1         |  |  |  |  |
| 0         | 1        | SFR Method 1         |  |  |  |  |
| 1         | 0        | SFR Method 2, Page 0 |  |  |  |  |
| 1         | 1        | SFR Method 2, Page 1 |  |  |  |  |

### Mnemonic: PAGESEL

#### Address: BEh

| 7 | 6 | 5 | 4 | 3 | 2 | 1     | 0     | Reset |
|---|---|---|---|---|---|-------|-------|-------|
| _ | _ | _ | _ | _ | _ | Page_ | Page_ | 00H   |
|   |   |   |   |   |   | num   | mode  | 0011  |

Page\_num: This flag is used only in the SFR method 2

0 = page 0 mode

1 = page 1 mode.

Page\_mode: This flag is used to select SFR register table.



- 0: SFR Method 1 (indirect mode).
- 1 : SFR Method 2 (page mode).



# 5. GPIO

The SM39A16M1 has four I/O ports: Port 0, Port 1, Port 2, Port 3. Ports 0, 1, 2 are are 8-bit ports and Ports 2, 3 are are 7-bit ports. These are: quasi-bidirectional (standard 8051 port outputs), push-pull, open drain, and input-only. Two configuration registers for each port select the output type for each port pin. All I/O port pins on the SM39A16M1 may be configured by software to one fo four types on a pin-by-pin basis, shown as below:

| Mnemonic | Description             | Direct | Bit 7 | Bit 6       | Bit 5      | Bit 4   | Bit 3    | Bit 2 | Bit 1 | Bit 0 | RESET |
|----------|-------------------------|--------|-------|-------------|------------|---------|----------|-------|-------|-------|-------|
|          |                         |        |       | I/O port    | function r | egister |          |       |       |       |       |
| P0M0     | Port 0 output<br>mode 0 | D2h    |       | P0M0 [7:0]  |            |         |          |       |       |       | ~OP18 |
| P0M1     | Port 0 output<br>mode 1 | D3h    |       | P0M1[7:0]   |            |         |          |       |       |       |       |
| P1M0     | Port 1 output<br>mode 0 | D4h    |       |             |            | P1M0    | D[7:0]   |       |       |       | 00H   |
| P1M1     | Port 1 output<br>mode 1 | D5h    |       | P1M1[7:0]   |            |         |          |       |       |       | 00H   |
| P2M0     | Port 2 output<br>mode 0 | D6h    | -     |             |            |         | P2M0[6:0 | ]     |       |       | 00H   |
| P2M1     | Port 2 output<br>mode 1 | D7h    | -     | - P2M1[6:0] |            |         |          |       |       | 00H   |       |
| P3M0     | Port 3 output<br>mode 0 | DAh    | -     | - P3M0[6:0] |            |         |          |       |       | 00H   |       |
| P3M1     | Port 3 output<br>mode 1 | DBh    | -     |             |            |         | P3M1[6:0 | ]     |       |       | 00H   |

\*OP18 by writer programming set.

| PxM1.y | PxM0.y | Port output mode                                           |  |  |  |  |  |  |
|--------|--------|------------------------------------------------------------|--|--|--|--|--|--|
| 0      | 0      | Quasi-bidirectional (standard 8051 port outputs) (pull-up) |  |  |  |  |  |  |
| 0      | 1      | Push-pull                                                  |  |  |  |  |  |  |
| 1      | 0      | Input only (high-impedance)                                |  |  |  |  |  |  |
| 1      | 1      | Open drain                                                 |  |  |  |  |  |  |

The RESET Pin can define as General I/O P3.4 when user use Internal RESET.

The XTAL2 and XTAL1 can define as P3.5 and P3.6 by writer or ISP , when user use internal OSC as system clock ; when user use external OSC as system clock and input into XTAL1 , Only XTAL2 can be defined as P3.5.

For general-purpose applications, every pin can be assigned to either high or low independently As shown below:

| Mnemonic | Description | Dir. | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RST  |
|----------|-------------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|          |             |      |       |       | Ports |       |       |       |       |       |      |
| Port 3   | Port 3      | B0h  | -     | P3.6  | P3.5  | P3.4  | P3.3  | P3.2  | P3.1  | P3.0  | 7Fh  |
| Port 2   | Port 2      | A0h  | -     | P2.6  | P2.5  | P2.4  | P2.3  | P2.2  | P2.1  | P2.0  | 7Fh  |
| Port 1   | Port 1      | 90h  | P1.7  | P1.6  | P1.5  | P1.4  | P1.3  | P1.2  | P1.1  | P1.0  | FFh  |
| Port 0   | Port 0      | 80h  | P0.7  | P0.6  | P0.5  | P0.4  | P0.3  | P0.2  | P0.1  | P0.0  | OP19 |

\*OP19 by writer programming set.



| Mnemo | Addre | ss: 80h |      |      |      |      |      |       |
|-------|-------|---------|------|------|------|------|------|-------|
| 7     | 6     | 5       | 4    | 3    | 2    | 1    | 0    | Reset |
| P0.7  | P0.6  | P0.5    | P0.4 | P0.3 | P0.2 | P0.1 | P0.0 | OP19  |
|       |       |         |      |      |      |      |      |       |

P0.7~ 0: Port0 [7] ~ Port0[0]

| Mnemonic: P1 |      |      |      |      |      |      |      | ss: 90h |
|--------------|------|------|------|------|------|------|------|---------|
| 7            | 6    | 5    | 4    | 3    | 2    | 1    | 0    | Reset   |
| P1.7         | P1.6 | P1.5 | P1.4 | P1.3 | P1.2 | P1.1 | P1.0 | FFh     |

P1.7~ 0: Port1 [7] ~ Port1 [0]

| Mnemo | nic: P2 |      |      |      |      |      | Addres | ss: A0h |
|-------|---------|------|------|------|------|------|--------|---------|
| 7     | 6       | 5    | 4    | 3    | 2    | 1    | 0      | Reset   |
| -     | P2.6    | P2.5 | P2.4 | P2.3 | P2.2 | P2.1 | P2.0   | 7Fh     |

P2.6~ 0: Port2 [6] ~ Port2 [0]

| Mnemo | nic: P3 |      |      |      |      |      | Addres | s: B0h |
|-------|---------|------|------|------|------|------|--------|--------|
| 7     | 6       | 5    | 4    | 3    | 2    | 1    | 0      | Reset  |
| -     | P3.6    | P3.5 | P3.4 | P3.3 | P3.2 | P3.1 | P3.0   | 7Fh    |

P3.6~ 0: Por3 [6] ~ Port3 [0]



## 6. Multiplication Division unit

This on-chip arithmetic unit provides 32-bit division, 16-bit multiplication, shift and normalize features. All operations are unsigned integer operation.

| Mnemonic | Description                            | Direct | Bit 7    | Bit 6                 | Bit 5       | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RESET |
|----------|----------------------------------------|--------|----------|-----------------------|-------------|---------|-------|-------|-------|-------|-------|
|          |                                        |        | 1        | Multiplicat           | ion Divisio | on Unit |       |       |       |       |       |
| PCON     | Power control                          | 87H    | SMOD     | MDUF                  | -           | -       | -     | -     | STOP  | IDLE  | 40H   |
| ARCON    | Arithmetic<br>Control register         | EFh    | MDEF     | MDEF MDOV SLR SC[4:0] |             |         |       |       |       | 00H   |       |
| MD0      | Multiplication/Divi<br>sion Register 0 | E9h    |          | MD0[7:0]              |             |         |       |       |       |       | 00H   |
| MD1      | Multiplication/Divi sion Register 1    | EAh    |          | MD1[7:0]              |             |         |       |       |       |       | 00H   |
| MD2      | Multiplication/Divi sion Register 2    | EBh    |          | MD2[7:0]              |             |         |       |       |       |       | 00H   |
| MD3      | Multiplication/Divi<br>sion Register 3 | ECh    |          | MD3[7:0]              |             |         |       |       |       | 00H   |       |
| MD4      | Multiplication/Divi sion Register 4    | EDh    | MD4[7:0] |                       |             |         |       |       | 00H   |       |       |
| MD5      | Multiplication/Divi sion Register 5    | EEh    |          | MD5[7:0]              |             |         |       |       |       |       | 00H   |

### 6.1 Operating registers of the MDU

The MDU is handled by eight registers, which are memory mapped as special function registers. The arithmetic unit allows operations concurrently to and independent of the CPU's activity. Operands and results registers are MD0 to MD5. Control register is ARCON. Any calculation of the MDU overwrites its operands.

| Mnemo | Addres | s: EFh |   |   |         |   |   |       |
|-------|--------|--------|---|---|---------|---|---|-------|
| 7     | 6      | 5      | 4 | 3 | 2       | 1 | 0 | Reset |
| MDEF  | MDOV   | SLR    |   |   | SC[4:0] |   |   | 00H   |

MDEF- Multiplocation Division Errot Flag.

The MDEF is an error flag. The error flag is read only. The error flag indicates an improperly performed operation (when one of the arithmetic operations has been restarted or interrupted by a new operation). The error flag mechanism is automatically enabled with the first write to MD0 and disabled with the final read instruction from MD3 multiplication or shift/normalizing) or MD5 (division) in phase three.

The error flag is set when:

Phase two in process and write access to MDx registers (restart or interrupt calculations)

The error flag is reset only if:

The second phase two finished (arithmetic operation successful completed) and read access to MDx registers.

MDOV - Multiplication Division Overflow flag. The overflow flag is read only.

The overflow flag is set when:

1. Division by Zero

2. Multiplication with a result greater then 0000FFFFh



The overflow flag is reset when:

Write access to MD0 register (Start Phase one)

SLR - Shift direction bit.

SLR = 0 - shift left operation.

SLR = 1 - shift right operation.

SC[4:0] - Shift counter.

When preset with 00000b, normalizing is selected. After normalize sc.0 – sc.4 contains the number of normalizing shifts performed. When sc.4 – sc.0  $\neq$  0, shift- operation is started. The number of shifts performed is determined by the count written to sc.4 to sc.0. sc.4 – MSB ... sc.0 – LSB

### 6.2 Operation of the MDU

Operations of the MDU consist of three phases:

### 6.2.1 First phase: Loading the MDx registers.

The type of calculation the MDU has to perform is selected following the order in which the mdx registers are written to.

|             |                   |                   | 3 white sequence       |                        |
|-------------|-------------------|-------------------|------------------------|------------------------|
| Operation   | 32bit/16bit       | 16bit/16bit       | 16bit x 16bit          | shift/normalizing      |
| First write | MD0 Dividend Low  | MD0 Dividend Low  | MD0 Multiplicand Low   | MD0 LSB                |
|             | MD1 Dividend      | MD1 Dividend High | MD4 Multiplicator Low  | MD1                    |
|             | MD2 Dividend      | _                 | MD1 Multiplicand High  | MD2                    |
|             | MD3 Dividend High |                   |                        | MD3 MSB                |
|             | MD4 Divisor Low   | MD4 Divisor Low   |                        |                        |
| Last write  | MD5 Divisor High  | MD5 Divisor High  | MD5 Multiplicator High | ARCON start conversion |

Table 6-1 MDU registers write sequence

A write to MD0 is the first transfer to be done in any case. Next writes must be done as shown in Table 6-1 to determine MDU operation. Last write finally starts selected operation.

### 6.2.2 Second phase: Executing calculation.

During executing operation, the MDU works on its own parallel to the CPU. When MDU is finished, the MDUF register will be set to one by hardware and the flag will clear at next calculation.

| Mnemo | nic: PCOI | Ν |   |   |   |      | Addres | ss: 87h |
|-------|-----------|---|---|---|---|------|--------|---------|
| 7     | 6         | 5 | 4 | 3 | 2 | 1    | 0      | Reset   |
| SMOD  | MDUF      |   |   |   |   | STOP | IDLE   | 40H     |

MDUF: MDU finish flag.

When MDU is finished, the MDUF will be set by hardware and the bit will clear by hardware at next calculation.

| Operation            | Number of Tclk  |
|----------------------|-----------------|
| Division 32bit/16bit | 17 clock cycles |
| Division 16bit/16bit | 9 clock cycles  |
| Multiplication       | 11 clock cycles |

#### Table 6-2 MDU execution times

<sup>3.</sup> Start of normalizing if the most significant bit of MD3 is set(MD3.7 = 1)



| Shift     | min 3 clock cycles , max 18 clock cycles |
|-----------|------------------------------------------|
| Normalize | min 4 clock cycles , max 19 clock cycles |

### 6.2.3 Third phase: Reading the result from the MDx registers.

Read out sequence of the first MDx registers is not critical but the last read (from MD5 - division and MD3 - multiplication, shift and normalizing) determines the end of a whole calculation (end of phase three).

| Operation  | 32Bit/16Bit       | 16Bit/16Bit        | 16Bit x 16Bit    | shift/normalizing |  |  |  |  |
|------------|-------------------|--------------------|------------------|-------------------|--|--|--|--|
| First read | MD0 Quotient Low  | MD0 Quotien Low    | MD0 Product Low  | MD0 LSB           |  |  |  |  |
|            | MD1 Quotient      | MD1 Quotien High   | MD1 Product      | MD1               |  |  |  |  |
|            | MD2 Quotient      |                    | MD2 Product      | MD2               |  |  |  |  |
|            | MD3 Quotient High |                    |                  |                   |  |  |  |  |
|            | MD4 Remainder L   | MD4 Remainder Low  |                  |                   |  |  |  |  |
| Last read  | MD5 Remainder H   | MD5 Remainder High | MD3 Product High | MD3 MSB           |  |  |  |  |

#### Table 6-3 MDU registers read sequence

#### 6.3 Normalizing

All reading zeroes of integers variables in registers MD0 to MD3 are removed by shift left operations. The whole operation is completed when the MSB (most significant bit) of MD3 register contains a '1'. After normalizing, bits ARCON.4 (MSB) to ARCON.0 (LSB) contain the number of shift left operations, which were done.

#### 6.4 Shifting

SLR bit (ARCON.5) has to contain the shift direction, and ARCON.4 to ARCON.0 the shift count (which must not be 0). During shift, zeroes come into the left or right end of the registers MD0 or MD3, respectively.



# 7. Timer 0 and Timer 1

The SM39A16M1 has three 16-bit timer/counter registers: Timer 0, Timer 1 and Timer 2. All can be configured for counter or timer operations.

In timer mode, the Timer 0 register or Timer 1 register is incremented every 1/12/96 machine cycles, which means that it counts up after every 1/12/96 periods of the clk signal. It's dependent on SFR(PFCON).

In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin T0or T1. Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 machine cycle.

Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function registers (TMOD and TCON) are used to select the appropriate mode.

| Mnemonic | Description                                 | Dir. | Bit 7 | Bit 6    | Bit 5            | Bit 4 | Bit 3  | Bit 2 | Bit 1  | Bit 0 | RST |
|----------|---------------------------------------------|------|-------|----------|------------------|-------|--------|-------|--------|-------|-----|
|          | Timer 0 and 1                               |      |       |          |                  |       |        |       |        |       |     |
| TL0      | Timer 0, low byte                           | 8Ah  |       | TL0[7:0] |                  |       |        |       |        | 00H   |     |
| TH0      | Timer 0, high byte                          | 8Ch  |       |          |                  | TH0   | [7:0]  |       |        |       | 00H |
| TL1      | Timer 1, low byte                           | 8Bh  |       |          |                  | TL1   | [7:0]  |       |        |       | 00H |
| TH1      | Timer 1, high byte                          | 8Dh  |       | TH1[7:0] |                  |       |        | 00H   |        |       |     |
| TMOD     | Timer Mode Control                          | 89h  | GATE  | C/T      | M1               | MO    | GATE   | C/T   | M1     | MO    | 00H |
| TCON     | Timer/Counter<br>Control                    | 88h  | TF1   | TR1      | TF0              | TR0   | IE1    | IT1   | IE0    | IT0   | 00H |
| PFCON    | Peripheral<br>Frequency control<br>register | D9h  | -     | -        | SRELPS[1:0] T1PS |       | 6[1:0] | TOPS  | G[1:0] | 00H   |     |

### 7.1 Timer/counter mode control register (TMOD)



GATE: If set, enables external gate control (pin INT0 or INT1 for Counter 0 or 1, respectively). When INT0 or INT1 is high, and TRx bit is set (see TCON register), a counter is incremented every falling edge on T0 or T1 input pin

C/T: Selects Timer or Counter operation. When set to 1, a counter operation is performed, when cleared to 0, the corresponding register will function as a timer.



| M1 | MO | Mode  | Function                                                                                                                                                                                                     |
|----|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0  | Mode0 | 13-bit counter/timer, with 5 lower bits in TL0 or<br>TL1 register and 8 bits in TH0 or TH1 register<br>(for Timer 0 and Timer 1, respectively). The 3<br>high order bits of TL0 and TL1 are hold at<br>zero. |
| 0  | 1  | Mode1 | 16-bit counter/timer.                                                                                                                                                                                        |
| 1  | 0  | Mode2 | 8 -bit auto-reload counter/timer. The reload<br>value is kept in TH0 or TH1, while TL0 or TL1<br>is incremented every machine cycle. When<br>TLx overflows, a value from THx is copied to<br>TLx.            |
| 1  | 1  | Mode3 | If Timer 1 M1 and M0 bits are set to 1, Timer 1<br>stops. If Timer 0 M1 and M0 bits are set to 1,<br>Timer 0 acts as two independent 8 bit timers /<br>counters.                                             |

### 7.2 Timer/counter control register (TCON)

| Mnemonic: TCON |     |     |     |     |     |     |     | ss: 88h |
|----------------|-----|-----|-----|-----|-----|-----|-----|---------|
| 7              | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Reset   |
| TF1            | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 | 00h     |

- TF1: Timer 1 overflow flag set by hardware when Timer 1 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
- TR1: Timer 1 Run control bit. If cleared, Timer 1 stops.
- TF0: Timer 0 overflow flag set by hardware when Timer 0 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.
- TR0: Timer 0 Run control bit. If cleared, Timer 0 stops.
- IE1: Interrupt 1 edge flag. Set by hardware, when falling edge on external pin INT1 is observed. Cleared when interrupt is processed.
- IT1: Interrupt 1 type control bit. Selects falling edge or low level on input pin to cause interrupt. IT1=1, interrupt 1 select falling edge trigger. IT1=0, interrupt1 select low level trigger.
- IE0: Interrupt 0 edge flag. Set by hardware, when falling edge on external pin INT0 is observed. Cleared when interrupt is processed.
- ITO: Interrupt 0 type control bit. Selects falling edge or low level on input pin to cause interrupt. IT0=1, interrupt 0 select falling edge trigger. IT0=0, interrupt 0 select low level trigger.



## 7.3 Peripheral Frequency control register

| Mnemo | nic: PFC | ON          |   |      |        |     | Addre  | ss: D9h |
|-------|----------|-------------|---|------|--------|-----|--------|---------|
| 7     | 6        | 5           | 4 | 3    | 2      | 1   | 0      | Reset   |
| -     | -        | SRELPS[1:0] |   | T1PS | 5[1:0] | TOP | S[1:0] | 00H     |

T1PS[1:0] Timer1 Prescaler select

| - | T1PS[1:0] | Prescaler |  |  |  |
|---|-----------|-----------|--|--|--|
|   | 00        | Fosc/12   |  |  |  |
|   | 01        | Fosc      |  |  |  |
|   | 10        | Fosc/96   |  |  |  |
|   | 11        | reserved  |  |  |  |

T0PS[1:0] Timer0 Prescaler select

| Prescaler |  |  |  |
|-----------|--|--|--|
| Fosc/12   |  |  |  |
| Fosc      |  |  |  |
| Fosc/96   |  |  |  |
| reserved  |  |  |  |
|           |  |  |  |

7.4 Mode 0 (13-bit Counter/Timer)



Fig. 7-1: Mode 0 -13 bit Timer / counter operation


7.5 Mode 1 (16-bit Counter/Timer)



Fig. 7-2: Mode 1 16 bit Counter/Timer operation

## 7.6 Mode 2 (8-bit auto-reload Counter/Timer)



Fig. 7-3: Mode 2 8-bit auto-reload Counter/Timer operation.



