

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION

CP-Series

24V, 20A, SINGLE PHASE INPUT

REDUNDANCY POWER SUPPLY

- AC 100-240V Wide-range Input
- Width only 48mm
- Built-in Decoupling Mosfet for 1+1 and n+1 Redundancy
- Efficiency up to 95.2%
- 20% Output Power Reserves
- Safe Hiccup^{PLUS} Overload Mode
- Easy Fuse Breaking 3 times nominal current for 12ms
- Active Power Factor Correction (PFC)
- Minimal Inrush Current Surge
- Full Power Between -40°C and +60°C
- DC-OK Relay Contact
- Current Sharing Feature Included
- 3 Year Warranty

GENERAL DESCRIPTION

The CP-Series, part of the DIMENSION power supply family are cost optimized without compromising quality, reliability and performance.

The CP20.241-Rx units include a decoupling MOSFET for building 1+1 or n+1 redundant power supply systems without the need of external redundancy modules.

These redundancy power supplies come with three connection terminal options; screw terminals, spring-clamp terminals or plug connector terminals which allows replacement on an active application.

The most outstanding features of these units are high efficiency, electronic inrush current limitation, active PFC and the wide operational temperature range.

The devices also have a power reserve of 20% included, which may even be used continuously at temperatures up to +45°C. Additionally, they can deliver 3 times the nominal output current for 12ms which helps to trip fuses on faulty output branches.

With high immunity to transients and power surges, low electromagnetic emission, a DC-OK signal contact for remote monitoring, and a large international approval package, makes this unit suitable for nearly every application.

SHORT-FORM DATA

Output voltage	DC 24V	0%/+6%
Adjustment range	-	
Output current	24A	Below +45°C ambient
	20A	At +60°C ambient
	15A	At +70°C ambient
Output ripple	max. 50mVpp	20Hz to 20MHz
AC Input voltage	AC 100-240V	-15%/+10%
Mains frequency	50-60Hz	±6%
AC Input current	4.28 / 2.25A	At 120 / 230Vac
Power factor	0.99 / 0.95	At 120 / 230Vac
AC Inrush current	10 / 4.5Apk	At 120 / 230Vac
Efficiency	93.8 / 95.2%	At 120 / 230Vac
Losses	31.7 / 24.2W	At 120 / 230Vac
Temperature range	-40°C to +70°C	
Hold-up time	32ms	
Size (w x h x d)	48x124x127mm	Without DIN-rail and
		plug connectors
Weight	830g / 1.83lb	CP20.241-R1
		CP20.241-R3
	850g / 1.87lb	CP20.241-R2

ORDER NUMBERS

Power Supply CP20.241-R2 With hot swappable plug

connectors

(preferred inventory item)

CP20.241-R1 With guick-connect

spring-clamp terminals

CP20.241-R3 With screw terminals

Accessory ZM5.WALL Wall mount bracket

MARKINGS

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

INDEX

	P	age			Page
1.	Intended Use	.4	21. App	orovals	20
2.	Installation Requirements			IS, REACH and Other Fulfilled Standa	
3.	AC-Input			sical Dimensions and Weight	
4.	DC-Input			essories	
5.	Input Inrush Current		24.1.	ZM5.WALL - Wall/Panel Mount Bra	cket .23
6.	Output		25. App	olication Notes	24
7.	Hold-up Time		25.1.	Peak Current Capability	24
8.	DC-OK Relay Contact	.9	25.2.	Adjusting the Output Voltage	25
9.	Efficiency and Power Losses1	0	25.3.	Charging of Batteries	25
10.	Lifetime Expectancy1	1	25.4.	Back-feeding Loads	25
11.	MTBF1	1	25.5.	External Input Protection	26
12.	Functional Diagram1	2	25.6.	Output Circuit Breakers	26
13.	Terminals and Wiring1	3	25.7.	Series Operation	27
14.	Replacing Units while the System is Running1	4	25.8.	Parallel Use to Increase Output Pov	ver27
15.	Front Side and User Elements1	5	25.9.	Parallel Use for Redundancy	28
16.	EMC1	6	25.10.	. Inductive and Capacitive Loads	29
17.	Environment1	7	25.11.	. Operation on Two Phases	29
18.	Protection Features1	8	25.12.	. Use in a Tightly Sealed Enclosure	29
	Safety Features1		25.13.	. Mounting Orientations	30
20.	Dielectric Strength1	9			

The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document.