## 7.7 Mode 3 (Timer 0 acts as two independent 8 bit Timers / Counters)



Fig. 7-4: Mode 3 Timer 0 acts as two independent 8 bit Timers / Counters operatin



## 8. Timer 2 and Capture Compare Unit

Timer 2 is not only a 16-bit timer, also a 4-channel unit with compare, capture and reload functions. It is very similar to the programmable counter array (PCA) in some other MCUs except pulse width modulation (PWM).

| Mnemonic | Description                                       | Dir. | Bit 7 Bit 6 Bit 5 Bit 4 |           | Bit 3         | Bit 2   | Bit 1  | Bit 0   | RST         |              |     |
|----------|---------------------------------------------------|------|-------------------------|-----------|---------------|---------|--------|---------|-------------|--------------|-----|
|          |                                                   | Ti   | imer 2 an               | d Captur  | e Compa       | re Unit |        |         |             |              |     |
| AUX      | Auxiliary register                                | 91h  | BRGS                    | P21C<br>C | -             | P1UR    | -      | -       | -           | DPS          | 00H |
| AUX2     | Auxiliary 2 register                              | 92h  | 92h CCU3 CC<br>Soure Sc |           | CCU1<br>Soure | -       | CCUI   | NF[1:0] | CCUII<br>[1 | NFCLK<br>:0] | 00H |
| T2CON    | Timer 2 control                                   | C8h  | -                       | T2PS[2:0  | ]             | T2R     | [1:0]  | -       | T2I         | [1:0]        | 00H |
| CCCON    | Compare/Capture<br>Control                        | C9h  | CCI3                    | CCI2      | CCI1          | CCI0    | CCF3   | CCF2    | CCF1        | CCF0         | 00H |
| CCEN     | Compare/Capture<br>Enable register                | C1h  | -                       | CC        | DCAM1[2       | ::0]    | -      | CC      | DCAM0[2     | 2:0]         | 00H |
| CCEN2    | Compare/Capture<br>Enable 2 register              | D1h  | -                       | CC        | DCAM3[2       | ::0]    | -      | CC      | DCAM2[2     | 2:0]         | 00H |
| TL2      | Timer 2, low byte                                 | CCh  |                         |           |               | TL2     | [7:0]  |         |             |              | 00H |
| TH2      | Timer 2, high byte                                | CDh  |                         |           |               | TH2     | 2[7:0] |         |             |              | 00H |
| CRCL     | Compare/Reload/Cap ture register, low byte        | CAh  |                         |           |               | CRC     | L[7:0] |         |             |              | 00H |
| CRCH     | Compare/Reload/Cap<br>ture register, high<br>byte | CBh  |                         |           |               | CRC     | H[7:0] |         |             |              | 00H |
| CCL1     | Compare/Capture register 1, low byte              | C2h  |                         |           |               | CCL     | 1[7:0] |         |             |              | 00H |
| CCH1     | Compare/Capture register 1, high byte             | C3h  |                         |           |               | ССН     | 1[7:0] |         |             |              | 00H |
| CCL2     | Compare/Capture register 2, low byte              | C4h  | CCL2[7:0]               |           |               |         |        | 00H     |             |              |     |
| CCH2     | Compare/Capture register 2, high byte             | C5h  | CCH2[7:0]               |           |               |         |        | 00H     |             |              |     |
| CCL3     | Compare/Capture register 3, low byte              | C6h  | CCL3[7:0]               |           |               |         |        | 00H     |             |              |     |
| ССНЗ     | Compare/Capture register 3, high byte             | C7h  | CCH3[7:0]               |           |               |         |        |         | 00H         |              |     |

| Mnemor | nic: AUX |   |      |   |   |   | Addres | ss: 91h |
|--------|----------|---|------|---|---|---|--------|---------|
| 7      | 6        | 5 | 4    | 3 | 2 | 1 | 0      | Reset   |
| BRGS   | P21CC    | - | P1UR | - | - | - | DPS    | 00H     |

P21CC : P21CC = 0 - Capture/Compare function on P1.

P21CC = 1 – Capture/Compare function on P2.

| Mnemor         | nic: AUX2      |                |   |      |         |        | Addre    | ess: 92h |
|----------------|----------------|----------------|---|------|---------|--------|----------|----------|
| 7              | 6              | 5              | 4 | 3    | 2       | 1      | 0        | Reset    |
| CCU3<br>Source | CCU2<br>Source | CCU1<br>Source | - | CCUI | NF[1:0] | CCUINF | CLK[1:0] | 00H      |

The following Fig. 8-1 is set CCU action.



Fig. 8-1: CCU action diagram



| Mnemo | nic: T2CC | N |     |        |   |    | Addres | ss: C8h |
|-------|-----------|---|-----|--------|---|----|--------|---------|
| 7     | 6         | 5 | 4   | 3      | 2 | 1  | 0      | Reset   |
|       | T2PS[2:0] |   | T2R | R[1:0] | - | T2 | [1:0]  | 00H     |

T2PS[2:0]: Prescaler select bit:

T2PS = 000 - timer 2 is clocked with the oscillator frequency.

T2PS = 001 - timer 2 is clocked with 1/2 of the oscillator frequency.

T2PS = 010 - timer 2 is clocked with 1/4 of the oscillator frequency.

T2PS = 011 - timer 2 is clocked with 1/6 of the oscillator frequency.

T2PS = 100 - timer 2 is clocked with 1/8 of the oscillator frequency.

T2PS = 101 - timer 2 is clocked with 1/12 of the oscillator frequency.

T2PS = 110 - timer 2 is clocked with 1/24 of the oscillator frequency.

#### T2R[1:0]: Timer 2 reload mode selection

T2R[1:0] = 0X - Reload disabled.

T2R[1:0] = 10 - Mode 0: Auto Reload.

T2R[1:0] = 11 – Mode 1: T2EX Falling Edge Reload.

#### T2I[1:0]: Timer 2 input selection

T2I[1:0] = 00 - Timer 2 stop.

T2I[1:0] = 01 - Input frequency from prescaler (T2PS[2:0]).

T2I[1:0] = 10 - Timer 2 is incremented by external signal at pin T2.

T2I[1:0] = 11 - internal clock input is gated to the Timer 2.

| Mnemo | Addres | s: C9h |      |      |      |      |      |       |
|-------|--------|--------|------|------|------|------|------|-------|
| 7     | 6      | 5      | 4    | 3    | 2    | 1    | 0    | Reset |
| CCI3  | CCI2   | CCI1   | CCI0 | CCF3 | CCF2 | CCF1 | CCF0 | 00H   |

CCI3: Compare/Capture 3 interrupt control bit.

CCI3 = 1 is enable.

CCI2: Compare/Capture 2 interrupt control bit.

CCI3 = 1 is enable.

CCI1: Compare/Capture 1 interrupt control bit.

CCI3 = 1 is enable.

CCI0: Compare/Capture 0 interrupt control bit.

CCI3 = 1 is enable.

CCF3: Compare/Capture 3 flag set by hardware. This flag can be cleared by software.

CCF2: Compare/Capture 2 flag set by hardware. This flag can be cleared by software.

CCF1: Compare/Capture 1 flag set by hardware. This flag can be cleared by software.

CCF0: Compare/Capture 0 flag set by hardware. This flag can be cleared by software.

Compare/Capture interrupt share T2 interrupt vector.



| Mnemonic: CCEN Address: |    |        |     |   |   |        |     |       |  |  |
|-------------------------|----|--------|-----|---|---|--------|-----|-------|--|--|
| 7                       | 6  | 5      | 4   | 3 | 2 | 1      | 0   | Reset |  |  |
| -                       | CC | CAM1[2 | :0] | - | C | CAM0[2 | :0] | 00H   |  |  |

COCAM1[2:0]: 000 - Compare/Capture disable.

- 001 Compare enable but no output on Pin.
- 010 Compare mode 0.
- 011 Compare mode 1.
- 100 Capture on rising edge at pin CC1.
- 101 Capture on falling edge at pin CC1.
- 110 Capture on both rising and falling edge at pin CC1.
- 111 Capture on write operation into register CC1.

#### COCAM0[2:0]: 000 - Compare/Capture disable.

- 001 Compare enable but no output on Pin.
- 010 Compare mode 0.
- 011 Compare mode 1.
- 100 Capture on rising edge at pin CC0.
- 101 Capture on falling edge at pin CC0.
- 110 Capture on both rising and falling edge at pin CC0.
- 111 Capture on write operation into register CC0.



| Mnemonic: CCEN2 Addres |    |         |      |   |   |        |     |       |  |  |
|------------------------|----|---------|------|---|---|--------|-----|-------|--|--|
| 7                      | 6  | 5       | 4    | 3 | 2 | 1      | 0   | Reset |  |  |
| -                      | CC | DCAM3[2 | 2:0] | - | C | CAM2[2 | :0] | 00H   |  |  |

COCAM3[2:0]: 000 - Compare/Capture disable.

- 001 Compare enable but no output on Pin.
- 010 Compare mode 0.
- 011 Compare mode 1.
- 100 Capture on rising edge at pin CC3.
- 101 Capture on falling edge at pin CC3.
- 110 Capture on both rising and falling edge at pin CC3.
- 111 Capture on write operation into register CC3.

#### COCAM2[2:0]: 000 - Compare/Capture disable.

- 001 Compare enable but no output on Pin.
- 010 Compare mode 0.
- 011 Compare mode 1.
- 100 Capture on rising edge at pin CC2.
- 101 Capture on falling edge at pin CC2.
- 110 Capture on both rising and falling edge at pin CC2.
- 111 Capture on write operation into register CC2.

#### 8.1 Timer 2 function

Timer 2 can operate as timer, event counter, or gated timer as explained later.

#### 8.1.1 Timer mode

In this mode Timer 2 can by incremented in various frequency that depending on the prescaler. The prescaler is selected by bit T2PS[2:0] in register T2CON. As shown in Fig. 8-2



Fig. 8-2: Timer mode and Reload mode function



#### 8.1.2 Event counter mode

In this mode, the timer is incremented when external signal T2 change value from 1 to 0. The T2 input is sampled in every cycle. Timer 2 is incremented in the cycle following the one in which the transition was detected. As shown in Fig. 8-3.



Fig. 8-3: Event counter mode function

#### 8.1.3 Gated timer mode

In this mode, the internal clock which incremented timer 2 is gated by external signal T2. As shown in Fig. 8-4



Fig. 8-4: Gated timer mode function

#### 8.1.4 Reload of Timer 2

Reload (16-bit reload from the crc register) can be executed in the following two modes:

Mode 0: Reload signal is generate by a Timer 2 overflows - auto reload

Mode 1: Reload signal is generate by a negative transition at the corresponding input pin T2EX.



### 8.2 Compare function

In the four independent comparators, the value stored in any compare/capture register is compared with the contents of the timer register. The compare modes 0 and 1 are selected by bits C0CAMx. In both compare modes, the results of comparison arrives at Port 1 within the same machine cycle in which the internal compare signal is activated.

#### 8.2.1 Compare Mode 0

In mode 0, when the value in Timer 2 equals the value of the compare register, the output signal changes from low to high. It goes back to a low level on timer overflow. In this mode, writing to the port will have no effect, because the input line from the internal bus and the write-to-latch line are disconnected. As shown in Fig. 8-5 illustrates the function of compare mode 0.



Fig. 8-5: Compare mode 0 function



#### 8.2.2 **Compare Mode 1**

In compare mode 1, the transition of the output signal can be determined by software. A timer 2 overflow causes no output change. In this mode, both transitions of a signal can be controlled. As shown in Fig. 8-6 and Fig. 8-7 a functional diagram of a register/port configuration in compare Mode 1. In compare Mode 1, the value is written first to the "Shadow Register", when compare signal is active, this value is transferred to the output register.



Fig. 8-6: Mode 1 Register/Port Function



Fig. 8-7: Compare mode 1 function

#### 8.3 Capture function

Actual timer/counter contents can be saved into registers CCx or CRC upon an external event (mode 0) or a software write operation (mode 1).



#### 8.3.1 Capture Mode 0 (by Hardware)

In mode 0, value capture of Timer 2 is executed when:

- (1) Rising edge on input CC0-CC3
- (2) Falling edge on input CC0-CC3
- (3) Both rising and falling edge on input CC0-CC3

The contents of Timer 2 will be latched into the appropriate capture register. As shown in Fig. 8-8



Fig. 8-8: Capture mode 0 function

#### 8.3.2 Capture Mode 1(by Software)

In mode 1, value capture of timer 2 is caused by writing any value into the low-order byte of the dedicated capture register. The value written to the capture register is irrelevant to this function. The contents of Timer 2 will be latched into the appropriate capture register. As shown in Fig. 8-9



Fig. 8-9: Capture mode 1 function



## 9. Serial interface

The serial buffer consists of two separate registers, a transmit buffer and a receive buffer.

Writing data to the Special Function Register SBUF sets this data in serial output buffer and starts the transmission. Reading from the SBUF reads data from the serial receive buffer. The serial port can simultaneously Transmit and receive data. It can also buffer 1 byte at receive, which prevents the receive data from being lost if the CPU reads the first byte before transmission of the second byte is completed.

| Mnemonic | Description                                 | Dir. | Bit 7     | Bit 6  | Bit 5     | Bit 4   | Bit 3  | Bit 2  | Bit 1  | Bit 0  | RST |
|----------|---------------------------------------------|------|-----------|--------|-----------|---------|--------|--------|--------|--------|-----|
|          |                                             |      |           | Serial | interface |         |        |        |        |        |     |
| PCON     | Power control                               | 87H  | SMOD      | MDUF   | -         | -       | -      | -      | STOP   | IDLE   | 40H |
| AUX      | Auxiliary register                          | 91h  | BRGS      | P21CC  | -         | P1UR    | -      | -      | -      | DPS    | 00H |
| SCON     | Serial Port control register                | 98H  | SM0       | SM1    | SM2       | REN     | TB8    | RB8    | TI     | RI     | 00H |
| SRELL    | Serial Port reload register low byte        | AAH  | SREL.7    | SREL.6 | SREL.5    | SREL.4  | SREL.3 | SREL.2 | SREL.1 | SREL.0 | 00H |
| SRELH    | Serial Port reload register high byte       | BAH  | -         | -      | -         | -       | -      | -      | SREL.9 | SREL.8 | 00H |
| SBUF     | Serial Port data buffer                     | 99H  | SBUF[7:0] |        |           |         | 00H    |        |        |        |     |
| PFCON    | Peripheral<br>Frequency control<br>register | D9h  | -         | -      | SRELF     | PS[1:0] | T1PS   | S[1:0] | TOPS   | S[1:0] | 00H |

| Mnemo | nic: AUX |   |      |   |   |   | Addres | ss: 91h |
|-------|----------|---|------|---|---|---|--------|---------|
| 7     | 6        | 5 | 4    | 3 | 2 | 1 | 0      | Reset   |
| BRGS  | P21CC    |   | P1UR |   | - | - | DPS    | 00H     |

BRGS: Baud rate generator.

BRGS = 0 - baud rate generator from Timer 1.

BRGS = 1 - baud rate generator by SREL.

P1UR: P1UR = 0 - Serial interface function on P3.

P1UR = 1 - Serial interface function on P1.

| Mnemo | Mnemonic: SCON |     |     |     |     |    |    |       |  |  |
|-------|----------------|-----|-----|-----|-----|----|----|-------|--|--|
| 7     | 6              | 5   | 4   | 3   | 2   | 1  | 0  | Reset |  |  |
| SM0   | SM1            | SM2 | REN | TB8 | RB8 | TI | RI | 00H   |  |  |

SM0, SM1: Serial Port 0 mode selection.

| SM0 | SM1 | Mode |
|-----|-----|------|
| 0   | 0   | 0    |
| 0   | 1   | 1    |
| 1   | 0   | 2    |
| 1   | 1   | 3    |
|     |     |      |

The 4 modes in UART, Mode 0 ~ 3, are explained later.

SM2: Enables multiprocessor communication feature.

REN: If set, enables serial reception. Cleared by software to disable reception.

TB8: The 9th transmitted data bit in modes 2 and 3. Set or cleared by the CPU depending on



the function it performs such as parity check, multiprocessor communication etc.

- RB8: In modes 2 and 3, it is the 9th data bit received. In mode 1, if SM2 is 0, RB8 is the stop bit. In mode 0, this bit is not used. Must be cleared by software.
  - TI: Transmit interrupt flag, set by hardware after completion of a serial transfer. Must be cleared by software.
  - RI: Receive interrupt flag, set by hardware after completion of a serial reception. Must be cleared by software.

#### 9.1 Serial interface

The Serial Interface can operate in the following 4 modes:

| SM0 | SM1 | Mode | Description    | Board Rate         |
|-----|-----|------|----------------|--------------------|
| 0   | 0   | 0    | Shift register | Fosc/12            |
| 0   | 1   | 1    | 8-bit UART     | Variable           |
| 1   | 0   | 2    | 9-bit UART     | Fosc/32 or Fosc/64 |
| 1   | 1   | 3    | 9-bit UART     | Variable           |

Here Fosc is the crystal or oscillator frequency.

#### 9.1.1 Mode 0

Pin RXD serves as input and output. TXD outputs the shift clock. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the crystal frequency. Reception is initialized in Mode 0 by setting the flags in SCON as follows: RI = 0 and REN = 1. In other modes, a start bit when REN = 1 starts receiving serial data. As shown in Fig. 9-1 and Fig. 9-2



#### Fig. 9-1: Transmit mode 0



Fig. 9-2: Receive mode 0



#### 9.1.2 Mode 1

Pin RXD serves as input, and TXD serves as serial output. No external shift clock is used, 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the transmission, 8 data bits are available by reading SBUF, and stop bit sets the flag RB8 in the Special Function Register SCON. In mode 1 either internal baud rate generator or timer 1 can be use to specify baud rate. As shown in Fig. 9-3 and Fig. 9-4

| t_baud_clk    | \ | _ <u>`</u> \ | Λ    | Ĺ.  |    | <u> </u> |    | Ĺ    | ĹΛ  |    | Ĺ.  |    | Λ.  |    | ۸_ |    | Ĺ. |   | Λ   |
|---------------|---|--------------|------|-----|----|----------|----|------|-----|----|-----|----|-----|----|----|----|----|---|-----|
| write_to_SBUF |   |              |      |     |    |          |    |      |     |    |     |    |     |    |    |    |    |   |     |
| t_start       | / |              |      |     |    |          |    |      |     |    |     |    |     |    |    |    |    |   |     |
| t_shift_clk   |   |              | Λ    |     |    | Λ_       |    |      | _Λ  |    | _Λ_ |    | Λ_  |    | Λ  |    | Λ_ |   |     |
| txd           |   |              | / D0 | ) ( | D1 | ) (      | )2 | ( D3 | з ( | D4 | χ   | D5 | ) ( | D6 | χ  | D7 |    | S | top |
| ti            |   |              |      |     |    |          |    |      |     |    |     |    |     |    |    |    |    |   |     |





Fig. 9-4: Receive mode 1

#### 9.1.3 Mode 2

This mode is similar to Mode 1, with two differences. The baud rate is fixed at 1/32 (SMOD=1) or 1/64(SMOD=0) of oscillator frequency and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the serial interface: at transmission, bit TB8 in SCON is output as the 9th bit, and at receive, the 9th bit affects RB8 in Special Function Register SCON.

#### 9.1.4 Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3 either internal baud rate generator or timer 1 can be use to specify baud rate. As shown in Fig. 9-5 and Fig. 9-6.







| receive_clock | $\land$ | Λ         |   |   |   |   |      |      |      |      |     |
|---------------|---------|-----------|---|---|---|---|------|------|------|------|-----|
| rxd           |         | $\square$ | X | X | χ | X | ( D5 | ( D6 | ) D7 | (RB8 | STO |
| r_start       |         |           |   |   |   |   |      |      |      |      |     |
| ri            |         |           |   |   |   |   |      |      |      |      |     |
| rxd_sample    |         |           |   |   |   |   |      |      |      |      |     |
| shift         |         |           |   |   |   |   |      |      |      |      |     |
|               |         | <br>      |   |   |   |   |      |      |      |      |     |



#### 9.2 Multiprocessor Communication of Serial Interface

The feature of receiving 9 bits in Modes 2 and 3 of Serial Interface can be used for multiprocessor communication. In this case, the slave processors have bit SM2 in SCON set to 1. When the master processor outputs slave's address, it sets the 9th bit to 1, causing a serial port receive interrupt in all the slaves. The slave processors compare the received byte with their network address. If there is a match, the addressed slave will clear SM2 and receive the rest of the message, while other slaves will leave SM2 bit unaffected and ignore this message. After addressing the slave, the host will output the rest of the message with the 9th bit set to 0, so no serial port receive interrupt will be generated in unselected slaves.

#### 9.3 Peripheral Frequency control register

| Mnemo | nic: PFCC | ON    |         |      |        |     | Addre  | ss: D9h |
|-------|-----------|-------|---------|------|--------|-----|--------|---------|
| 7     | 6         | 5     | 4       | 3    | 2      | 1   | 0      | Reset   |
| -     | -         | SRELI | PS[1:0] | T1PS | S[1:0] | TOP | S[1:0] | 00H     |

SRELPS[1:0]: SREL Prescaler select

| SRELPS[1:0] | Prescaler |
|-------------|-----------|
| 00          | Fosc/64   |
| 01          | Fosc /32  |

T1PS[1:0]: Timer1 Prescaler select

| T1PS[1:0] | Prescaler |
|-----------|-----------|
| 00        | Fosc/12   |
| 01        | Fosc      |
| 10        | Fosc/96   |
| 11        | reserved  |



#### 9.4 Baud rate generator

#### 9.4.1 Serial interface modes 1 and 3

- 9.4.1.1 When BRGS = 0 (in Special Function Register AUX).
  - (1) T1PS[1:0] is 00

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times 12 \times (256 - \text{TH1})}$$

(2) T1PS[1:0] is 01

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times (256 - \text{TH1})}$$

(3) T1PS[1:0] is 10

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times \text{F}_{\text{osc}}}{32 \times 96 \times (256 - \text{TH1})}$$

- 9.4.1.2 When BRGS = 1 (in Special Function Register AUX).
  - (1) SRELPS[1:0] is 00

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{64 \times (2^{10} - \text{SREL})}$$

(2) SRELPS[1:0] is 01

Baud Rate = 
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times (2^{10} - \text{SREL})}$$



## 10. Watchdog timer

The Watch Dog Timer (WDT) is an 8-bit free-running counter that generate reset signal if the counter overflows. The WDT is useful for systems which are susceptible to noise, power glitches, or electronics discharge which causing software dead loop or runaway. The WDT function can help user software recover from abnormal software condition. The WDT is different from Timer0, Timer1 and Timer2 of general 8052. To prevent a WDT reset can be done by software periodically clearing the WDT counter. User should check WDTF bit of WDTC register whenever un-predicted reset happened. After an external reset the watchdog timer is disabled and all registers are set to zeros.

The watchdog timer has a free running on-chip RC oscillator (23 KHz). The WDT will keep on running even after the system clock has been turned off (for example, in sleep mode). During normal operation or sleep mode, a WDT timeout (if enabled) will cause the MCU to reset. The WDT can be enabled or disabled any time during the normal mode. Please refer the WDTE bit of WDTC register. The default WDT time-out period is approximately 178.0ms (WDTM [3:0] = 0100b).

The WDT has selectable divider input for the time base source clock. To select the divider input, the setting of bit3 ~ bit0 (WDTM [3:0]) of Watch Dog Timer Control Register (WDTC) should be set accordingly. As shown in Table 10-1.

 $WDTCLK = \frac{23 \text{KHz}}{2^{\text{WDTM}}}$ Watchdog reset time =  $\frac{256}{\text{WDTCLK}}$ 

| WDTM [3:0] | Divider<br>(23 KHz RC oscillator in) | Time period @ 23KHz |
|------------|--------------------------------------|---------------------|
| 0000       | 1                                    | 11.1ms              |
| 0001       | 2                                    | 22.2ms              |
| 0010       | 4                                    | 44.5ms              |
| 0011       | 8                                    | 89.0ms              |
| 0100       | 16                                   | 178.0ms (default)   |
| 0101       | 32                                   | 356.1ms             |
| 0110       | 64                                   | 712.3ms             |
| 0111       | 128                                  | 1.4246s             |
| 1000       | 256                                  | 2.8493s             |
| 1001       | 512                                  | 5.6987s             |
| 1010       | 1024                                 | 11.397s             |
| 1011       | 2048                                 | 22.795s             |
| 1100       | 4096                                 | 45.590s             |
| 1101       | 8192                                 | 91.180s             |
| 1110       | 16384                                | 182.36s             |
| 1111       | 32768                                | 364.72s             |

| Table 10-1: | WDT | time-out perio | bd |
|-------------|-----|----------------|----|
|-------------|-----|----------------|----|

Note: RC oscillator (23 KHz), about ± 20% of variation

When MCU is reset, the MCU will be read WDTEN control bit status. When WDTEN bit is set to 1, the watchdog function will be disabled no matter what the WDTE bit status is. When WDTEN bit is clear to 0, the watchdog function will be enabled if WDTE bit is set to 1 by program. User can to set WDTEN on the writer or ISP.

The program can enable the WDT function by programming 1 to the WDTE bit premise that WDTEN control bit is clear to 0. After WDTE set to 1, the 8 bit-counter starts to count with the selected time base source clock which set by WDTM [3:0]. It will generate a reset signal when overflows. The WDTE bit will be cleared to 0 automatically when MCU been reset, either hardware reset or WDT reset. As shown in Fig. 10-1.



Once the watchdog is started it cannot be stopped. User can refreshed the watchdog timer to zero by writing 0x55 to Watch Dog Timer refresh Key (WDTK) register. This will clear the content of the 8-bit counter and let the counter restart to count from the beginning. The watchdog timer must be refreshed regularly to prevent reset request signal from becoming active.

When Watchdog timer is overflow, the WDTF flag will set to one and automatically reset MCU. The WDTF flag can be clear by software or external reset or power on reset.



Fig. 10-1: Watchdog timer block diagram

| Mnemonic | Description                        | Dir. | Bit 7 | Bit 6                    | Bit 5     | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | RST |
|----------|------------------------------------|------|-------|--------------------------|-----------|-------|-------|-------|-------|-------|-----|
|          |                                    |      |       | Watch                    | ndog Time | r     |       |       |       |       |     |
| TAKEY    | Time Access<br>Key register        | F7h  |       | TAKEY [7:0]              |           |       |       |       |       |       | 00H |
| WDTC     | Watchdog timer<br>control register | B6h  | -     | - CWDT WDTE - WDTM [3:0] |           |       |       |       | 04H   |       |     |
| WDTK     | Watchdog timer<br>refresh key      | B7h  |       | WDTK[7:0]                |           |       |       |       |       | 00H   |     |
| RSTS     | Reset status<br>register           | A1h  | -     | -                        | -         | PDRF  | WDTF  | SWRF  | LVRF  | PORF  | 00H |
| RSTS     | Reset status<br>register           | A1h  | -     | -                        | -         | PDRF  | WDTF  | SWRF  | LVRF  | PORF  |     |

| Mnemor | nic: TAKE   | EY |   |   |   |   | Addr | ess: F7h |
|--------|-------------|----|---|---|---|---|------|----------|
| 7      | 6           | 5  | 4 | 3 | 2 | 1 | 0    | Reset    |
|        | TAKEY [7:0] |    |   |   |   |   |      |          |

Watchdog timer control register (WDTC) is read-only by default; software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the WDTC write attribute. That is:

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah



Address B6h

#### Mnemonic: WDTC

|   |       |      |   |   |      |         | 7100010 |       |
|---|-------|------|---|---|------|---------|---------|-------|
| 7 | 6     | 5    | 4 | 3 | 2    | 1       | 0       | Reset |
| - | CWDTR | WDTE | - |   | WDTN | M [3:0] |         | 04H   |
|   |       |      |   |   |      |         |         |       |

CWDTR: Watch dog states select bit(Support stop mode wakeup)

CWDTR = 0 - Enable watch dog reset.

CWDTR = 1 - Enable watch dog interrupt.

WDTE: Control bit used to enable Watchdog timer.

The WDTE bit can be used only if WDTEN is "0". If the WDTEN bit is "0", then WDT can be disabled / enabled by the WDTE bit.

WDTE = 0 - Disable WDT.

WDTE = 1 - Enable WDT.

The WDTE bit is not used if WDTEN is "1". That is, if the WDTEN bit is "1", WDT is always disabled no matter what the WDTE bit status is. The WDTE bit can be read and written.

WDTM [3:0]: WDT clock source divider bit. As seen in Fig. 10-1 to reference the WDT time-out period.

| Mnemo | nic: RSTS | 6 |      |      |      |      | Addres | s: A1h |
|-------|-----------|---|------|------|------|------|--------|--------|
| 7     | 6         | 5 | 4    | 3    | 2    | 1    | 0      | Reset  |
| -     | -         | - | PDRF | WDTF | SWRF | LVRF | PORF   | 00h    |

WDTF: Watchdog timer reset flag. When MCU is reset by watchdog, WDTF flag will be set to one by hardware. This flag clear by software

| Mnemo | nic: WDT | Κ |     |        |   |   | Addres | ss: B7h |
|-------|----------|---|-----|--------|---|---|--------|---------|
| 7     | 6        | 5 | 4   | 3      | 2 | 1 | 0      | Reset   |
|       |          |   | WDT | K[7:0] |   |   |        | 00h     |

WDTK: Watchdog timer refresh key.

A programmer must write 0x55 into WDTK register, and then the watchdog timer will be cleared to zero.

For example 1, if enable WDT and select time-out reset period is 2.8493s. First, programming the information block OP3 bit7 WDTEN to "0".

Secondly, MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah ; enable WDTC write attribute. ; Set WDTM [3:0] = 1000b. Set WDTE =1 to enable WDT function. MOV WDTC, #28h

MOV WDTK, #55h ; Clear WDT timer to 0.



For example 2, if enable WDT and select time-out Interrupt period is 178.0ms. First, programming the information block OP3 bit7 WDTEN to "0". Secondly, MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah ; enable WDTC write attribute. MOV WDTC, #64h ;Set WDTM [3:0] = 0100b. ;Set WDTE =1 to enable WDT function ; and Set CWDTR =1 to enable period interrupt function



## 11. Interrupt

The SM39A16M1 provides 13 interrupt sources with four priority levels. Each source has its own request flag(s) located in a special function register. Each interrupt requested by the corresponding flag could individually be enabled or disabled by the enable bits in SFR's IEN0, IEN1.

When the interrupt occurs, the engine will vector to the predetermined address as given in Table 11-1. Once interrupt service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a return from instruction RETI. When an RETI is performed, the processor will return to the instruction that would have been next when interrupt occurred.

When the interrupt condition occurs, the processor will also indicate this by setting a flag bit. This bit is set regardless of whether the interrupt is enabled or disabled. Each interrupt flag is sampled once per machine cycle, and then samples are polled by hardware. If the sample indicates a pending interrupt when the interrupt is enabled, then interrupt request flag is set. On the next instruction cycle the interrupt will be acknowledged by hardware forcing an LCALL to appropriate vector address.

Interrupt response will require a varying amount of time depending on the state of microcontroller when the interrupt occurs. If microcontroller is performing an interrupt service with equal or greater priority, the new interrupt will not be invoked. In other cases, the response time depends on current instruction. The fastest possible response to an interrupt is 7 machine cycles. This includes one machine cycle for detecting the interrupt and six cycles for perform the LCALL.

|    | Interrupt Request Flags          | Interrupt Vector<br>Address | Interrupt Number<br>*(use Keil C Tool) |
|----|----------------------------------|-----------------------------|----------------------------------------|
| 1  | IE0 – External interrupt 0       | 0003h                       | 0                                      |
| 2  | TF0 – Timer 0 interrupt          | 000Bh                       | 1                                      |
| 3  | IE1 – External interrupt 1       | 0013h                       | 2                                      |
| 4  | TF1 – Timer 1 interrupt          | 001Bh                       | 3                                      |
| 5  | RI/TI – Serial channel interrupt | 0023h                       | 4                                      |
| 6  | TF2/EXF2 – Timer 2 interrupt     | 002Bh                       | 5                                      |
| 7  | PWMIF – PWM interrupt            | 0043h                       | 8                                      |
| 8  | SPIIF – SPI interrupt            | 004Bh                       | 9                                      |
| 9  | ADCIF – A/D converter interrupt  | 0053h                       | 10                                     |
| 10 | LVIIF – Low Voltage Interrupt    | 0063h                       | 12                                     |
| 11 | IICIF – IIC interrupt            | 006Bh                       | 13                                     |
| 12 | WDT – Watchdog interrupt         | 008Bh                       | 17                                     |
| 13 | Comparator interrupt             | 0093h                       | 18                                     |

Table 11-1: Interrupt vectors

\*See Keil C about C51 User's Guide about Interrupt Function description



| Mnemonic | Description                    | Dir. | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1     | Bit 0 | RST |
|----------|--------------------------------|------|-----------|-------|-------|-------|-------|-------|-----------|-------|-----|
|          | Interrupt                      |      |           |       |       |       |       |       |           |       |     |
| IEN0     | Interrupt Enable<br>0 register | A8H  | EA        | -     | ET2   | ES    | ET1   | EX1   | ET0       | EX0   | 00H |
| IEN1     | Interrupt Enable<br>1 register | B8H  | EXEN<br>2 | -     | IEIIC | IELVI | -     | IEADC | IESPI     | -     | 00H |
| IEN2     | Interrupt Enable<br>2 register | 9AH  | -         | -     | -     | -     | -     | ECmpl | EWDT      | -     | 00H |
| IRCON    | Interrupt request<br>register  | C0H  | EXF2      | TF2   | IICIF | LVIIF |       | ADCIF | SPIIF     |       | 00H |
| IRCON2   | Interrupt request register 2   | 97H  | -         | -     | -     | -     | -     | CmpIF | WDT<br>IF | -     | 00H |
| IP0      | Interrupt priority<br>level 0  | A9H  | -         | -     | IP0.5 | IP0.4 | IP0.3 | IP0.2 | IP0.1     | IP0.0 | 00H |
| IP1      | Interrupt priority<br>level 1  | B9H  | -         | -     | IP1.5 | IP1.4 | IP1.3 | IP1.2 | IP1.1     | IP1.0 | 00H |

| Mnemo | nic: IEN0 |     |    |     |     |     | Addre | ess: A8h |
|-------|-----------|-----|----|-----|-----|-----|-------|----------|
| 7     | 6         | 5   | 4  | 3   | 2   | 1   | 0     | Reset    |
| EA    | -         | ET2 | ES | ET1 | EX1 | ET0 | EX0   | 00h      |

EA: EA=0 – Disable all interrupt.

EA=1 - Enable all interrupt.

ET2: ET2=0 - Disable Timer 2 overflow or external reload interrupt.

ET2=1 - Enable Timer 2 overflow or external reload interrupt.

ES: ES=0 - Disable Serial channel interrupt.

ES=1 - Enable Serial channel interrupt.

ET1: ET1=0 - Disable Timer 1 overflow interrupt.

ET1=1 - Enable Timer 1 overflow interrupt.

EX1: EX1=0 – Disable external interrupt 1.

EX1=1 - Enable external interrupt 1.

ET0: ET0=0 – Disable Timer 0 overflow interrupt.

ET0=1 - Enable Timer 0 overflow interrupt.

EX0: EX0=0 - Disable external interrupt 0.

EX0=1 - Enable external interrupt 0.

#### Mnemonic IEN1

| Mnemoni | Addre | ss: B8h |       |   |       |       |   |       |
|---------|-------|---------|-------|---|-------|-------|---|-------|
| 7       | 6     | 5       | 4     | 3 | 2     | 1     | 0 | Reset |
| EXEN2   | -     | IEIIC   | IELVI | - | IEADC | IESPI | - | 00H   |

EXEN2: Timer 2 reload interrupt enable.

EXEN2 = 0 – Disable Timer 2 external reload interrupt.

EXEN2 = 1 – Enable Timer 2 external reload interrupt.

IEIIC: IIC interrupt enable.

IEIICS = 0 – Disable IIC interrupt.

Address, OAb



IEIICS = 1 – Enable IIC interrupt.

IELVI: LVI interrupt enable.

IELVI = 0 – Disable LVI interrupt.

IELVI = 1 – Enable LVI interrupt.

IEADC: A/D converter interrupt enable

IEADC = 0 - Disable ADC interrupt.

IEADC = 1 - Enable ADC interrupt.

IESPI: SPI interrupt enable.

IESPI = 0 – Disable SPI interrupt.

IESPI = 1 – Enable SPI interrupt.

## Mnemonic: IEN2

|   |   |   |   |   |       |      | Addre | 55. JAN |
|---|---|---|---|---|-------|------|-------|---------|
| 7 | 6 | 5 | 4 | 3 | 2     | 1    | 0     | Reset   |
| - | - | - | - | - | ECmpl | EWDT | -     | 00H     |

ECmpl: Enable Comparator interrupt (include comparator\_0 and comparator\_1).

ECmpl = 0 - Disable Comparator interrupt.

ECmpl = 1 - Enable Comparator interrupt.

EWDT: Enable Watch dog interrupt.

EWDT = 0 - Disable Watch dog interrupt.

EWDT = 1 - Enable Watch dog interrupt.

| Mnemonic: IRCON |     |       |       |   |       |       |   | ss: C0h |
|-----------------|-----|-------|-------|---|-------|-------|---|---------|
| 7               | 6   | 5     | 4     | 3 | 2     | 1     | 0 | Reset   |
| EXF2            | TF2 | IICIF | LVIIF | - | ADCIF | SPIIF | - | 00H     |

EXF2: Timer 2 external reload flag. Must be cleared by software.

TF2: Timer 2 overflow flag. Must be cleared by software.

IICIF: IIC interrupt flag. Hardware will clear this flag automatically when enter interrupt vector.

LVIIF: LVI interrupt flag. Hardware will clear this flag automatically when enter interrupt vector.

ADCIF: A/D converter end interrupt flag. Hardware will clear this flag automatically when enter interrupt vector.

SPIIF: SPI interrupt flag. Hardware will clear this flag automatically when enter interrupt vector.



| Mnemonic:IRCON2 |   |   |   |   |       |       |   | ess: 97h |
|-----------------|---|---|---|---|-------|-------|---|----------|
| 7               | 6 | 5 | 4 | 3 | 2     | 1     | 0 | Reset    |
| -               | - | - | - | - | CmpIF | WDTIF | - | 00H      |

CmpIF Comparator interrupt flag.

HW will clear this flag automatically when enter interrupt vector.

SW can clear this flag also.(in case analog comparator INT disable)

WDTIF: Watch dog interrupt flag. Hardware will clear this flag automatically when enter interrupt vector.

#### **11.1 Priority level structure**

All interrupt sources are combined in groups, As given in Table 11-2.