No part of this document may be reproduced or utilized in any form without our prior permission in writing.

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION CP-Series

24V, 20A, SINGLE PHASE INPUT

TERMINOLOGY AND ABREVIATIONS

PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol symbol arth, Ground This document uses the term "earth" which is the same as the U.S. term "ground".

T.B.D. To be defined, value or description will follow later.

AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with

standard tolerances (usually ±15%) included.
E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional

tolerances included.

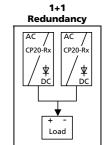
50Hz vs. 60Hz As long as not otherwise stated, AC 230V parameters are valid at 50Hz mains frequency.

may A key word indicating flexibility of choice with no implied preference.

shall A key word indicating a mandatory requirement.

should A key word indicating flexibility of choice with a strongly preferred implementation.

1+1 Redundancy Use of two identical power supplies in parallel to provide continued operation following most


failures in a single power supply. The two power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements. E.g. two 10A power supplies are

needed to achieve a 10A

redundant system.

N+1 Redundancy Use of three or more identical

power supplies in parallel to provide continued operation following most failures in a single power supply. All power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements.

E.g.: To achieve a 40A redundant system, five 10A power supplies are needed in a N+1

redundant system.

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V. 20A. SINGLE PHASE INPUT

1. INTENDED USE

This device is designed for installation in an enclosure and is intended for the general professional use such as in industrial control, office, communication, and instrumentation equipment.

Do not use this power supply in equipment, where malfunction may cause severe personal injury or threaten human

2. Installation Requirements

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.

If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Install device in an enclosure providing protection against electrical, mechanical and fire hazards.

Mount the unit on a DIN-rail so that the input terminals are located on the bottom of the unit. For other mounting orientations see de-rating requirements in this document. See chapter 25.13.

Unused screw terminals should be securely tightened.

Do not unplug the connectors more often than 20 times in total.

This device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid (e.g. cable conduits) by more than 15%!

Keep the following installation clearances: 40mm on top, 20mm on the bottom (measured from the ventilation grid), 5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (e.g. another power supply).

A disconnecting means shall be provided for the output of the power supplies when used in applications according to CSA C22.2 No 107.1-01.

For use in a controlled environment according to CSA 22.2 No 107.1-01.

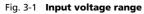
WARNING Risk of electrical shock, fire, personal injury or death.

- Do not use the power supply without proper grounding (Protective Earth). Use the terminal on the input connector for earth connection and not one of the screws on the housing.
- Turn input power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT


3. AC-INPUT

AC input	nom.	AC 100-240V	Suitable for TN-, TT- and IT mains networks	
AC input range	min.	85-264Vac	Continuous operation	
	min.	264-300Vac	< 500ms	
Allowed voltage L or N to earth	max.	300Vac	Continuous, IEC 62477-1	
Input frequency	nom.	50–60Hz	±6%	
Turn-on voltage	typ.	82Vac	Steady-state value, see Fig. 3-1	
Shut-down voltage	typ.	72Vac	Steady-state value, see Fig. 3-1	
External input protection	See recommendations in chapter 25.5.			