IP1.5

IP1.4

|                          | Groups               |               |  |  |  |  |  |  |
|--------------------------|----------------------|---------------|--|--|--|--|--|--|
| External interrupt 0     | -                    | PWM interrupt |  |  |  |  |  |  |
| Timer 0 interrupt        | Watchdog interrupt   | SPI interrupt |  |  |  |  |  |  |
| External interrupt 1     | Comparator interrupt | ADC interrupt |  |  |  |  |  |  |
| Timer 1 interrupt        | -                    |               |  |  |  |  |  |  |
| Serial channel interrupt | -                    | LVI interrupt |  |  |  |  |  |  |
| Timer 2 interrupt        | -                    | IIC interrupt |  |  |  |  |  |  |

| Table | 11-2: | Priority  | level | aroups |
|-------|-------|-----------|-------|--------|
| iabio |       | 1 1101109 | 10101 | groupo |

Each group of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register ip0 and one in ip1. If requests of the same priority level will be received simultaneously, an internal polling sequence determines which request is serviced first. As given in Table 11-3 and Table 11-4 and Table 11-5.

| Mnemo | nic: IP0 |       |       |       |       |       | Addres | ss: A9h |
|-------|----------|-------|-------|-------|-------|-------|--------|---------|
| 7     | 6        | 5     | 4     | 3     | 2     | 1     | 0      | Reset   |
| -     | -        | IP0.5 | IP0.4 | IP0.3 | IP0.2 | IP0.1 | IP0.0  | 00h     |
| Mnemo | nic: IP1 |       |       |       |       |       | Addres | ss: B9h |
| 7     | 6        | 5     | 4     | 3     | 2     | 1     | 0      | Reset   |

IP1.3

IP1.2

IP1.1

IP1.0

00h

|   | Table 11-3: Priority levels |       |                  |  |  |  |  |  |
|---|-----------------------------|-------|------------------|--|--|--|--|--|
|   | IP1.x                       | IP0.x | Priority Level   |  |  |  |  |  |
|   | 0                           | 0     | Level0 (lowest)  |  |  |  |  |  |
|   | 0                           | 1     | Level1           |  |  |  |  |  |
|   | 1                           | 0     | Level2           |  |  |  |  |  |
| Ē | 1                           | 1     | Level3 (highest) |  |  |  |  |  |



#### Table 11-4: Groups of priority

| Bit          |                          | Group                |               |
|--------------|--------------------------|----------------------|---------------|
| IP1.0, IP0.0 | External interrupt 0     | -                    | PWM interrupt |
| IP1.1, IP0.1 | Timer 0 interrupt        | Watchdog interrupt   | SPI interrupt |
| IP1.2, IP0.2 | External interrupt 1     | Comparator interrupt | ADC interrupt |
| IP1.3, IP0.3 | Timer 1 interrupt        | -                    |               |
| IP1.4, IP0.4 | Serial channel interrupt | -                    | LVI interrupt |
| IP1.5, IP0.5 | Timer 2 interrupt        | -                    | IIC interrupt |

#### Table 11-5: Polling sequence

| Interrupt source         | Sequence |
|--------------------------|----------|
| External interrupt 0     |          |
| PWM interrupt            |          |
| Timer 0 interrupt        |          |
| Watchdog interrupt       | п        |
| SPI interrupt            | olli     |
| External interrupt 1     | ng :     |
| Comparator interrupt     | seq      |
| ADC interrupt            | uen      |
| Timer 1 interrupt        | Ce       |
| Serial channel interrupt |          |
| LVI interrupt            |          |
| Timer 2 interrupt        | ↓ ↓      |
| IIC interrupt            |          |



## 12. Power Management Unit

Power management unit serves two power management modes, IDLE and STOP, for the users to do power saving function.

| N | Mnemonic: PCON |      |   |   |   |   |      |      | ess: 87h |
|---|----------------|------|---|---|---|---|------|------|----------|
|   | 7              | 6    | 5 | 4 | 3 | 2 | 1    | 0    | Reset    |
| S | MOD            | MDUF | - | - | - | - | STOP | IDLE | 40h      |

STOP: Stop mode control bit. Setting this bit turning on the Stop Mode.

Stop bit is always read as 0.

IDLE: Idle mode control bit. Setting this bit turning on the Idle Mode.

Idle bit is always read as 0.

#### 12.1 Idle mode

Setting the IDLE bit of PCON register invokes the IDLE mode. The IDLE mode leaves internal clocks and peripherals running. Power consumption drops because the CPU is not active. The CPU can exit the IDLE state with any interrupts or a reset.

#### 12.2 Stop mode

Setting the STOP bit of PCON register invokes the STOP mode. All internal clocking in this mode is turn off. The CPU will exit this state from a no-clocked interrupt (external INT0/1, LVI, Watchdog interrupt, and comparator interrupt) or a reset (WDT and LVR) condition. Internally generated interrupts (timer, serial port ...) have no effect on stop mode since they require clocking activity.



## 13. Pulse Width Modulation (PWM)

PWM module features:

- Eight-channel (four-pair) PWM output pins.
- 14-bit resolution.
- Center and Edge Alignment output mode.
- Dead time generator.
- PWM and Special Event Interrupt Trigger.
- Output Override Function for motor control.
- Overdrive current protect for the fault (FLTA and FLTB)

There under is the working module of the PWM, As shown in Fig. 13-1



Fig. 13-1: Working module of the PWM



#### The interrupt vector is 43h.

| Mnemonic           | Description                           | Dir. | Bit 7         | Bit 6                           | Bit 5                | Bit 4                 | Bit 3             | Bit 2             | Bit 1             | Bit 0             | RST |
|--------------------|---------------------------------------|------|---------------|---------------------------------|----------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----|
|                    |                                       |      |               | P                               | WM                   |                       |                   |                   |                   |                   |     |
| ADCC2              | ADC control 2<br>Reg.                 | ACh  | Start         | ADJU<br>ST                      | PWMT<br>rigger<br>EN | EXTTri<br>ggerE<br>N  | ADCM<br>ODE       | A                 | DCCH[2:           | 0]                | 08h |
| PWMTBC0            | PWM Time Base<br>Control 0 Reg.       | F9h  | -             | -                               | -                    | -                     | PWM1<br>[1        | BPRE<br>:0]       | PWMT<br>[1        | BMOD<br>:0]       | 00H |
| PWMTBC1            | PWM Time Base<br>Control 1 Reg.       | FAh  | PWMT<br>BEN   | -                               | -                    | PWM<br>Protec<br>tDIS | -                 | -                 | SEVT<br>IE        | PWMP<br>IE        | 10H |
| PWMOPMO<br>D       | PWM Output Pair<br>Mode Reg.          | FBh  | -             | -                               | -                    | -                     | PWM<br>OP3<br>MOD | PWM<br>OP2<br>MOD | PWM<br>OP1<br>MOD | PWM<br>OP0<br>MOD | 00H |
| TBCOUNTE<br>RL     | Time Base<br>Counter (Low)            | FCh  |               |                                 | Time                 | Base Co               | unter Low         | 8 bit             |                   |                   | 00H |
| TBCOUNTE<br>RH     | Time Base<br>Counter (High)           | FDh  | -             | Time Base Counter High 6 bit    |                      |                       |                   |                   |                   | 00H               |     |
| PERIODL            | PWM Period<br>(Low) Reg.              | F1h  |               | 1                               | Р                    | WM Peric              | d Low 8 b         | bit               |                   |                   | FFH |
| PERIODH            | PWM Period<br>(High) Reg.             | F2h  | -             | -                               |                      | P                     | WM Perio          | d High 6 I        | oit               |                   | 3FH |
| SEVTCMPL           | Special Event<br>Compare Low<br>Reg.  | F3h  |               | Special Event Compare Low 8 bit |                      |                       |                   |                   |                   | FFH               |     |
| SEVTCMPH           | Special Event<br>Compare High<br>Reg. | F4h  | -             | -                               |                      | Special               | Event Co          | ompare Hi         | gh 6 bit          |                   | 3FH |
| PWMEN              | PWM Output<br>Enable Reg.             | F5h  | PWM7<br>EN    | PWM6<br>EN                      | PWM5<br>EN           | PWM4<br>EN            | PWM3<br>EN        | PWM2<br>EN        | PWM1<br>EN        | PWM0<br>EN        | 00H |
| PWMSEV             | PWM Special<br>Event Reg.             | EDh  |               | SEVPC                           | ST[3:0]              |                       | SEVT<br>DIR       | -                 | UDIS              | OSYN<br>C         | 00H |
| PWMTBPO<br>STSCALE | PWM TIME<br>BASE POST<br>SCALE Reg.   | EEh  |               |                                 |                      | PWMTBF                | POST[7:0]         |                   |                   |                   | 00H |
| PWMINTF            | PWM INT Flag<br>Reg.                  | BCh  | PWMT<br>BDIR  | -                               | -                    | -                     | -                 | -                 | SEVT<br>IF        | PWMP<br>IF        | 00H |
| DEADTIME<br>0      | Dead Time 0<br>Reg.                   | E9h  | DTOPF         | RE[1:0]                         |                      |                       | DT0               | [5:0]             |                   |                   | 00H |
| DEADTIME<br>1      | Dead Time 1<br>Reg.                   | EAh  | DT1PF         | RE[1:0]                         |                      |                       | DT1               | [5:0]             |                   |                   | 00H |
| DEADTIME           | Dead Time 2<br>Reg.                   | EBh  | DT2PF         | RE[1:0]                         |                      |                       | DT2               | [5:0]             |                   |                   | 00H |
| DEADTIME<br>3      | Dead Time 3<br>Reg.                   | ECh  | DT3PF         | RE[1:0]                         |                      | 1                     | DT3               | [5:0]             |                   |                   | 00H |
| FLTCONFIG          | Fault Config Reg.                     | DBh  | BRFE<br>N     | FLTBS                           | FLTB<br>MOD          | FLTB<br>EN            | FLT<br>CON        | FLTA<br>S         | FLTA<br>MOD       | FLTA<br>EN        | 80H |
| FLTNF              | Fault noise filter<br>Reg.            | DCh  | -             | -                               | FLTB<br>LS           | FLTA<br>LS            | FLTBN             | NF[1:0]           | FLTAN             | NF[1:0]           | 00H |
| PWMPOLA<br>RITY    | PWM Polarity<br>Reg.                  | DDh  | Polarit<br>y7 | Polarit<br>y6                   | Polarit<br>y5        | Polarit<br>y4         | Polarit<br>y3     | Polarit<br>y2     | Polarit<br>y1     | Polarit<br>y0     | FFH |
| OVRIDEDIS          | Override Disable<br>Reg.              | DEh  | OV7<br>DIS    | OV6<br>DIS                      | OV5<br>DIS           | OV4<br>DIS            | OV3<br>DIS        | OV2<br>DIS        | OV1<br>DIS        | OV0<br>DIS        | FFH |
| OVRIDEDA           | Override Data                         | DFh  | OV7           | OV6                             | OV5                  | OV4                   | OV3               | OV2               | OV1               | OV0               | 00H |



| TA     | Reg.                         |     | DATA                | DATA                 | DATA                 | DATA    | DATA       | DATA       | DATA | DATA |     |
|--------|------------------------------|-----|---------------------|----------------------|----------------------|---------|------------|------------|------|------|-----|
| DUTY0L | PWM 0 Duty Low byte Reg.     | D1h |                     |                      | P                    | WM0 Dut | ty Low 8 b | oit        |      |      | 00H |
| DUTY0H | PWM 0 Data<br>High byte Reg. | D2h | -                   | -                    |                      | Р       | WM0 Dut    | y High 6 t | oit  |      | 00H |
| DUTY1L | PWM 1 Duty Low byte Reg.     | D3h |                     |                      | F                    | WM1 Dut | ty Low 8 b | oit        |      |      | 00H |
| DUTY1H | PWM 1 Data<br>High byte Reg. | D4h | -                   | PWM1 Duty High 6 bit |                      |         |            |            |      | 00H  |     |
| DUTY2L | PWM 2 Duty Low byte Reg.     | D5h |                     | PWM2 Duty Low 8 bit  |                      |         |            |            |      | 00H  |     |
| DUTY2H | PWM 2 Duty<br>High byte Reg. | D6h | -                   | PWM2 Duty High 6 bit |                      |         |            |            | 00H  |      |     |
| DUTY3L | PWM 3 Duty Low byte Reg.     | D7h | PWM3 Duty Low 8 bit |                      |                      |         |            | 00H        |      |      |     |
| DUTY3H | PWM 3 Duty<br>High byte Reg. | C9h | -                   | -                    | PWM3 Duty High 6 bit |         |            |            |      |      | 00H |

|   | Mnemonic:ADCC2 Address: ACh (ADC Control Register 2) |        |                  |                  |             |            |   |   |       |  |  |  |
|---|------------------------------------------------------|--------|------------------|------------------|-------------|------------|---|---|-------|--|--|--|
| _ | · 7                                                  | 6      | 5                | 4                | 3           | 2          | 1 | 0 | Reset |  |  |  |
|   | Start                                                | ADJUST | PWMTri<br>ggerEN | EXTTrig<br>gerEN | ADCMO<br>DE | ADCCH[2:0] |   |   | 08H   |  |  |  |

Start: When this bit is set, the ADC will be start conversion.

(SW trigger conversion)

ADJUST: Adjust the format of ADC conversion DATA.

ADJUST = 0: (default value)

ADC data high byte ADCD [9:2] = ADCDH [7:0].

ADC data low byte ADCD [1:0] = ADCDL [1:0].

ADJUST = 1:

ADC data high byte ADCD [9:8] = ADCDH [1:0].

ADC data low byte ADCD [7:0] = ADCDL [7:0].

PWMTriggerEN: PWM trigger ADC to start conversion.

(HW internal trigger conversion)

0 = Disable

1 = Enable

EXTTriggerEN: External Pin trigger ADC to start conversion.

(HW external trigger conversion)

0 = Disable

1 = Enable

ADCMODE: 0 = Continuous mode

1 = Single-shot mode

ADCCH[2:0]: ADC channel select.



| ADCCH [2:0] | Channel |  |  |  |  |
|-------------|---------|--|--|--|--|
| 000         | 0       |  |  |  |  |
| 001         | 1       |  |  |  |  |
| 010         | 2       |  |  |  |  |
| 011         | 3       |  |  |  |  |
| 100         | 4       |  |  |  |  |
| 101         | 5       |  |  |  |  |
| 110         | 6       |  |  |  |  |
| 111         | 7       |  |  |  |  |

| Mnemonie<br>(PWM Tim | Mnemonic: PWMTBC0<br>(PWM Time Base Control 0)Address: F9h |   |   |               |   |                             |   |       |  |  |  |
|----------------------|------------------------------------------------------------|---|---|---------------|---|-----------------------------|---|-------|--|--|--|
| 7                    | 6                                                          | 5 | 4 | 3             | 2 | 1                           | 0 | Reset |  |  |  |
| -                    | -                                                          | - | - | PWMTBPRE[1:0] |   | PWMTBPRE[1:0] PWMTBMOD[1:0] |   | 00H   |  |  |  |

PWMTBPRE[1:0]: PWM Time Base PreScale

| PWMTBPRE<br>[1:0] | Mode    |
|-------------------|---------|
| 00                | Fosc    |
| 01                | Fosc/4  |
| 10                | Fosc/16 |
| 11                | Fosc/64 |

PWMTBMOD: PWM Time Base Mode

PWMTBMOD [1:0] = 00 - Free Running mode (Edge-align).

PWMTBMOD [1:0] = 01 - Single-shot mode (Edge-align).

PWMTBMOD [1:0] = 10 - Continuous up/down counting mode (Center-align). (TBCOUNTER = PERIOD generate an interrupt)

PWMTBMOD [1:0] = 11 - Continuous up/down counting with interrupt for double PWM updates (Center-align). (TBCOUNTER = PERIOD and TBCOUNTER = 0 generate an interrupt)

|          | Freq = 24MHz, Period = 1 | 4 bit                      |
|----------|--------------------------|----------------------------|
| Prescale | PWM Frequency Edge-align | PWM Frequency Center-align |
| 1:1      | 1500 Hz                  | 750 Hz                     |
| 1:4      | 375 Hz                   | 188 Hz                     |
| 1:16     | 94 Hz                    | 47 Hz                      |
| 1:64     | 23 Hz                    | 12 Hz                      |

| Mnemonio<br>(PWM Tim | Addr | ess: FAh |                   |   |   |        |        |       |
|----------------------|------|----------|-------------------|---|---|--------|--------|-------|
| 7                    | 6    | 5        | 4                 | 3 | 2 | 1      | 0      | Reset |
| PWMTB<br>EN          | -    | -        | PWMPro<br>tectDIS | - | - | SEVTIE | PWMPIE | 10H   |



PWMTBEN: PWM Time Base Enable.

- 0 = PWM Time Base Disable.
- 1 = PWM Time Base Enable.
- WMProtectDIS: PWM Protect Set (fool proof circuit).
  - 0 = Enable. (Aaply to complementary mode.)
  - 1 = Disable.

PWM0/PWM1, PWM2/PWM3, PWM4/PWM5, PWM6/PWM7, Protect enable/disable.

SEVTIE: Special Event Interrupt Enable.

SEVTIE = 0 - Special Event Interrupt Disable.

SEVTIE = 1 - Special Event Interrupt Enable.

PWMPIE: PWM Period Interrupt Enable.

PWMPIE = 0 - PWM Period Interrupt Diable.

PWMPIE = 1 - PWM Period Interrupt Enable.

| PWM<br>0(/2/4/6) | PWM<br>1(/3/5/7) |               | PWM<br>0(/2/4/6) | PWM<br>1(/3/5/7) |               |  |
|------------------|------------------|---------------|------------------|------------------|---------------|--|
| In-active        | In-active        | Protect       | In-active        | In-active        | Polarity      |  |
| In-active        | active           | $\rightarrow$ | In-active        | active           | $\rightarrow$ |  |
| active           | In-active        |               | active           | In-active        |               |  |
| active           | active           |               | In-active        | In-active        |               |  |



Fig. 13-2: Opertion of the PWM Protect Mode



Address: FRh

# Mnemonic: PWMOPMOD

| (PWM Output Pair Mode) |   |   |   |               |               |               |               |       |  |  |
|------------------------|---|---|---|---------------|---------------|---------------|---------------|-------|--|--|
| 7                      | 6 | 5 | 4 | 3             | 2             | 1             | 0             | Reset |  |  |
| -                      | - | - | - | PWMOP3<br>MOD | PWMOP2<br>MOD | PWMOP1<br>MOD | PWMOP0<br>MOD | 00H   |  |  |

PWMOP3MOD: PWM Output Pair 3 Mode.

0 = (PWM6, PWM7) is complementary mode.

1 = (PWM6, PWM7) is independent mode.

PWMOP2MOD: PWM Output Pair 2 Mode.

0 = (PWM4, PWM5) is complementary mode.

1 = (PWM4, PWM5) is independent mode.

PWMOP1MOD: PWM Output Pair 1 Mode.

0 = (PWM2, PWM3) is complementary mode.

1 = (PWM2, PWM3) is independent mode.

PWMOP0MOD: PWM Output Pair 0 Mode.

0 = (PWM0, PWM1) is complementary mode.

1 = (PWM0, PWM1) is independent mode.

| Mnemonic: PWMEN Address |        |        |        |        |        |        |        | ss: F5h |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|---------|
| 7                       | 6      | 5      | 4      | 3      | 2      | 1      | 0      | Reset   |
| PWM7EN                  | PWM6EN | PWM5EN | PWM4EN | PWM3EN | PWM2EN | PWM1EN | PWM0EN | 00H     |

PWM7EN: PWM 7 Enable.

PWM7EN = 0 - PWM7 Output Disable.

PWM7EN = 1 - PWM7 Output Enable.

PWM6EN: PWM 6 Enable.

PWM6EN = 0 - PWM6 Output Disable.

PWM6EN = 1 - PWM6 Output Enable.

PWM5EN: PWM 5 Enable.

PWM5EN = 0 - PWM5 Output Disable.

PWM5EN = 1 - PWM5 Output Enable.

PWM4EN: PWM 4 Enable.

PWM4EN = 0 - PWM4 Output Disable.

PWM4EN = 1 - PWM4 Output Enable.

PWM3EN: PWM 3 Enable.

PWM3EN = 0 - PWM3 Output Disable.

PWM3EN = 1 - PWM3 Output Enable.

PWM2EN: PWM 2 Enable.

PWM2EN = 0 - PWM2 Output Disable.

PWM2EN = 1 - PWM2 Output Enable.



PWM1EN: PWM 1 Enable. PWM1EN =0 - PWM1 Output Disable. PWM1EN =1 - PWM1 Output Enable. PWM0EN: PWM 0 Enable. PWM0EN =0 - PWM0 Output Disable. PWM0EN =1 - PWM0 Output Enable.

| Mnemonic: | PWMSEV    |
|-----------|-----------|
|           | · · · · · |

| (PWM Spe         | cial Event) |         |   |         |   |      | Addre | ss: EDh |  |
|------------------|-------------|---------|---|---------|---|------|-------|---------|--|
| ` 7 <sup>·</sup> | 6           | 5       | 4 | 3       | 2 | 1    | 0     | Reset   |  |
|                  | SEVPO       | ST[3:0] |   | SEVTDIR | - | UDIS | OSYNC | 00H     |  |

SEVPOST: Special Event Postscale Set (How many PWM period happen will a triger need)

SEVPOST [3:0] 0000 = 1:1 Postscale

SEVPOST [3:0] 0001 = 1:2 Postscale

÷ •

SEVPOST [3:0] 1111 = 1:16 Postscale

SEVTDIR: Special event trigger time base direction.

SEVTDIR = 0 - PWM time base is counting upwards.

SEVTDIR = 1 - PWM time base is counting downwards.

UDIS: PWM update disable. (This bit affects PERIOD, DUTY, SEVTCMP; OVRIDEDIS,

OVRIDEDATA)

UDIS = 0 - Update from duty cycle and period buffer are Enable.

UDIS = 1 - Update from duty cycle and period buffer are Disable.

OSYNC: PWM output override synchronization.

OSYNC = 0 - Output overrides via the OVRIDEDIS register are asynchronous.

OSYNC = 1 - Output overrides via the OVRIDEDIS register are synchronized to the PWM time base.

| Mnemonic:       | Mnemonic: PWMTBPOSTSCALE Addre |  |  |  |  |  |  |       |  |
|-----------------|--------------------------------|--|--|--|--|--|--|-------|--|
| 7 6 5 4 3 2 1 0 |                                |  |  |  |  |  |  | Reset |  |
| PWMTBPOST [7:0] |                                |  |  |  |  |  |  |       |  |

PWMTBPOST[7:0] PWM Time Base Post Scale. (How many PWM period happen will a triger need)

0000 0000 = 1:1 Postscale

0000 0001 = 1: 2 Postscale

5 :

0000\_1111 = 1: 16 Postscale

#### 0001 0000 = 1: 17 Postscale



1111\_111 = 1: 256 Postscale

| Mnemonic: PWMINTF Address: BC (PWM Interrupt Flag) |   |   |   |   |   |        |            |       |
|----------------------------------------------------|---|---|---|---|---|--------|------------|-------|
| 7                                                  | 6 | 5 | 4 | 3 | 2 | 1      | 0          | Reset |
| PWMTB<br>DIR                                       | - | - | - | - | - | SEVTIF | PWMP<br>IF | 00H   |

PWMTBDIR: PWM Time Base Count Direction Status.(Read only)

0 = Counts up.

÷

1 = Counts down.

SEVTIF: Special Event Interrupt Flag. Must be cleared by software.

PWMPIF: PWM Period Interrupt Flag. Must be cleared by software.

#### 13.1 Dead Time

When the half-bridge circuit is applying, at the same time of upper and lower arm turn state period, due to characters of TON and TOFF, power crystal can not instantaneous complete turn state, so as to cause a short circuit, then must spare a certain time to allow power crystal turn state.

Each pair of complementary PWM output have a 6 bit down counter, due to produce dead time as below figure, each dead time unit has a rising edge and falling edge detector, according to the counter and when the value of number is zero, the output is just converted. As shown in Fig. 13-3.



Fig. 13-3: PWM output Compare



| Mnemonic<br>(Dead Tim | onic: DEADTIME0 Addres Time 0 for PWM Pair 0) |   |          |   |   |   |   |       |
|-----------------------|-----------------------------------------------|---|----------|---|---|---|---|-------|
| 7                     | 6                                             | 5 | 4        | 3 | 2 | 1 | 0 | Reset |
| DT0PF                 | RE[1:0]                                       |   | DT0[5:0] |   |   |   |   | 00H   |

DT0PRE[1:0]: Dead Time 0 Prescale

00 = Fosc/201 = Fosc/4

10 = Fosc/8

11 = Fosc/16

DT0[5:0]: Dead Time 0

00 0000 = 1 Dead Time 0 Unit.

00\_0001 = 2 Dead Time 0 Units.

.....

11\_111 = 64 Dead Time 0 Units.

| Freq = 24MHz, Period = 14 bit |               |                          |  |  |  |  |  |  |  |
|-------------------------------|---------------|--------------------------|--|--|--|--|--|--|--|
| Prescale                      | Dead Time Min | Dead Time Max            |  |  |  |  |  |  |  |
| 1:2                           | 83 ns         | 5.3 us (To apply to CCD) |  |  |  |  |  |  |  |
| 1:4                           | 166 ns        | 10.6 us                  |  |  |  |  |  |  |  |
| 1:8                           | 332 ns        | 21.2 us                  |  |  |  |  |  |  |  |
| 1:16                          | 664 ns        | 42.4 us                  |  |  |  |  |  |  |  |

| Mnemonic: DEADTIME1 Address (Dead Time 1 for PWM Pair 1) |         |          |   |   |   |     |   | ss: EAh |
|----------------------------------------------------------|---------|----------|---|---|---|-----|---|---------|
| 7                                                        | 6       | 5        | 4 | 3 | 2 | 1   | 0 | Reset   |
| DT1P                                                     | RE[1:0] | DT1[5:0] |   |   |   | 00H |   |         |

DT1PRE[1:0]: Dead Time 1 Prescale

00 = Fosc/201 = Fosc/410 = Fosc/811 = Fosc/16DT1[5:0]: Dead Time 1 00\_0000 = 1 Dead Time 1 Unit. 00 0001 = 2 Dead Time 1 Units ..... 11\_111 = 64 Dead Time 1 Units.

| Mnemoni<br>(Dead Tir | Vnemonic: DEADTIME2 Addi<br>(Dead Time 2 for PWM Pair 2) Addi |   |   |   |   |     | Addr | ess: EBh |
|----------------------|---------------------------------------------------------------|---|---|---|---|-----|------|----------|
| 7                    | 6                                                             | 5 | 4 | 3 | 2 | 1   | 0    | Reset    |
| DT2P                 | PRE[1:0] DT2[5:0]                                             |   |   |   |   | 00H |      |          |

DT2PRE[1:0]: Dead Time 2 Prescale



|           | 00 = Fosc/2                    |
|-----------|--------------------------------|
|           | 01 = Fosc/4                    |
|           | 10 = Fosc/8                    |
|           | 11 = Fosc/16                   |
| DT2[5:0]: | Dead Time 2                    |
|           | 00_0000 = 1 Dead Time 2 Unit.  |
|           | 00_0001 = 2 Dead Time 2 Units  |
|           |                                |
|           | 11_111 = 64 Dead Time 2 Units. |

| 7 6 5 4 3 2 1 0 Res      | Mnemonic:<br>(Dead Time | DEADTI<br>3 for PV | ME3<br>/M Pair 3) |          |   |   | Address |     |       |  |  |  |
|--------------------------|-------------------------|--------------------|-------------------|----------|---|---|---------|-----|-------|--|--|--|
|                          | 7                       | 6                  | 5                 | 4        | 3 | 2 | 1       | 0   | Reset |  |  |  |
| DT3FKE[1.0] DT3[5.0] 001 | DT3PRE                  | [1:0]              |                   | DT3[5:0] |   |   |         | 00H |       |  |  |  |

DT3PRE[1:0]: Dead Time 3 Prescale

| Mnemonie<br>(Override | c: OVRIDED<br>Disable) | DIS    |        |        |        |        | Addre  | ss: DEh |
|-----------------------|------------------------|--------|--------|--------|--------|--------|--------|---------|
| 7                     | 6                      | 5      | 4      | 3      | 2      | 1      | 0      | Reset   |
| OV7DIS                | OV6DIS                 | OV5DIS | OV4DIS | OV3DIS | OV2DIS | OV1DIS | OV0DIS | FFH     |

OV7DIS: Override Disable 7 Action Selection

OV7DIS = 0 - PWM7 Override Enable.

OV7DIS = 1 - PWM7 Override Disable.

OV6DIS: Override Disable 6 Action Selection

OV6DIS = 0 - PWM6 Override Enable.

OV6DIS = 1 - PWM6 Override Disable.

OV5DIS: Override Disable 5 Action Selection

OV5DIS = 0 - PWM5 Override Enable.

OV5DIS = 1 - PWM5 Override Disable.

OV4DIS: Override Disable 4 Action Selection

OV4DIS = 0 - PWM4 Override Enable.
Address: DFh

OV4DIS = 1 - PWM4 Override Disable.

- OV3DIS: Override Disable 3 Action Selection
  - OV3DIS = 0 PWM3 Override Enable.
  - OV3DIS = 1 PWM3 Override Disable.
- OV2DIS: Override Disable 2 Action Selection
  - OV2DIS = 0 PWM2 Override Enable.
  - OV2DIS = 1 PWM2 Override Disable.
- OV1DIS: Override Disable 1 Action Selection
  - OV1DIS = 0 PWM1 Override Enable.
  - OV1DIS = 1 PWM1 Override Disable.
- OV0DIS: Override Disable 0 Action Selection
  - OV0DIS = 0 PWM0 Override Enable.
  - OV0DIS = 1 PWM0 Override Disable.

### Mnemonic: OVRIDEDATA

#### (Override Data) 7 6 5 Δ 3 2 0 Reset 1 OV7DATA OV6DATA OV5DATA OV4DATA **OV3DATA** OV2DATA **OV1DATA OV0DATA** 00H

OV7DATA: Ovride Data 7

OV7DATA = 0 - PWM7 Override Data.

OV7DATA = 1 - PWM7 Override Data.

### OV6DATA: Ovride Data 6

OV6DATA = 0 - PWM6 Override Data.

OV6DATA = 1 - PWM6 Override Data.

### OV5DATA: Ovride Data 5

- OV5DATA = 0 PWM5 Override Data.
- OV5DATA = 1 PWM5 Override Data.

### OV4DATA: Ovride Data 4

OV4DATA = 0 - PWM4 Override Data.

OV4DATA = 1 - PWM4 Override Data.

### OV3DATA: Ovride Data 3

- OV3DATA = 0 PWM3 Override Data.
- OV3DATA = 1 PWM3 Override Data.
- OV2DATA: Ovride Data 2
  - OV2DATA = 0 PWM2 Override Data.
  - OV2DATA = 1 PWM2 Override Data.
- OV1DATA: Ovride Data 1
  - OV1DATA = 0 PWM1 Override Data.
  - OV1DATA = 1 PWM1 Override Data.



OV0DATA: Ovride Data 0

OV0DATA = 0 - PWM0 Override Data.

OV0DATA = 1 - PWM0 Override Data.

#### Example: PWM Output overrides waveform.

| Period Cycle | OVRIDEDIS[7:0] | OVRIDEDATA[7:0] | PWMPOLARITY[7:0] |
|--------------|----------------|-----------------|------------------|
| 1            | 11110000b      | 00000011b       | 11111111b        |
| 2            | 11110000b      | 00000110b       | 11111111b        |
| 3            | 11110000b      | 00001100b       | 11111111b        |
| 4            | 11110000b      | 00001010b       | 11111111b        |



| Mnemonic: PWMPOLARITY Address: D |          |          |          |          |          |          |          |       |  |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|-------|--|
| 7                                | 6        | 5        | 4        | 3        | 2        | 1        | 0        | Reset |  |
| POLARITY                         | POLARITY | POLARITY | POLARITY | POLARITY | POLARITY | POLARITY | POLARITY | гги   |  |
| 7                                | 6        | 5        | 4        | 3        | 2        | 1        | 0        | ггп   |  |

POLARITY7: PWM Polarity 7

POLARITY7 = 0 - PWM7 Polarity active low.

POLARITY7 = 1 - PWM7 Polarity active high.

POLARITY6: PWM Polarity 6

POLARITY6 = 0 - PWM6 Polarity active low.

POLARITY6 = 1 - PWM6 Polarity active high.

POLARITY5: PWM Polarity 5

POLARITY5 = 0 - PWM5 Polarity active low.

POLARITY5 = 1 - PWM5 Polarity active high.

POLARITY4: PWM Polarity 4

POLARITY4 = 0 - PWM4 Polarity active low.

POLARITY4 = 1 - PWM4 Polarity active high.

POLARITY3: PWM Polarity 3

POLARITY3 = 0 - PWM3 Polarity active low.

POLARITY3 = 1 - PWM3 Polarity active high.

POLARITY2: PWM Polarity 2



POLARITY2 = 0 - PWM2 Polarity active low. POLARITY2 = 1 - PWM2 Polarity active high. POLARITY1: PWM Polarity 1 POLARITY1 = 0 - PWM1 Polarity active low. POLARITY1 = 1 - PWM1 Polarity active high. POLARITY0: PWM Polarity 0 POLARITY0 = 0 - PWM0 Polarity active low. POLARITY0 = 1 - PWM0 Polarity active high.

#### 13.2 FLTCONFIG (Fault Configure)

When FLTA or FLTB are in use, if hardware detects any abnormal signals, the status of PMW will shift to inactive automatically.

#### 13.2.1 PWM Fault Inputs

The PWM module provides a fault function via FLTA and FLTB output. To disable the output signals of the PWM is their main function and as well as to enter an inactive status. When the fault occurs, the hardware will performer forthwith and shift the PWM in an inactive status; and meanwhile remain power-on connected to the PWM. Under normal working status, either low or high active can be directed by the users by simple operations.

#### 13.2.2 Each of the fault inputs have two modes of operation

Inactive Mode:

If the Fault occurs, the output signals of the PWM are deactivated. The status of the PWM will remain in inactive and correspond to flag of the FLTxS flag and also set it up. If the PWM need to be recovered in a normal output working status by the time the Fault flag of the FLTxS status must be cleared by the software.

#### Cycle-by-Cycle Mode:

When the Fault function occurs, the output of the PWM is deactived. The status of the PWM pin will remain in inactive status and correspond to flag of the FLTxS flag and set it up. When the Fault is relieved, the FLTxS will be relatively cleared, and the output of the PWM will be recovered to normal working status.

| Mnemonic: FLTCONFIG         Add           7         6         5         4         3         2         1         0 |       |         |        |        |       |         |        | ss: DBh |
|-------------------------------------------------------------------------------------------------------------------|-------|---------|--------|--------|-------|---------|--------|---------|
| 7                                                                                                                 | 6     | 5       | 4      | 3      | 2     | 1       | 0      | Reset   |
| BRFEN                                                                                                             | FLTBS | FLTBMOD | FLTBEN | FLTCON | FLTAS | FLTAMOD | FLTAEN | 80H     |

BRFEN: Breakpoint Fault Enable

BRFEN = 0 - Disable.

BRFEN = 1 - Enable.

FLTBS: Fault B status, must be cleared by SW(inactive mode)

FLTBS = 0 - No Fault.

FLTBS = 1 - FLTB is asserted.

FLTBMOD: FLTB Mode Set

FLTBMOD = 0 - Inactive mode.

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M069 Ver E SM39A16M1 04/20/2015 FLTBEN: FLTB Active Set

- - -

\_ \_ .

FLTBEN = 1 - Enable Fault B function. FLTCON: 0 = Inactive PWM[5:0]. 1 = Inactive PWM[7:0]. FLTAS: Fault A status, must be cleared by SW(inactive mode) FLTAS = 0 - No Fault. FLTAS = 1 - FLTA is asserted. FLTAMOD: FLTA Mode Set

FLTBEN = 0 - Disable Fault B function.

FLTAMOD = 0 - Inactive mode.

FLTAMOD = 1 - Cycle-by-cycle mode.

### FLTAEN: FLTA Active Set

FLTAEN = 0 - Disable Fault A function.

FLTAEN = 1 - Enable Fault A function.

| (Fault No | ise Filter) |        |        |       |        |       | Addre   | ess: DCh |
|-----------|-------------|--------|--------|-------|--------|-------|---------|----------|
| 7         | 6           | 5      | 4      | 3     | 2      | 1     | 0       | Reset    |
| -         | -           | FLTBLS | FLTALS | FLTBN | F[1:0] | FLTAN | VF[1:0] | 00H      |

FLTBLS: Fault B level select

0 - Active low.

1 - Active high.

FLTALS: Fault A level select

- 0 Active low.
- 1 Active high.

FLTBNF[1:0]: Fault B noise filter

00 = Fosc/1

- 01 = Fosc/2
- 10 = Fosc/4
- 11 = Fosc/8

FLTANF[1:0]: Fault A noise filter

- 00 = Fosc/1
- 01 = Fosc/2
- 10 = Fosc/4
- 11 = Fosc/8



### 14. IIC function

The IIC module uses the SCL (clock) and the SDA (data) line to communicate with external IIC interface. Its speed can be selected to 400Kbps (maximum) by software setting the IICBR [2:0] control bit. The IIC module provided 2 interrupts (RXIF, TXIF). It will generate START, repeated START and STOP signals automatically in master mode and can detects START, repeated START and STOP signals in slave mode. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF.

| The interrupt vector is 6Bh. |                                |      |       |                                   |          |           |       |                  |       |             |     |
|------------------------------|--------------------------------|------|-------|-----------------------------------|----------|-----------|-------|------------------|-------|-------------|-----|
| Mnemonic                     | Description                    | Dir. | Bit 7 | Bit 6                             | Bit 5    | Bit 4     | Bit 3 | Bit 2            | Bit 1 | Bit 0       | RST |
|                              |                                |      |       | IIC                               | function |           |       |                  |       |             |     |
| IICCTL                       | IIC control<br>register        | F9h  | IICEN | MSS                               | MAS      | AB_E<br>N | BF_EN | BF_EN IICBR[2:0] |       |             | 04H |
| IICS                         | IIC status register            | F8h  | -     | MPIF                              | LAIF     | RXIF      | TXIF  | RXAK             | TXAK  | RW or<br>BB | 00H |
| IICA1                        | IIC Address 1 register         | FAh  |       | IICA1[7:1] MATC<br>BW1            |          |           |       |                  |       |             | A0H |
| IICA2                        | IIC Address 2<br>register      | FBh  |       | IICA2[7:1] MATC<br>H2 or 6<br>RW2 |          |           |       |                  |       |             | 60H |
| IICRWD                       | IIC Read/Write<br>register     | FCh  |       | IICRWD[7:0]                       |          |           |       |                  |       | 00H         |     |
| IICEBT                       | IIC Enaable Bus<br>Transaction | FDh  | FU_   | _EN                               | -        | -         | -     | -                | -     | -           | 00H |

| Mnemonic: IICCTL |     |     |       |       |   |            | Addres | s: F9h |
|------------------|-----|-----|-------|-------|---|------------|--------|--------|
| 7                | 6   | 5   | 4     | 3     | 2 | 1          | 0      | Reset  |
| IICEN            | MSS | MAS | AB_EN | BF_EN |   | IICBR[2:0] |        | 04h    |

IICEN: Enable IIC module

IICEN = 1 is Enable

IICEN = 0 is Disable.

MSS: Master or slave mode select.

MSS = 1 is master mode.

MSS = 0 is slave mode.

\*The software must set this bit before setting others register.

MAS: Master address select (master mode only)

MAS = 0 is to use IICA1.

MAS = 1 is to use IICA2.

AB\_EN: Arbitration lost enable bit. (Master mode only)

If set AB\_EN bit, the hardware will check arbitration lost. Once arbitration lost occurred, hardware will return to IDLE state. If this bit is cleared, hardware will not care arbitration lost condition. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

BF\_EN: Bus busy enable bit. (Master mode only)

If set BF\_EN bit, hardware will not generate a start condition to bus until BF=0. Clear this bit



will always generate a start condition to bus when MStart is set. Set this bit when multi-master and slave connection. Clear this bit when single master to single slave.