		AC 100V	AC 120V	AC 230V	
Input current	typ.	5.17A	4.28A	2.25A	At 20A, see Fig. 3-3
Power factor*)	typ.	0.996	0.996	0.980	At 20A, see Fig. 3-4
Crest factor**)	typ.	1.65	1.63	1.63	At 20A
Start-up delay	typ.	450ms	420ms	440ms	See Fig. 3-2
Rise time	typ.	45ms	45ms	45ms	At 20A const. current load, 0mF load capacitance, see Fig. 3-2
	typ.	90ms	90ms	90ms	At 20A const. current load, 20mF load capacitance,, see Fig. 3-2
Turn-on overshoot	max.	200mV	200mV	200mV	See Fig. 3-2

^{*)} The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

^{**)} The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.

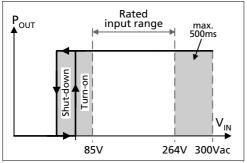


Fig. 3-3 Input current vs. output current

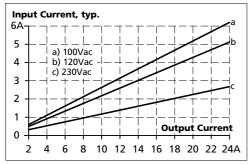


Fig. 3-2 Turn-on behavior, definitions

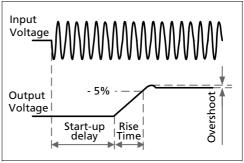
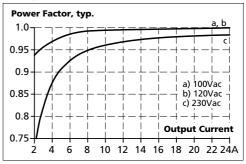
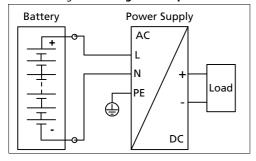



Fig. 3-4 Power factor vs. output current

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3


DIMENSION CP-Series

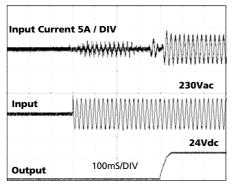
24V, 20A, SINGLE PHASE INPUT

4. DC-INPUT

DC input	nom.	DC 110-150V	±20%
DC input range	min.	88-180Vdc	Continuous operation
DC input current	typ.	4.64A	At 110Vdc, at 20A
Allowed Voltage L/N to Earth	max.	375Vdc	Continuous, IEC 62477-1
Turn-on voltage	typ.	80Vdc	Steady state value
Shut-down voltage	typ.	70Vdc	Steady state value

Fig. 4-1 Wiring for DC Input

Instructions for DC use:


- a) Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit.
- b) Connect +pole to L and -pole to N.
- c) Connect the PE terminal to an earth wire or to the machine ground.

5. INPUT INRUSH CURRENT

An active inrush limitation circuit limits the input inrush current after turn-on of the input voltage. The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

		AC 100V	AC 120V	AC 230V	
Inrush current	max.	15A _{peak}	12A _{peak}	$5.5A_{peak}$	Temperature independent
	typ.	$12A_{peak}$	$10A_{peak}$	$4.5A_{peak}$	Temperature independent
Inrush energy	max.		negligible small		

Fig. 5-1 Typical input inrush current behaviour at nominal load and 25°C ambient

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

6. OUTPUT

Output voltage	nom.	DC 24V	0%/+6%
	achieve paralle	e current share between the current share between the current soft output regions.	"soft output regulation characteristic" in order to en multiple devices, when they are connected in gulation characteristic" regulates the output voltage in age at no load is approx. 4% higher than at nominal
Adjustment range		See chapter 25.2	
Factory settings	typ.	24.1V	±0.2%, at full load, cold unit
	typ.	25.1V	At no load, cold unit
Line regulation	max.	10mV	85-300Vac
Load regulation	typ.	1000mV	Static value, 0A → 20A; see Fig. 6-1
Ripple and noise voltage	max.	50mVpp	20Hz to 20MHz, 50Ohm
Output current	nom.	24A ¹⁾	Below 45°C ambient temperature, see Fig. 17-1
	nom.	20A	At 60°C ambient temperature, see Fig. 17-1
	nom.	15A	At 70°C ambient temperature, see Fig. 17-1
	typ.	60A	Up to 12ms once every five seconds, see Fig. 6-3 The output voltage stays above 20V. See chapter 25.1 for more peak current measurements.
Overload behaviour		Continuous current	Output voltage > 13Vdc, see Fig. 6-1
		Hiccup ^{PLUS®} mode ²⁾	Output voltage < 13Vdc, see Fig. 6-1
Short-circuit current	min.	26A ³⁾	Load impedance <10mOhm, see Fig. 6-1
	max.	31A ³⁾	Load impedance <10mOhm, see Fig. 6-1
	max.	9.8A ³⁾	Average (R.M.S.) current, load impedance 50mOhm, see Fig. 6-2.
	min.	55A	Up to 12ms, load impedance <10mOhm, see Fig. 6-3
	typ.	70A	Up to 12ms, load impedance <10mOhm, see Fig. 6-3
Output capacitance	typ.	8 000μF	Included inside the power supply