IICBR[2:0]: Baud rate selection (master mode only), where Fosc is the external crystal or oscillator frequency. The default is Fosc/512 for users' convenience.

| Baud rate |
|-----------|
| Fosc/32   |
| Fosc/64   |
| Fosc/128  |
| Fosc/256  |
| Fosc/512  |
| Fosc/1024 |
| Fosc/2048 |
| Fosc/4096 |
|           |

#### **Mnemonic: IICS**

| Addı | ess: F8H   |
|------|------------|
| •    | <b>D</b> ( |

| 7 | 6    | 5    | 4    | 3    | 2    | 1    | 0           | Reset |
|---|------|------|------|------|------|------|-------------|-------|
| - | MPIF | LAIF | RXIF | TXIF | RXAK | TxAK | RW or<br>BB | 00H   |

MPIF: The Stop condition Interrupt Flag

The stop condition occurred and this bit will be set. Software need to clear this bit

LAIF: Arbitration lost bit. (Master mode only)

The Arbitration Interrupt Flag, the bus arbitration lost occurred and this bit will be set. Software need to clear this bit

- RxIF: The data Receive Interrupt Flag (RXIF) is set after the IICRWD (IIC Read Write Data Buffer) is loaded with a newly receive data.
- TxIF: The data Transmit Interrupt Flag (TXIF) is set when the data of the IICRWD (IIC Read Write Data Buffer) is downloaded to the shift register.
- RxAK: The Acknowledge Status indicate bit. When clear, it means an acknowledge signal has been received after the complete 8 bits data Transmit on the bus.
- TxAK: The Acknowledge status Transmit bit. When received complete 8 bits data, this bit will

set (NoAck) or clear (Ack) and Transmit to master to indicate the receive status.

RW or BB: Master Mode:

BB: Bus busy bit

If detect scl=0 or sda=0 or bus start, this bit will be set. If detect stop, this bit will be cleared. This bit can be cleared by software to return ready state.

Slave Mode:

RW: The slave mode read (received) or wrote (Transmit) on the IIC bus. When this bit is clear, the slave module received data on the IIC bus (SDA).(Slave mode only). As shown in Fig. 14-1





Fig. 14-1: Acknowledgement bit in the 9th bit of a byte transmission

| Mnemo | onic: IICA1 |   |            |   |   |   | Addres           | ss: FA |
|-------|-------------|---|------------|---|---|---|------------------|--------|
| 7     | 6           | 5 | 4          | 3 | 2 | 1 | 0                | Reset  |
|       |             |   | IICA1[7:1] |   |   |   | Match1<br>or RW1 | A0H    |
|       |             |   | R/W        |   |   |   | R or R/W         |        |

Slave mode:

IICA1[7:1]: IIC Address registers

This is the first 7-bit address for this slave module. It will be checked when an address (from master) is received

Match1: When IICA1 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets first data, this bit will clear.

#### Master mode:

IICA1[7:1]: IIC Address registers

This 7-bit address indicates the slave with which it wants to communicate.

- RW1: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It appears at the 8th bit after the IIC address as below figure. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master Transmit mode. As shown in Fig. 14-2
  - RW1=1, master receive mode

RW1=0, master Transmit mode



Fig. 14-2: RW bit in the 8th bit after IIC address

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M069 Ver E SM39A16M1 04/20/2015



| Mnemo | onic: IICA2 |   |            |   |   |   | Address: FB      |       |  |
|-------|-------------|---|------------|---|---|---|------------------|-------|--|
| 7     | 6           | 5 | 4          | 3 | 2 | 1 | 0                | Reset |  |
|       |             |   | IICA2[7:1] |   |   |   | Match2<br>or RW2 | 60H   |  |
|       | R/W         |   |            |   |   |   | R or R/W         |       |  |

Slave mode:

IICA2[7:1]: IIC Address registers

This is the second 7-bit address for this slave module.

It will be checked when an address (from master) is received

Match2: When IICA2 matches with the received address from the master side, this bit will set to 1 by hardware. When IIC bus gets first data, this bit will clear.

#### Master mode:

IICA2[7:1]: IIC Address registers

This 7-bit address indicates the slave with which it wants to communicate.

RW2: This bit will be sent out as RW of the slave side if the module has set the MStart or RStart bit. It is used to tell the salve the direction of the following communication. If it is 1, the module is in master receive mode. If 0, the module is in master Transmit mode.

RW2=1, master receive mode

RW2=0, master Transmit mode

| Mnemo | nic: IICRV  | ٧D |   |   |   |   | Addro | ess: FCh |  |  |
|-------|-------------|----|---|---|---|---|-------|----------|--|--|
| 7     | 6           | 5  | 4 | 3 | 2 | 1 | 0     | Reset    |  |  |
|       | IICRWD[7:0] |    |   |   |   |   |       |          |  |  |

IICRWD[7:0]: IIC read write data buffer.

In receiving (read) mode, the received byte is stored here.

In Transmitting mode, the byte to be shifted out through SDA stays here.

| Mnemor | nic: IICEE | BT |   |   |   |   | Add | ress: FDH |
|--------|------------|----|---|---|---|---|-----|-----------|
| 7      | 6          | 5  | 4 | 3 | 2 | 1 | 0   | Reset     |
| FU EN  |            | -  | - | - | - | - | -   | 00H       |

Master Mode :

- 00: reserved
- 01: IIC bus module will enable read/write data transfer on SDA and SCL.
- 10: IIC bus module generate a start condition on the SDA/SCL, then send out address which is stored in the IICA1/IICA2(selected by MAS control bit)
- IIC bus module generates a stop condition on the SDA/SCL.
   FU\_EN[7:6] will be auto-clear by hardware, so setting FU\_EN[7:6] repeatedly is necessary.

Slave mode:

01: FU\_EN[7:6] should be set as 01 only. The other value is inhibited.



Notice:

FU\_EN[7:6] should be set as 01 before read/write data transfer for bus release; otherwise, SCL will be locked(pull low).

FU\_EN[7:6] should be set as 01 after read/write data transfer for receiving a stop condition from bus master.

In Transmit data mode(slave mode), the output data should be filled into IICRWD before setting FU\_EN[7:6] as 01.

FU\_EN[7:6] will be auto-clear by hardware, so setting FU\_EN[7:6] repeatedly is necessary.



## **15. SPI Function - Serial Peripheral Interface**

Serial Peripheral Interface (SPI) is a synchronous protocol that allows a master device to initiate communication with slave devices.

The interrupt vector is 4Bh.

There are 4 signals used in SPI, they are

SPI\_MOSI: data output in the master mode, data input in the slave mode,

SPI\_MISO: data input in the master mode, data output in the slave mode,

SPI\_SCK: clock output from the master, the above data are synchronous to this signal.

SPI\_SS: input in the slave mode.

This slave device detects this signal to judge if it is selected by the master. As shown in Fig. 15-1

In the master mode, it can select the desired slave device by any IO with value = 0. As below figure is an example showing the relation of the 4 signals between master and slaves.



Fig. 15-1: SPI signals between master and slave devices

There is only one channel SPI interface. The SPI SFRs are shown as below:

| Mnemonic     | Description                 | Dir. | Bit 7 | Bit 6                                   | Bit 5    | Bit 4       | Bit 3      | Bit 2       | Bit 1      | Bit 0 | RST |  |  |
|--------------|-----------------------------|------|-------|-----------------------------------------|----------|-------------|------------|-------------|------------|-------|-----|--|--|
| SPI function |                             |      |       |                                         |          |             |            |             |            |       |     |  |  |
| SPIC1        | SPI control<br>register 1   | F1h  | SPIEN | SPIENSPIMSSPISSSPICKSPICKSPPESPIBR[2:0] |          |             |            |             |            |       | 08H |  |  |
| SPIC2        | SPI control<br>register 2   | F2h  | SPIFD |                                         | TBC[2:0] |             | SPIRS<br>T | RBC[2:0]    |            |       | 00H |  |  |
| SPIS         | SPI status<br>register      | F5h  | SPIRF | SPIML<br>S                              | SPIOV    | SPITXI<br>F | SPITD<br>R | SPIRXI<br>F | SPIRD<br>R | SPIRS | 40H |  |  |
| SPITXD       | SPI Transmit<br>data buffer | F3h  |       | SPITXD[7:0]                             |          |             |            |             |            |       | 00H |  |  |
| SPIRXD       | SPI receive<br>data buffer  | F4h  |       | SPIRXD[7:0]                             |          |             |            |             |            |       |     |  |  |



| Mnem    | onic:SPIC1      |               |             |              |   |            | Addre | ess:F1H |
|---------|-----------------|---------------|-------------|--------------|---|------------|-------|---------|
| 7       | 6               | 5             | 4           | 3            | 2 | 1          | 0     | Reset   |
| SPIE    | N SPIMSS        | SPISSP        | SPICKP      | SPICKE       |   | SPIBR[2:0] |       | 08H     |
|         |                 |               |             |              |   |            |       |         |
| SPIEN:  | Enable SPI m    | odule.        |             |              |   |            |       |         |
|         | SPIEN = 1 - is  | Enable.       |             |              |   |            |       |         |
|         | SPIEN = 0 - is  | Disable.      |             |              |   |            |       |         |
| SPIMSS: | Master or Slav  | ve mode Se    | elect       |              |   |            |       |         |
|         | SPIMSS = 1 -    | is Master r   | node.       |              |   |            |       |         |
|         | SPIMSS = 0 -    | is Slave m    | ode.        |              |   |            |       |         |
| SPISSP: | SS or CS activ  | ve polarity.( | Slave mod   | e used only) |   |            |       |         |
|         | SPISSP = 1 -    | high active   |             |              |   |            |       |         |
|         | SPISSP = 0 -    | low active.   |             |              |   |            |       |         |
| SPICKP: | Clock idle pola | arity select. |             |              |   |            |       |         |
|         | SPICKP = 1 -    | SCK will id   | le high. Ex | :            |   |            |       |         |
|         |                 |               |             |              |   |            |       |         |

SPICKE: Clock sample edge select.

SPICKE = 1 - rising edge latch data.

SPICKE = 0 - falling edge latch data.

\* To ensure the data latch stability, SM39A16M1 generate the output data As shown in the following example, the other side can latch the stable data no matter in rising or falling edge.



| SPIBR[2:0] | Baud rate |
|------------|-----------|
| 0:0:0      | Fosc/4    |
| 0:0:1      | Fosc /8   |
| 0:1:0      | Fosc /16  |
| 0:1:1      | Fosc /32  |
| 1:0:0      | Fosc /64  |
| 1:0:1      | Fosc /128 |
| 1:1:0      | Fosc /256 |
| 1:1:1      | Fosc /512 |

SPIBR[2:0]: SPI baud rate select. (Master mode used only)

| Mnemoni | ic: SPIC2 |          |   |        |   |          | Addre | ess: F2H |
|---------|-----------|----------|---|--------|---|----------|-------|----------|
| 7       | 6         | 5        | 4 | 3      | 2 | 1        | 0     | Reset    |
| SPIFD   |           | TBC[2:0] |   | SPIRST |   | RBC[2:0] |       | 00H      |

SPIFD: Full-duplex mode enable.

SPIFD = 1 is enable full-duplex mode.

SPIFD = 0 is disable full-duplex mode.

When it is set, the TBC[2:0] and RBC[2:0] will be reset and keep to zero. When the Master device Transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock. As shown in Fig 15-2.



Fig. 15-2: SPI Mater and slave transfer method



### SPIRST: SPI Re-start (Slave mode used only)

SPIRST = 0 - Re-start function disable.SPI Transmit/receive data when SS active.

In SPITXD/SPIRXD buffer, data got from previous SS active period will not be removed (i.e. it's valid).

SPIRST = 1 - Re-start function enable.SPI Transmit/receive new data when SS re-active;

In SPITXD/SPIRXD buffer, data got from previous SS active period will be removed (i.e. It's invalid).

#### TBC[2:0]: SPI Transmitter bit counter.

| or i franorita |               |
|----------------|---------------|
| TBC[2:0]       | Bit counter   |
| 0:0:0          | 8 bits output |
| 0:0:1          | 1 bit output  |
| 0:1:0          | 2 bits output |
| 0:1:1          | 3 bits output |
| 1:0:0          | 4 bits output |
| 1:0:1          | 5 bits output |
| 1:1:0          | 6 bits output |
| 1:1:1          | 7 bits output |

RBC[2:0]: SPI receiver bit counter.

| RBC[2:0] | Bit counter  |
|----------|--------------|
| 0:0:0    | 8 bits input |
| 0:0:1    | 1 bit input  |
| 0:1:0    | 2 bits input |
| 0:1:1    | 3 bits input |
| 1:0:0    | 4 bits input |
| 1:0:1    | 5 bits input |
| 1:1:0    | 6 bits input |
| 1:1:1    | 7 bits input |

| Mnemoni | Mnemonic: SPIS Address:F5 |       |         |        |         |        |       |       |  |  |
|---------|---------------------------|-------|---------|--------|---------|--------|-------|-------|--|--|
| 7       | 6                         | 5     | 4       | 3      | 2       | 1      | 0     | Reset |  |  |
| SPIRF   | SPIMLS                    | SPIOV | SPITXIF | SPITDR | SPIRXIF | SPIRDR | SPIRS | 40H   |  |  |

SPIRF: SPI SS pin Release Flag.

This bit is set when SS pin release & SPIRST as '1'.

#### SPIMLS: MSB or LSB first output /input Select.

SPIMLS = 1 is MSB first output/input.

SPIMLS = 0 is LSB first output/input.

#### SPIOV: Overflow flag.

When SPIRDR is set and next data already into shift register, this flag will be set.

It is clear by hardware, when SPIRDR is cleared.

SPITXIF: Transmit Interrupt Flag.

This bit is set when the data of the SPITXD register is downloaded to the shift register.

#### SPITDR: Transmit Data Ready.

When MCU finish writing data to SPITXD register, the MCU needs to set this bit to '1' to inform the SPI module to send the data. After SPI module finishes sending the data from SPITXD, this bit will be cleared automatically.

#### SPIRXIF: Receive Interrupt Flag.

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M069 Ver E SM39A16M1 04/20/2015



This bit is set after the SPIRXD is loaded with a newly receive data.

### SPIRDR: Receive Data Ready.

The MCU must clear this bit after it gets the data from SPIRXD register. The SPI module is able to write new data into SPIRXD only when this bit is cleared.

#### SPIRS: Receive Start.

This bit set to "1" to inform the SPI module to receive the data into SPIRXD register.

| Mnemor | nic: SPIT) | (D  |   |   |   |   | Add | ress: F3H |
|--------|------------|-----|---|---|---|---|-----|-----------|
| 7      | 6          | 5   | 4 | 3 | 2 | 1 | 0   | Reset     |
|        |            | 00H |   |   |   |   |     |           |

SPITXD[7:0]: Transmit data buffer.

| Mnemo | nic: SPIRX  | XD |   |   |   |   | Addı | ress: F4H |  |  |
|-------|-------------|----|---|---|---|---|------|-----------|--|--|
| 7     | 6           | 5  | 4 | 3 | 2 | 1 | 0    | Reset     |  |  |
|       | SPIRXD[7:0] |    |   |   |   |   |      |           |  |  |

SPIRXD[7:0]: Receive data buffer.

P.S. MISO pin must be float when SS or CS no-active in slave mode.



### 16. LVI & LVR – Low Voltage Interrupt and Low Voltage Reset

|                               | The interrupt vector 63h |               |            |           |            |               |        |       |                 |               |       |       |       |     |
|-------------------------------|--------------------------|---------------|------------|-----------|------------|---------------|--------|-------|-----------------|---------------|-------|-------|-------|-----|
| Mnemonic                      | Descrip                  | tion          | Dir. Bit 7 |           | 7 Bit      | 6             | Bit \$ | 5 Bi  | t 4             | Bit 3         | Bit 2 | Bit 1 | Bit 0 | RST |
| Watchdog Timer                |                          |               |            |           |            |               |        |       |                 |               |       |       |       |     |
| RSTS Reset status<br>register |                          | IS            | A1h        | -         | LVR<br>IN1 | LVRLP<br>INTF |        | .P PD | RF              | WDTF          | SWRF  | LVRF  | PORF  | 00H |
| LVC                           | Low voltage control reg  | e<br>jister   | E6h        | LVI_<br>N | E LVRI     | LVRLPE        |        | E LV  | ′IF             | LVRLP<br>INTE | -     | LVIS  | [1:0] | 20H |
| Mner                          | monic: RSTS<br>7         | 4             |            | 3         | 2          |               | 1      | 0     | Addres<br>Reset | s: A1h        |       |       |       |     |
|                               | -                        | LVRLP<br>INTF | LVR        | LPF       | PDRF       | W             | DTF    | SWRI  | F               | LVRF          | PORF  | 00H   |       |     |

LVRLPINTF: "Internal" Low voltage reset flag.

When MCU is reset by LVR\_LP\_INT, LVRLPINTF flag will be set to one by hardware. This flag clear by software.

LVRLPF: "External" Low voltage reset flag.

When MCU is reset by LVR(External Low Power), LVRLPF flag will be set to one by hardware. This flag clear by software.

PDRF: Pad reset flag.

When MCU is reset by reset pad, PDRF flag will be set to one by hardware. This flag clear by software.

LVRF: Low voltage reset flag.

When MCU is reset by LVR, LVRF flag will be set to one by hardware. This flag clear by software.

PORF: Power on reset flag.

When MCU is reset by POR, PORF flag will be set to one by hardware. This flag clear by software.

| Mnemonic: LVC Address: E6h |            |      |      |               |   |      |       |       |  |
|----------------------------|------------|------|------|---------------|---|------|-------|-------|--|
| 7                          | 6          | 5    | 4    | 3             | 2 | 1    | 0     | Reset |  |
| LVI_EN                     | LVR<br>LPE | LVRE | LVIF | LVRLP<br>INTE | - | LVIS | [1:0] | 20H   |  |

LVI\_EN: Low voltage interrupt function enable bit.

LVI\_EN = 0 - disable low voltage detect function.

LVI\_EN = 1 - enable low voltage detect function.

LVRLPE: External low voltage reset function (Low Power)enable bit.

LVRLPE = 0 - enable external low voltage reset(Low Power) function.

LVRLPE = 1 - disable external low voltage reset(Low Power) function.

LVRE: External low voltage reset function enable bit.

LVRXE = 0 - disable external low voltage reset function.



LVRXE = 1 - enable external low voltage reset function.

Note: LVR = 1.50 V

LVIF: Low Voltage interrupt Flag(i.e., Low Voltage Interrupt Status Flag)

LVRLPINTE: LVR\_LP\_INT("Internal" low voltage reset) function enable bit.

LVRLPINTE = 0 - disable internal low voltage reset function.

LVRLPINTE = 1 - enable internal low voltage reset function.

LVIS[1:0]: LVI level select:

00: 1.65V

01: 2.60V

10: 3.20V

11: 4.00V



# 17. 10-bit Analog-to-Digital Converter (ADC)

The SM39A16M1 provides 8 channels 10-bit ADC. The Digital output DATA [9:0] were put into ADCD [9:0]. The ADC the block diagram show in Fig. 17-1

The ADC interrupt vector is 53H.



| Fia   | 17-1. | ADC Analog to | Didital | converter | oneration s | et |
|-------|-------|---------------|---------|-----------|-------------|----|
| ı ıy. | 17-1. | ADO Analog it | Digital | Conventer | operation a | σc |

#### The ADC SFR show as below:

| Mnemonic | Description               | Dir. | Bit 7      | Bit 6       | Bit 5                | Bit 4                | Bit 3       | Bit 2      | Bit 1      | Bit 0      | RST |
|----------|---------------------------|------|------------|-------------|----------------------|----------------------|-------------|------------|------------|------------|-----|
|          |                           |      |            | A           | .DC                  |                      |             |            |            |            |     |
| ADCC1    | ADC Control<br>register 1 | ABh  | ADC7<br>EN | ADC6<br>EN  | ADC5<br>EN           | ADC4<br>EN           | ADC3<br>EN  | ADC2<br>EN | ADC1<br>EN | ADC0<br>EN | 00H |
| ADCC2    | ADC Control<br>register 2 | ACh  | Start      | ADJU<br>ST  | PWMT<br>rigger<br>EN | EXT<br>Trigger<br>EN | ADCM<br>ODE | A          | 08H        |            |     |
| ADCDH    | ADC data high<br>byte     | ADh  |            |             |                      | ADCD                 | H [7:0]     |            |            |            | 00H |
| ADCDL    | ADC data low<br>byte      | AEh  |            | ADCDL [7:0] |                      |                      |             |            |            |            | 00H |
| ADCCS    | ADC clock select          | AFh  | -          | -           | -                    |                      | A           | DCCS[4:    | 0]         |            | 00H |

| Mnemonic: ADCC1 |        |        |        |        |        |        |        |       |
|-----------------|--------|--------|--------|--------|--------|--------|--------|-------|
| 7               | 6      | 5      | 4      | 3      | 2      | 1      | 0      | Reset |
| ADC7EN          | ADC6EN | ADC5EN | ADC4EN | ADC3EN | ADC2EN | ADC1EN | ADC0EN | 00H   |

ADC7EN: ADC channels 7 enable.

ADC7EN = 1 - Enable ADC channel 7

#### ADC6EN: ADC channels 6 enable.

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M069 Ver E SM39A16M1 04/20/2015 ADC6EN = 1 - Enable ADC channel 6

ADC5EN: ADC channels 5 enable.

ADC5EN = 1 - Enable ADC channel 5

ADC4EN: ADC channels 4 enable.

ADC4EN = 1 - Enable ADC channel 4

ADC3EN: ADC channels 3 enable.

ADC3EN = 1 - Enable ADC channel 3

ADC2EN: ADC channels 2 enable.

ADC2EN = 1 - Enable ADC channel 2

ADC1EN: ADC channels 1 enable.

ADC1EN = 1 - Enable ADC channel 1

ADC0EN: ADC channels 0 enable.

ADC0EN = 1 - Enable ADC channel 0

### **Mnemonic: ADCC2**

Address: ACh

| 7     | 6      | 5 | 4                | 3           | 2 | 1          | 0 | Reset |
|-------|--------|---|------------------|-------------|---|------------|---|-------|
| Start | ADJUST | - | EXTTrigg<br>erEN | ADCMO<br>DE |   | ADCCH[2:0] |   | 08H   |

Start: When this bit is set, the ADC will be start conversion.

(SW trigger conversion)

ADJUST: Adjust the format of ADC conversion DATA.

ADJUST = 0 - (default value)

ADC data high byte ADCD [9:2] = ADCDH [7:0].

ADC data low byte ADCD [1:0] = ADCDL [1:0].

# ADJUST = 1- ADC data high byte ADCD [9:8] = ADCDH [1:0].

ADC data low byte ADCD [7:0] = ADCDL [7:0].

EXTTriggerEN: External Pin trigger ADC to start conversion.

(HW external trigger conversion)

0 = disable.

1 = enable.

ADCMODE: 0 = continuous mode.

1 = single-shot mode.



ADCCH[2:0] ADC channel select.

| ADCCH [2:0] | Channel |
|-------------|---------|
| 000         | 0       |
| 001         | 1       |
| 010         | 2       |
| 011         | 3       |
| 100         | 4       |
| 101         | 5       |
| 110         | 6       |
| 111         | 7       |

### ADJUST = 0:

|    | Mnemonic:                                        | ADCDH                               |                        |                        |                        |                        |                              | Addres                                           | s: ADh                                           |  |  |  |
|----|--------------------------------------------------|-------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------|--------------------------------------------------|--------------------------------------------------|--|--|--|
|    | 7                                                | 6                                   | 5                      | 4                      | 3                      | 2                      | 1                            | 0                                                | Reset                                            |  |  |  |
|    | ADCD[9]                                          | ADCD[8]                             | ADCD[7]                | ADCD[6]                | ADCD[5]                | ADCD[4]                | ADCD[3]                      | ADCD[2]                                          | 00H                                              |  |  |  |
|    |                                                  |                                     |                        |                        |                        |                        |                              |                                                  |                                                  |  |  |  |
|    | Mnemonic:                                        | ADCDL                               |                        |                        |                        |                        |                              | Addres                                           | s: AEh                                           |  |  |  |
|    | 7                                                | 7 6 5                               |                        | 4                      | 3                      | 2                      | 1                            | 0                                                | Reset                                            |  |  |  |
|    | -                                                | · · · ·                             |                        | -                      | -                      | -                      | ADCD[1]                      | ADCD[0]                                          | 00H                                              |  |  |  |
| AD | DJUST = 1:                                       |                                     |                        |                        |                        |                        |                              |                                                  |                                                  |  |  |  |
|    |                                                  |                                     |                        |                        |                        |                        |                              |                                                  |                                                  |  |  |  |
|    | Mnemonic:                                        | ADCDH                               |                        |                        |                        |                        |                              | Addres                                           | s: ADh                                           |  |  |  |
|    | Mnemonic:<br>7                                   | ADCDH<br>6                          | 5                      | 4                      | 3                      | 2                      | 1                            | Addres<br>0                                      | s: ADh<br>Reset                                  |  |  |  |
| ĺ  | Mnemonic:<br>7                                   | ADCDH<br>6                          | 5                      | 4                      | 3                      | 2                      | 1<br>ADCD[9]                 | Addres<br>0<br>ADCD[8]                           | s: ADh<br>Reset<br>00H                           |  |  |  |
|    | Mnemonic:<br>7<br>-                              | ADCDH<br>6<br>-                     | 5                      | 4                      | 3                      | 2                      | 1<br>ADCD[9]                 | Addres<br>0<br>ADCD[8]                           | s: ADh<br>Reset<br>00H                           |  |  |  |
|    | Mnemonic:<br>7<br>-<br>Mnemonic:                 | ADCDH<br>6<br>-<br>ADCDL            | 5                      | 4                      | 3                      | 2                      | 1<br>ADCD[9]                 | Addres<br>0<br>ADCD[8]<br>Addres                 | s: ADh<br>Reset<br>00H<br>s: AEh                 |  |  |  |
|    | Mnemonic:<br>7<br>-<br>Mnemonic:<br>7            | ADCDH<br>6<br>ADCDL<br>6            | 5                      | 4                      | 3<br>-<br>3            | 2<br>-<br>2            | 1<br>ADCD[9]<br>1            | Addres<br>0<br>ADCD[8]<br>Addres<br>0            | s: ADh<br>Reset<br>00H<br>s: AEh<br>Reset        |  |  |  |
|    | Mnemonic:<br>7<br>-<br>Mnemonic:<br>7<br>ADCD[7] | ADCDH<br>6<br>ADCDL<br>6<br>ADCD[6] | 5<br>-<br>5<br>ADCD[5] | 4<br>-<br>4<br>ADCD[4] | 3<br>-<br>3<br>ADCD[3] | 2<br>-<br>2<br>ADCD[2] | 1<br>ADCD[9]<br>1<br>ADCD[1] | Addres<br>0<br>ADCD[8]<br>Addres<br>0<br>ADCD[0] | s: ADh<br>Reset<br>00H<br>s: AEh<br>Reset<br>00H |  |  |  |

ADCD[9:0]: ADC data register.

| Mnemonic: ADCCS Address: A |   |   |          |          |          |          |          |       |  |
|----------------------------|---|---|----------|----------|----------|----------|----------|-------|--|
| 7                          | 6 | 5 | 4        | 3        | 2        | 1        | 0        | Reset |  |
| -                          | - | - | ADCCS[4] | ADCCS[3] | ADCCS[2] | ADCCS[1] | ADCCS[0] | 00H   |  |

ADCCS[4:0]: ADC clock select.

\*The ADC clock maximum 12.5MHz.

\*The ADC Conversion rate maximum 961 KHz.

| ADCCS[4:0] | ADC Clock(Hz) | Clocks for ADC Conversion |
|------------|---------------|---------------------------|
| 00000      | Fosc /2       | 26                        |
| 00001      | Fosc /4       | 52                        |
| 00010      | Fosc /6       | 78                        |
| 00011      | Fosc /8       | 104                       |
| 00100      | Fosc /10      | 130                       |
| 00101      | Fosc /12      | 156                       |
| 00110      | Fosc /14      | 182                       |
| 00111      | Fosc /16      | 208                       |
| 01000      | Fosc /18      | 234                       |
| 01001      | Fosc /20      | 260                       |

Specifications subject to change without notice contact your sales representatives for the most recent information. ISSFD-M069 Ver E SM39A16M1 04/20/2015



| -     |          |     |
|-------|----------|-----|
| 01010 | Fosc /22 | 286 |
| 01011 | Fosc /24 | 312 |
| 01100 | Fosc /26 | 338 |
| 01101 | Fosc /28 | 364 |
| 01110 | Fosc /30 | 390 |
| 01111 | Fosc /32 | 416 |
| 10000 | Fosc /34 | 442 |
| 10001 | Fosc /36 | 468 |
| 10010 | Fosc /38 | 494 |
| 10011 | Fosc /40 | 520 |
| 10100 | Fosc /42 | 546 |
| 10101 | Fosc /44 | 572 |
| 10110 | Fosc /46 | 598 |
| 10111 | Fosc /48 | 624 |
| 11000 | Fosc /50 | 650 |
| 11001 | Fosc /52 | 676 |
| 11010 | Fosc /54 | 702 |
| 11011 | Fosc /56 | 728 |
| 11100 | Fosc /58 | 754 |
| 11101 | Fosc /60 | 780 |
| 11110 | Fosc /62 | 806 |
| 11111 | Fosc /64 | 832 |
|       |          |     |

$$ADC\_Clock = \frac{Fosc}{2 \times (ADCCS + 1)}$$
$$ADC\_Conversion\_Rate = \frac{ADC\_Clock}{13}$$



## 18. In-System Programming (Internal ISP)

The SM39A16M1 can generate flash control signal by internal hardware circuit. Users utilize flash control register, flash address register and flash data register to perform the ISP function without removing the SM39A16M1 from the system. The SM39A16M1 provides internal flash control signals which can do flash program/chip erase/page erase/protect functions. User need to design and use any kind of interface which SM39A16M1 can input data. User then utilize ISP service program to perform the flash program/chip erase/page erase/protect functions.

#### 18.1 ISP service program

The ISP service program is a user developed firmware program which resides in the ISP service program space. After user developed the ISP service program, user then determine the size of the ISP service program. User need to program the ISP service program in the SM39A16M1 for the ISP purpose.

The ISP service programs were developed by user so that it should includes any features which relates to the flash memory programming function as well as communication protocol between SM39A16M1 and host device which output data to the SM39A16M1. For example, if user utilize UART interface to receive/Transmit data between SM39A16M1 and host device, the ISP service program should include baud rate, checksum or parity check or any error-checking mechanism to avoid data transmission error.

The ISP service program can be initiated under SM39A16M1 active or idle mode. It can not be initiated under power down mode.

#### 18.2 Lock Bit (N)

The Lock Bit N has two functions: one is for service program size configuration and the other is to lock the ISP service program space from flash erase function.

The ISP service program space address range \$3C00 to \$3FFF. It can be divided as blocks of N\*128 byte. (N=0 to 8). When N=0 means no ISP function, all of 16K byte flash memory can be used as program memory. When N=1 means ISP service program occupies 128 byte while the rest of 15.875K byte flash memory can be used as program memory. The maximum ISP service program allowed is 1K byte when N=8. Under such configuration, the usable program memory space is 15K byte.

After N determined, SM39A16M1 will reserve the ISP service program space downward from the top of the program address \$3FFF. Please see section 3.1 program memory diagram for this ISP service program space structure.

The lock bit N function is different from the flash protect function. The flash erase function can erase all of the flash memory except for the locked ISP service program space. If the flash not has been protected, the content of ISP service program still can be read. If the flash has been protected, the overall content of flash program memory space including ISP service program space can not be read. As given in Table 18-1.



|   | ISP service program address     |  |  |  |  |  |  |  |  |
|---|---------------------------------|--|--|--|--|--|--|--|--|
| 0 | No ISP service program          |  |  |  |  |  |  |  |  |
| 1 | 128 bytes (\$3F80h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 2 | 256 bytes (\$3F00h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 3 | 384 bytes (\$3E80h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 4 | 512 bytes (\$3E00h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 5 | 640 bytes (\$3D80h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 6 | 768 bytes (\$3D00h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 7 | 896 bytes (\$3C80h ~ \$3FFFh)   |  |  |  |  |  |  |  |  |
| 8 | 1.0 K bytes (\$3C00h ~ \$3FFFh) |  |  |  |  |  |  |  |  |

Table 18-1 ISP code area

#### 18.3 Program the ISP Service Program

After Lock Bit N is set and ISP service program been programmed, the ISP service program memory will be protected (locked) automatically. The lock bit N has its own program/erase timing. It is different from the flash memory program/erase timing so the locked ISP service program can not be erased by flash erase function. If user needs to erase the locked ISP service program, he can do it by writer only. User can not change ISP service program when SM39A16M1 was in system.

#### 18.4 Initiate ISP Service Program

To initiate the ISP service program is to load the program counter (PC) with start address of ISP service program and execute it. There are four ways to do so:

- (1) Blank reset. Hardware reset with first flash address blank (\$0000=#FFH) will load the PC with start address of ISP service program. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue a strobe window about 256us after hardware reset.
- (2) Execute jump instruction can load the start address of the ISP service program to PC.
- (3) Enter's ISP service program by hardware setting. User can force SM39A16M1 enter ISP service program by setting P1.2, P1.3 "active low" or P1.4 " active low" during hardware reset period. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue after hardware reset. In application system design, user should take care of the setting of P1.2,P1.3 or P1.4 at reset period to prevent SM39A16M1 from entering ISP service program.
- (4) Enter's ISP service program by hardware setting, the P3.0(RXD) will be detected the two clock signals during hardware reset period. The hardware reset includes MAX810 (power on reset) and external pad reset. The hardware will issue to detect 2 clock signals after hardware reset.

During the strobe window, the hardware will detect the status of P1.2, P1.3 (or P1.4)/P1.0. If they meet one of above conditions, chip will switch to ISP mode automatically. After ISP service program executed, user need to reset the SM39A16M1, either by hardware reset or by WDT, or jump to the address \$0000 to re-start the firmware program.

ISP service program configurable in N\*128 byte (N=  $0 \sim 8$ )



There are 6 kinds of entry mechanisms for user different applications. This entry method will select on the writer or ISP.

- (1) First Address Blank. i.e. \$0000 = 0xFF. And triggered by Internal reset signal. (Entry mechanism 1)
- (2) First Address Blank. i.e. \$0000 = 0xFF. And triggered by PAD reset signal. (Entry mechanism 1)
- (3) P1.2 = 0 & P1.3 = 0. And triggered by Internal reset signal. (Entry mechanism 2)
- (4) P1.2 = 0 & P1.3 = 0. And triggered by PAD reset signal. (Entry mechanism 2)
- (5) P1.4 = 0. And triggered by Internal reset signal. (Entry mechanism 3)
- (6) P1.4 = 0. And triggered by PAD reset signal. (Entry mechanism 3)
- (7) P3.0 input 2 clocks. And triggered by Internal reset signal. (Entry mechanism 4)
- (8) P3.0 input 2 clocks. And triggered by PAD reset signal. (Entry mechanism 4)

### 18.5 ISP register – TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC

| Mnemonic | Description                             | Dir. | Bit 7 | Bit 6        | Bit 5   | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | RST |
|----------|-----------------------------------------|------|-------|--------------|---------|-------|-------|--------|--------|--------|-----|
|          |                                         |      |       | ISP f        | unction |       |       |        |        |        |     |
| TAKEY    | Time Access Key<br>register             | F7h  |       | TAKEY [7:0]  |         |       |       |        |        |        | 00H |
| IFCON    | Interface Control<br>register           | 8Fh  | -     | CDPR         | -       | -     | -     | -      | -      | ISPE   | 00H |
| ISPFAH   | ISP Flash<br>Address – High<br>register | E1h  |       | ISPFAH [7:0] |         |       |       |        |        |        | FFH |
| ISPFAL   | ISP Flash<br>Address - Low<br>register  | E2h  |       | ISPFAL [7:0] |         |       |       |        |        |        | FFH |
| ISPFD    | ISP Flash Data<br>register              | E3h  |       | ISPFD [7:0]  |         |       |       |        |        |        | FFH |
| ISPFC    | ISP Flash Control<br>register           | E4h  | EMF1  | EMF2         | EMF3    | EMF4  | -     | ISPF.2 | ISPF.1 | ISPF.0 | 00H |

| Mnemonic: TAKEY Addre |   |   |         |      |   |   |   |       |  |
|-----------------------|---|---|---------|------|---|---|---|-------|--|
| 7                     | 6 | 5 | 4       | 3    | 2 | 1 | 0 | Reset |  |
|                       |   |   | TAKEY [ | 7:0] |   |   |   | 00H   |  |

ISP enable bit (ISPE) is read-only by default, software must write three specific values 55h, AAh and 5Ah sequentially to the TAKEY register to enable the ISPE bit write attribute. That is:

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah

| Mne | Mnemonic: IFCON |      |   |   |   |   |   |      |       |  |
|-----|-----------------|------|---|---|---|---|---|------|-------|--|
| 7   | ,               | 6    | 5 | 4 | 3 | 2 | 1 | 0    | Reset |  |
| -   |                 | CDPR | - | - | - | - | - | ISPE | 00H   |  |

The bit 0 (ISPE) of IFCON is ISP enable bit. User can enable overall SM39A16M1 ISP function by setting ISPE bit to 1, to disable overall ISP function by set ISPE to 0. The function of ISPE behaves like a security key. User can disable overall ISP function to prevent software program be erased accidentally. ISP registers ISPFAH, ISPFAL, ISPFD and ISPFC are read-only by default. Software must be set ISPE bit to 1 to enable these 4 registers write attribute.



| Mnemonie | Addre   | ss: E1H |         |         |         |         |         |       |
|----------|---------|---------|---------|---------|---------|---------|---------|-------|
| 7        | 6       | 5       | 4       | 3       | 2       | 1       | 0       | Reset |
| ISPFAH7  | ISPFAH6 | ISPFAH5 | ISPFAH4 | ISPFAH3 | ISPFAH2 | ISPFAH1 | ISPFAH0 | FFH   |
|          |         |         |         |         |         |         |         |       |

ISPFAH [7:0]: Flash address-high for ISP function

| Mnemonic: ISPFAL Add |         |         |         |         |         |         |         |       |  |  |
|----------------------|---------|---------|---------|---------|---------|---------|---------|-------|--|--|
| 7                    | 6       | 5       | 4       | 3       | 2       | 1       | 0       | Reset |  |  |
| ISPFAL7              | ISPFAL6 | ISPFAL5 | ISPFAL4 | ISPFAL3 | ISPFAL2 | ISPFAL1 | ISPFAL0 | FFH   |  |  |

ISPFAL [7:0]: Flash address-Low for ISP function

The ISPFAH & ISPFAL provide the 16-bit flash memory address for ISP function. The flash memory address should not include the ISP service program space address. If the flash memory address indicated by ISPFAH & ISPFAL registers overlay with the ISP service program space address, the flash program/page erase of ISP function executed thereafter will have no effect.

| Mnemonie | Addres | ss: E3H |        |        |        |        |        |       |
|----------|--------|---------|--------|--------|--------|--------|--------|-------|
| 7        | 6      | 5       | 4      | 3      | 2      | 1      | 0      | Reset |
| ISPFD7   | ISPFD6 | ISPFD5  | ISPFD4 | ISPFD3 | ISPFD2 | ISPFD1 | ISPFD0 | FFH   |

ISPFD [7:0]: Flash data for ISP function.