1) Power Boost

This power/ current is continuously allowed up to an ambient temperature of 45°C.

Above 45°C, do not use this power/ current longer than a duty cycle of 10% and/ or not longer than 1 minute every 10 minutes.

2) Hiccup^{PLUS®} Mode

At heavy overloads (when output voltage falls below 13V), the power supply delivers continuous output current for 2s. After this, the output is switched off for approx. 18s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-2.

3) Discharge current of output capacitors is not included.

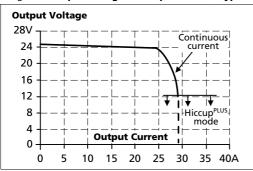
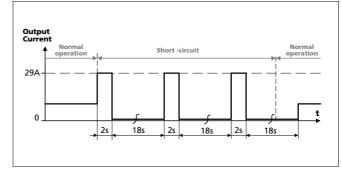
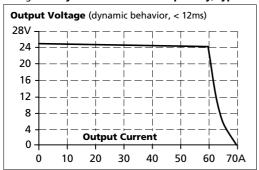



Fig. 6-2 Short-circuit on output, Hiccup^{PLUS} mode, typ.



CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

Fig. 6-3 Dynamic overcurrent capability, typ.

7. HOLD-UP TIME

		AC 100V	AC 120V	AC 230V	
Hold-up Time	typ.	65ms	65ms	65ms	At 10A, see Fig. 7-1
	min.	54ms	54ms	54ms	At 10A, see Fig. 7-1
	typ.	32ms	32ms	32ms	At 20A, see Fig. 7-1
	min.	24ms	24ms	24ms	At 20A, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage

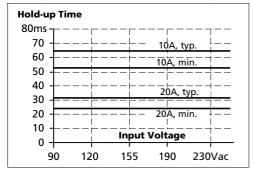
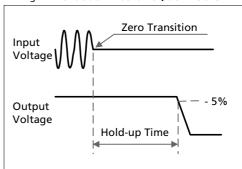
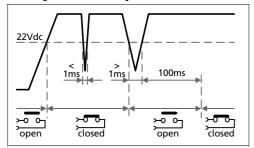



Fig. 7-2 Shut-down behavior, definitions

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series


24V, 20A, SINGLE PHASE INPUT

8. DC-OK RELAY CONTACT

This feature monitors the output voltage of the power supply in front of the decoupling device (see also chapter 12).

Contact closes	As soon as the output voltage reaches typ. 22Vdc.
Contact opens	As soon as the output voltage dips below 22Vdc.
	Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.
Contact ratings	Maximal 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load
	Minimal permissible load 1mA at 5Vdc
Isolation voltage	See dielectric strength table in chapter 20.

Fig. 8-1 DC-ok relay contact behavior

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION (

CP-Series

24V, 20A, SINGLE PHASE INPUT

9. EFFICIENCY AND POWER LOSSES

		AC 100V	AC 120V	AC 230V	
Efficiency	typ.	93.2%	93.8%	95.2%	At 20A
	typ.	93.1%	93.7%	95.1%	At 24A (Power Boost)
Average efficiency*)	typ.	92.8%	93.4%	94.6%	25% at 5A, 25% at 10A, 25% at 15A. 25% at 20A
Power losses	typ.	3.9W	3.5W	3.3W	At 0A
	typ.	17.4W	16.4W	13.8W	At 10A
	typ.	35.0W	31.7W	24.2W	At 20A
	typ.	42.7W	38.7W	29.7W	At 24A (Power Boost)