The ISPFD provide the 8-bit data register for ISP function.

| Mnemo | Addres | ss: E4H |      |   |         |         |         |       |
|-------|--------|---------|------|---|---------|---------|---------|-------|
| 7     | 6      | 5       | 4    | 3 | 2       | 1       | 0       | Reset |
| EMF1  | EMF2   | EMF3    | EMF4 | - | ISPF[2] | ISPF[1] | ISPF[0] | 00H   |

EMF1: Entry mechanism (1) flag, clear by reset. (Read only)

EMF2: Entry mechanism (2) flag, clear by reset. (Read only)

EMF3: Entry mechanism (3) flag, clear by reset. (Read only)

EMF4: Entry mechanism (4) flag, clear by reset. (Read only)

ISPF [2:0]: ISP function select bit.

| ISPF[2:0] | ISP function |
|-----------|--------------|
| 000       | Byte program |
| 001       | Chip protect |
| 010       | Page erase   |
| 011       | Chip erase   |
| 100       | Write option |
| 101       | Read option  |
| 110       | Erase option |
| 111       | reserved     |

One page of flash memory is 128byte

The Option function can access the XTAL1 and XTAL2 swap to I/O pins select(description in section 1.2) · Internal reset time select(description in section



1.4.1)  $\cdot$  clock source select(description in section 1.5)  $\cdot$  Reset swap to I/O pins

function select(description in section 5) 
VDTEN control bit(description in section

10) • or ISP entry mechanisms select(description in section 18).

When chip protected or no ISP service, option can only read.

The choice ISP function will start to execute once the software write data to ISPFC register.

To perform byte program/page erases ISP function, user need to specify flash address at first. When performing page erase function, SM39A16M1 will erase entire page which flash address indicated by ISPFAH & ISPFAL registers located within the page.

e.g. flash address: \$ XY00

page erase function will erase from \$XY00 to \$XY7F

To perform the chip erase ISP function, SM39A16M1 will erase all the flash program memory except the ISP service program space. To perform chip protect ISP function, the SM39A16M1 flash memory content will be read #00H.

e.g. ISP service program to do the byte program - to program #22H to the address \$1005H

| MOV TAKEY, #55h  |                                                      |
|------------------|------------------------------------------------------|
| MOV TAKEY, #0AAh |                                                      |
| MOV TAKEY, #5Ah  | ; enable ISPE write attribute                        |
| ORL IFCON, #01H  | ; enable SM39A16M1 ISP function                      |
| MOV ISPFAH, #10H | ; set flash address-high, 10H                        |
| MOV ISPFAL, #05H | ; set flash address-low, 05H                         |
| MOV ISPFD, #22H  | ; set flash data to be programmed, data = 22H        |
| MOV ISPFC, #00H  | ; start to program #22H to the flash address \$1005H |
| MOV TAKEY, #55h  |                                                      |
| MOV TAKEY, #0AAh |                                                      |
| MOV TAKEY, #5Ah  | ; enable ISPE write attribute                        |
| ANL IFCON, #0FEH | ; disable SM39A16M1 ISP function                     |



# 19. Comparator

SM39A16M1 had integrated Comparator in chip. When use it as comparator, the comparator output is logical one when positive input greater than negative input, otherwise the output is a zero. Following is the work of a block diagram of the comparator, as Fig. 19-1 shown. The user can set the operation mode with reference to the block diagram.



Fig. 19-1: Operation of Comparator Mode

If OPA and Comparator Mode both are enabled at same module, the OPA Mode has higher priority.

| Mnemonic | Description              | Addr | Bit 7  | Bit 6       | Bit 5        | Bit 4        | Bit 3 | Bit 2       | Bit 1        | Bit 0        | RST   |
|----------|--------------------------|------|--------|-------------|--------------|--------------|-------|-------------|--------------|--------------|-------|
|          |                          |      |        |             | Compara      | ator         |       |             |              |              |       |
| OpPin    | OpCmp Pin<br>Select      | F6h  | -      | Cmp0_<br>En | C0Pos<br>VBG | C0Pos<br>PAD | -     | Cmp1_<br>En | C1Pos<br>VBG | C1Pos<br>PAD | ~OP11 |
| OpPin2   | OpCmp Pin<br>Select 2    | CEh  | -      | Cmp2_<br>En | C2Pos<br>VBG | C2Pos<br>PAD | -     | -           | -            | -            | ~OP16 |
| Cmp0CON  | Comparator<br>_0 control | FEh  | Hys0En | Cmp0o       | CMF0<br>MS1  | CMF0<br>MS0  | CMF0  | -           | -            | -            | 00h   |
| Cmp1CON  | Comparator<br>_1 control | FFh  | Hys1En | Cmp1o       | CMF1<br>MS1  | CMF1<br>MS0  | CMF1  | -           | -            | -            | 00h   |
| Cmp2CON  | Comparator<br>_2 control | CFh  | Hys2En | Cmp2o       | CMF2<br>MS1  | CMF2<br>MS0  | CMF2  | -           | -            | -            | 00h   |

\*OP11 and OP16 by writer programming set.



Addross-CEb

### Mnemonic: OnPin

| Mnemonic: | Addre   | ss: F6h      |          |   |         |              |          |       |
|-----------|---------|--------------|----------|---|---------|--------------|----------|-------|
| 7         | 6       | 5            | 4        | 3 | 2       | 1            | 0        | Reset |
| -         | Cmp0_En | C0PosVB<br>G | C0PosPad | - | Cmp1_En | C1PosVB<br>G | C1PosPad | ~OP11 |

Cmp0 En : Cmp0 enable

Cmp0 En = 1 - Comparator 0 circuit enables and switch to corresponding signal in multi-function pin P2.0/P2.1 by HW automatically.

C0PosVBG : Select Comparator 0 positive input source

Cmp0 En = 1 - set positive input source as internal reference voltage.

(1.2V±10%)

C0PosPad: Select Comparator\_0 positive input source

C0PosPad = 1 - set positive input source as external pin.

#### Cmp1 En : Cmp1 enable

Cmp1\_En = 1 - Comparator\_1 circuit enables and switch to corresponding signal in multi-function pin P2.2/P2.3 by HW automatically.

#### C1PosVBG: Select Comparator 1 positive input source

C1PosVBG = 1 - set positive input source as internal reference voltage. (1.2V±10%)

C1PosPad: Select Comparator 1 positive input source

C1PosPad = 1 - set positive input source as external pin.

### Mnomonic: OnDin2

|   |             |              |              |   |   |   | Addit | 555.0En |
|---|-------------|--------------|--------------|---|---|---|-------|---------|
| 7 | 6           | 5            | 4            | 3 | 2 | 1 | 0     | Reset   |
| - | Cmp2_<br>En | C2Pos<br>VBG | C2Pos<br>Pad | - | - | - | -     | ~OP16   |

Cmp2 En: Cmp2 enable.

Cmp2 En= 1 - Comparator 2 circuit enable and switch to corresponding signal in multi-function pin P2.4/P2.5 by HW automatically.

C2PosVBG: Select Comparator\_2 positive input source

C2PosVBG = 1 - set positive input source as bandgap reference voltage.

C2PosPad: Select Comparator\_2 positive input source

C2PosPad =1 - set positive input source as external pin.



| Mnemon | ic: Cmp0C | ON          |             |      |   |   | Addr | ess:FEh |
|--------|-----------|-------------|-------------|------|---|---|------|---------|
| 7      | 6         | 5           | 4           | 3    | 2 | 1 | 0    | Reset   |
| Hys0En | Cmp0o     | CMF0M<br>S1 | CMF0M<br>S0 | CMF0 | - | - | -    | 00h     |

Hys0En: Hysteresis function enable

Hys0En = 0 - Disable Hysteresis at comparator\_0 input.

Hys0En = 1 - Enable.

Cmp0o: Comparator\_0 output (read only)

Cmp0o = 0 - The positive input source was lower than negative input source.

Cmp0o = 1 - The positive input source was higher than negative input source.

CMF0MS[1:0] : CMF0(Comparator\_0 Flag) setting mode select

CMF0MS[1:0] = 00 - CMF0 will be set when comprator\_0 output toggle.

CMF0MS[1:0] = 01 - CMF0 will be set when comprator\_0 output rising.

CMF0MS[1:0] = 10 - CMF0 will be set when comprator\_0 output falling.

11: reserved.

CMF0: Comparator\_0 Flag

This bit is setting by hardware according to meet CMF0MS [1:0] select condition. This bit must clear by software.

| Mnemonic: Cmp1CON Address:FFh |       |             |             |      |   |   |   |       |
|-------------------------------|-------|-------------|-------------|------|---|---|---|-------|
| 7                             | 6     | 5           | 4           | 3    | 2 | 1 | 0 | Reset |
| Hys1En                        | Cmp1o | CMF1M<br>S1 | CMF1M<br>S0 | CMF1 | - | - | - | 00h   |

Hys1En: Hysteresis function enable

Hys1En = 0 - disable Hysteresis at comparator\_1 input.

Hys1En =1 - enable.

Cmp1o: Comparator\_1 output (read only)

Cmp1o = 0 - The positive input source was lower than negative input source.

Cmp1o = 1 - The positive input source was higher than negative input source.

CMF1MS[1:0] : CMF1(Comparator\_1 Flag) setting mode select

CMF1MS[1:0] = 00 - CMF1 will be set when comprator\_1 output toggle.

CMF1MS[1:0] = 01 - CMF1 will be set when comprator\_1 output rising.

CMF1MS[1:0] = 10 - CMF1 will be set when comprator\_1 output falling.

CMF1MS[1:0] = 11 - reserved.

### CMF1: Comparator\_1 Flag

This bit is setting by hardware according to meet CMF1MS [1:0] select condition. This bit must clear by software.



| Mnemonic: Cmp2CON |       |             |             |      |   |   | Addre | ss:CFh |
|-------------------|-------|-------------|-------------|------|---|---|-------|--------|
| 7                 | 6     | 5           | 4           | 3    | 2 | 1 | 0     | Reset  |
| Hys2En            | Cmp2o | CMF2<br>MS1 | CMF2<br>MS0 | CMF2 | - | - | -     | 00h    |

Hys2En: Hysteresis function enable

Hys2En = 0 - Disable Hysteresis at comparator\_2 input.

Hys2En = 1 - Enable.

Cmp2o: Comparator\_1 output (read only)

Cmp2o = 0 - The positive input source was lower than negative input source.

Cmp2o = 1 - The positive input source was higher than negative input source.

CMF2MS[1:0] : CMF1(Comparator\_2 Flag) setting mode select

CMF2MS[1:0] = 00 - CMF2 will be set when comprator\_2 output toggle.

CMF2MS[1:0] = 01 - CMF2 will be set when comprator\_2 output rising.

CMF2MS[1:0] = 10 - CMF2 will be set when comprator\_2 output falling.

CMF2MS[1:0] = 11 - reserved.

CMF2: Comparator\_2 Flag

This bit is setting by hardware according to meet CMF2MS [1:0] select condition. This bit must clear by software.



# **Operating Conditions**

| Symbol | Description                | Min. | Тур. | Max. | Unit. | Remarks                        |
|--------|----------------------------|------|------|------|-------|--------------------------------|
| TA     | Operating temperature      | -40  | 25   | 85   | °C    | Ambient temperature under bias |
| VDD    | Supply voltage             | 1.8  |      | 5.5  | V     |                                |
| Vref   | Internal reference voltage | 1.1  | 1.2  | 1.3  | V     |                                |

# **DC Characteristics**

TA = -40  $^\circ\!\mathrm{C}$  to 85  $^\circ\!\mathrm{C}$  , VCC = 5.0V

| Symbol | Parameter                                    | Valid           | Min    | Typical | Max          | Units | Conditions                        |
|--------|----------------------------------------------|-----------------|--------|---------|--------------|-------|-----------------------------------|
| VIL1   | Input Low-voltage                            | Port 0,1,2,3    | -0.5   | -       | 0.8          | V     | Vcc=5V                            |
| VIL2   | Input Low-voltage                            | RES, XTAL1      | 0      | -       | 0.8          | V     | -                                 |
| VIH1   | Input High-voltage                           | Port 0,1,2,3    | 2.0    | -       | VCC +<br>0.5 | V     | -                                 |
| VIH2   | Input High-voltage                           | RES, XTAL1      | 70%Vcc | -       | VCC +<br>0.5 | V     | -                                 |
|        |                                              | Port 0 (3.)     | -      | -       | 0.45         | V     | IOL=40mA Vcc=5V                   |
| VOL    | Oulpul Low-vollage                           | Port 1,2,3 (4.) | -      | -       | 0.45         | V     | IOL=20mA Vcc=5V                   |
|        | Output High-voltage                          | Port 0          | 4.6    | -       | -            | V     | IOH= -12mA                        |
| VOITI  | up(1)                                        | Port 1,2,3      | 4.6    | -       | -            | V     | IOH= -7mA                         |
| VOH2   | Output High-voltage<br>using Weak Pull-up(2) | Port 0,1,2,3    | 2.6    | -       | -            | V     | IOH= -350uA                       |
| IIL    | Logic 0 Input Current                        | Port 0,1,2,3    | -      | -       | -75          | uA    | Vin= 0.45V                        |
| ITL    | Logical Transition<br>Current                | Port 0,1,2,3    | -      | -       | -650         | uA    | Vin= 2.0V                         |
| ILI    | Input Leakage Current                        | Port 0,1,2,3    | -      | -       | ±10          | uA    | 0.45V <vin<vcc< td=""></vin<vcc<> |
| RRST   | Reset Pull-down<br>Resistor                  | RES             | 50     | -       | 300          | kΩ    | -                                 |
| CIO    | Pin Capacitance                              | -               | -      | -       | 10           | pF    | Freq= 1MHz, Ta= 25℃               |
|        |                                              |                 | -      | 3.19    | 4.78         | mA    | Active<br>mode ,IRC=22.1184MHz    |
|        |                                              |                 | -      | 5.5     | 8.25         | mA    | Active mode, 12MHz<br>VCC=5V 25 ℃ |
| ICC    | Power Supply Current                         | VDD             | -      | 4.5     | 7.25         | mA    | Idle mode, 12MHz<br>VCC =5V 25 ℃  |
|        |                                              |                 | -      | 3       | 7            | uA    | Power down mode<br>VCC =5V 25 °C  |

### Notes:

- (1) Port in Push-Pull Output Mode
- (2) Port in Quasi-Bidirectional Mode
- (3) Maximum IOL per port0 pin : 40mA
- (4) Maximum IOL per port1,2,3 pin : 20mA



### TA = $-40^{\circ}$ C to $85^{\circ}$ C, VCC = 3.0V

| Symbol | Parameter                                    | Valid           | Min    | Typical | Max          | Units | Conditions                             |
|--------|----------------------------------------------|-----------------|--------|---------|--------------|-------|----------------------------------------|
| VIL1   | Input Low-voltage                            | Port 0,1,2,3    | -0.5   | -       | 0.8          | V     | Vcc=3.0V                               |
| VIL2   | Input Low-voltage                            | RES, XTAL1      | 0      | -       | 0.8          | V     | -                                      |
| VIH1   | Input High-voltage                           | Port 0,1,2,3    | 2.0    | -       | VCC +<br>0.5 | V     | -                                      |
| VIH2   | Input High-voltage                           | RES, XTAL1      | 70%Vcc | -       | VCC +<br>0.5 | V     | -                                      |
|        |                                              | Port 0 (3.)     | -      | -       | 0.45         | V     | IOL=20mA Vcc=3V                        |
| VOL    | Output Low-voltage                           | Port 1,2,3 (4.) | -      | -       | 0.45         | V     | IOL=12mA Vcc=3V                        |
|        | Output High-voltage                          | Port 0          | 2.6    | -       | -            | V     | IOH=- 9mA                              |
| VUHI   | up(1)                                        | Port 1,2,3      | 2.6    | -       | -            | V     | IOH= -5mA                              |
| VOH2   | Output High-voltage<br>using Weak Pull-up(2) | Port 0,1,2,3    | 2.4    | -       | -            | V     | IOH= -70uA                             |
| IIL    | Logic 0 Input Current                        | Port 0,1,2,3    | -      | -       | -75          | uA    | Vin= 0.45V                             |
| ITL    | Logical Transitio<br>n Current               | Port 0,1,2,3    | -      | -       | -650         | uA    | Vin=1.5V                               |
| ILI    | Input Leakage Current                        | Port 0,1,2,3    | -      | -       | ±10          | uA    | 0.45V <vin<vcc< td=""></vin<vcc<>      |
| RRST   | Reset Pull-down<br>Resistor                  | RES             | 50     | -       | 300          | kΩ    | -                                      |
| CIO    | Pin Capacitance                              |                 | -      | -       | 10           | pF    | Freq= 1MHz, Ta= 25℃                    |
|        |                                              |                 | -      | 3.15    | 4.73         | mA    | Active<br>mode ,IRC=22.1184MHz         |
|        |                                              |                 | -      | 2.77    | 4.16         | mA    | Active mode ,12MHz<br>VCC = 3.0 V 25 ℃ |
| ICC    | Power Supply Current                         | VDD             | -      | 1.77    | 3.16         | mA    | Idle mode, 12MHz<br>VCC =3.0V 25 ℃     |
|        |                                              |                 | -      | 1       | 5            | uA    | Power down mode<br>VCC=3.0V 25 °C      |

### Notes:

- (1) Port in Push-Pull Output Mode
- (2) Port in Quasi-Bidirectional Mode
- (3) Maximum IOL per port0 pin : 20mA
- (4) Maximum IOL per port1,2,3 pin : 12mA

Absolute Maximum Ratings

|                 |                |     | 0    |
|-----------------|----------------|-----|------|
| SYMBOL          | PARAMETER      | MAX | UNIT |
| Maximum sourced | An I/O pin     | N/A | mA   |
| current         | Total I/O pins | 150 | mA   |
| Maximum sink    | An I/O pin     | N/A | mA   |
| current         | Total I/O pins | 150 | mA   |
| т;              | Max. Junction  | 150 | °C   |
| _ 'J            | Temperature    | 100 | C    |



# **Comparator Characteristics**

| -               |                                    |                |              |        |     |         | <b>Ta=25</b> ℃ |
|-----------------|------------------------------------|----------------|--------------|--------|-----|---------|----------------|
| Symbol          | Description                        | Test Condition |              | MIN    | TDV | MAY     | l Init         |
| Symbol          | Description                        | $V_{DD}$       | Condition    | IVIIIN | IPT | WIAA    | Unit           |
| I <sub>OP</sub> | Operating current                  | 5              | -            | -      | 10  | 10      | uA             |
| -               | Power Down Current                 | 5              | -            | -      | -   | 0.1     | uA             |
| -               | Offset voltage                     | 5              | -            | -10    | -   | +10     | mV             |
| V <sub>CM</sub> | Input voltage commom mode<br>range | -              | -            | Vss    | -   | Vdd-1.5 | V              |
| Тр              | Propagation delay                  | 5              | <br>Vin=10mV | -      | 3   | 6       | us             |

# LVI& LVR Characteristics

|             | LVR         |             |             |  |  |
|-------------|-------------|-------------|-------------|--|--|
|             | Min         | Typical     | Max         |  |  |
| 10\/ 55\/   | VIL=1.42V   | VIL=1.50V   | VIL=1.57V   |  |  |
| 1.6% ~ 5.5% | (VIH=1.62V) | (VIH=1.70V) | (VIH=1.77V) |  |  |

|                 | LVI         |             |             |  |  |  |
|-----------------|-------------|-------------|-------------|--|--|--|
|                 | Min         | Typical     | Max         |  |  |  |
| 1)/19[1:0] = 00 | VIL=1.57V   | VIL=1.65V   | VIL=1.73V   |  |  |  |
| LVIS[1.0] = 00  | (VIH=1.77V) | (VIH=1.85V) | (VIH=1.93V) |  |  |  |
|                 | VIL=2.47V   | VIL=2.60V   | VIL=2.73V   |  |  |  |
| LVIS[1.0] = 01  | (VIH=2.67V) | (VIH=2.80V) | (VIH=2.93V) |  |  |  |
| 1)/18[1:0] - 10 | VIL=3.04V   | VIL=3.20V   | VIL=3.36V   |  |  |  |
| LVIS[1.0] = 10  | (VIH=3.24V) | (VIH=3.40V) | (VIH=3.56V) |  |  |  |
| 1//19/1-11      | VIL=3.80V   | VIL=4.00V   | VIL=4.20V   |  |  |  |
| LVIS[1.0] = 11  | (VIH=4.00V) | (VIH=4.20V) | (VIH=4.40V) |  |  |  |