^{*)} The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current, typ

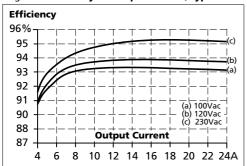


Fig. 9-3 **Efficiency vs. input voltage at 20A, typ.**

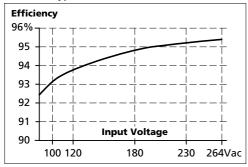


Fig. 9-2 Losses vs. output current, typ.

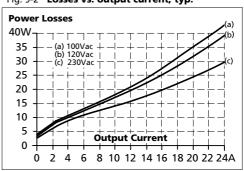
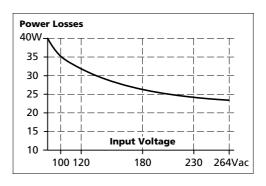



Fig. 9-4 Losses vs. input voltage at 20A, typ.

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

10. LIFETIME EXPECTANCY

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

	AC 100V	AC 120V	AC 230V	
Lifetime expectancy	117 000h	136 000h	164 000h	At 10A and 40°C
	331 000h	386 000h	465 000h	At 10A and 25°C
	40 000h	53 000h	90 000h	At 20A and 40°C
	114 000h	150 000h	253 000h	At 20A and 25°C
	16 000h	25 000h	47 000h	At 24A and 40°C
	44 000h	69 000h	134 000h	At 24A and 25°C

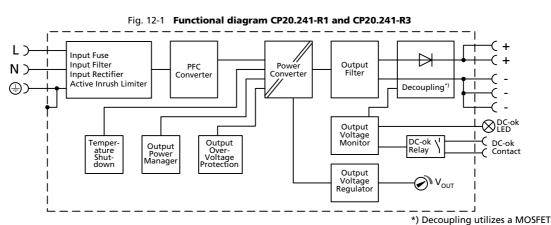
11. MTBF

MTBF stands for **M**ean **T**ime **B**etween **F**ailure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

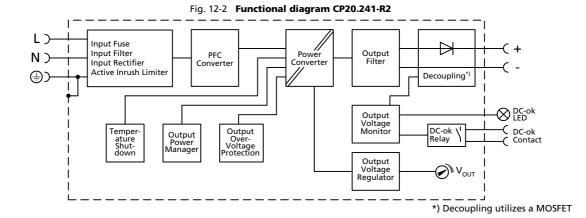
The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.

For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value.

	AC 100V	AC 120V	AC 230V	
MTBF SN 29500, IEC 61709	387 000h	412 000h	543 000h	At 20A and 40°C
	723 000h	768 000h	976 000h	At 20A and 25°C
MTBF MIL HDBK 217F	164 000h	169 000h	199 000h	At 20A and 40°C; Ground Benign GB40
	224 000h	231 000h	272 000h	At 20A and 25°C; Ground Benign GB25
	34 000h	36 000h	42 000h	At 20A and 40°C; Ground Fixed GF40
	45 000h	47 000h	56 000h	At 20A and 25°C; Ground Fixed GF25



CP20.241-R1, CP20.241-R2, CP20.241-R3


DIMENSION CP-Series

24V, 20A, SINGLE PHASE INPUT

12. FUNCTIONAL DIAGRAM

/ Decoupling actilizes a Most Et

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

13. TERMINALS AND WIRING

The terminals are IP20 Finger safe constructed and suitable for field- and factory wiring.

CP20.241-R1	Input	Output	DC-OK-Signal
Туре	Quick-connect spring- clamp termination	Quick-connect spring- clamp termination	Push-in termination
Solid wire	Max. 6mm ²	Max. 6mm ²	Max. 1.5mm²
Stranded wire	Max. 4mm ²	Max. 4mm ²	Max. 1.5mm ²
American Wire Gauge	AWG 20-10	AWG 20-10	AWG 24-16
Max. wire diameter (including ferrules)	2.8mm	2.8mm	1.6mm
Wire stripping length	10mm / 0.4inch	10mm / 0.4inch	7mm / 0.28inch
Screwdriver			3 mm slotted to open the spring

CP20.241-R2	Input	Output	DC-OK-Signal
Туре	Plug connector with screw termination	Plug connector with screw termination	Plug connector with screw termination
Solid wire	Max. 4mm ²	Max. 6mm ²	Max. 1.5mm ²
Stranded wire	Max. 2.5mm ²	Max. 6mm ²	Max. 1.5mm ²
American Wire Gauge	AWG 20-12	AWG 24-10	AWG 26-14
Max. wire diameter (including ferrules)	2.4mm	3.2mm	1.8mm
Recommended tightening torque	Max. 0.5Nm, 4.5lb-in	Max. 0.6Nm, 5.3lb-in	Max. 0.8Nm, 7lb-in
Wire stripping length	7mm / 0.28inch	12mm / 0.47inch	6mm / 0.24inch
Screwdriver	3.5mm slotted or cross- head No 2	3.5mm slotted or cross- head No 2	3.5mm slotted

CP20.241-R3	Input	Output	DC-OK-Signal
Туре	Screw termination	Screw termination	Push-in termination
Solid wire	Max. 6mm ²	Max. 6mm ²	Max. 1.5mm ²
Stranded wire	Max. 4mm ²	Max. 4mm ²	Max. 1.5mm ²
American Wire Gauge	AWG 20-10	AWG 20-10	AWG 24-16
Max. wire diameter (including ferrules)	2.8mm	2.8mm	1.6mm
Recommended tightening torque	Max. 1Nm, 9lb-in	Max. 1Nm, 9lb-in	-
Wire stripping length	7mm / 0.28inch	7mm / 0.28inch	7mm / 0.28inch
Screwdriver	3.5mm slotted or cross- head No 2	3.5mm slotted or cross- head No 2	3mm slotted to open the spring

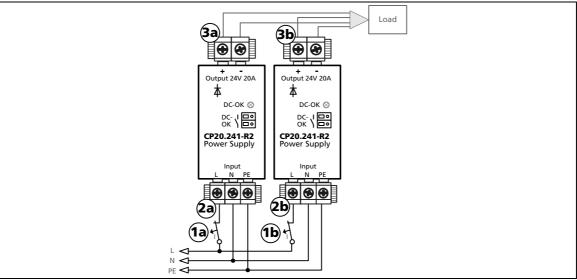
Instructions for wiring:

- a) Use appropriate copper cables that are designed for minimum operating temperatures of:
 - 60°C for ambient up to 45°C and
 - 75°C for ambient up to 60°C and
 - 90°C for ambient up to 70°C minimum.
- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Unused terminal compartments should be securely tightened.
- e) Ferrules are allowed.

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION C


CP-Series

24V, 20A, SINGLE PHASE INPUT

14. REPLACING UNITS WHILE THE SYSTEM IS RUNNING

This feature is available only for the CP20.241-R2 unit, which is equipped with hot-swappable plug connectors.

Fig. 14-1 Replacing the power supply or redundancy module while the system is running

Replacement instructions (Example for left power supply):

- Switch-off circuit breaker (1a).
- Remove plug (2a).
- Remove plug (3a). The plug prevents the cables from shorting.
- Change power supply.
- Put the plug (3a) back in.
- Put the plug (2a) back in.
- Turn-on the circuit breaker (1a).
- The circuit is redundant again.

To replace the right power supply, repeat the process above using (1b), (2b) and (3b).

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

15. FRONT SIDE AND USER ELEMENTS

Fig. 15-1 Front side CP20.241-R1

Fig. 15-2 Front side CP20.241-R2

Fig. 15-3 Front side CP20.241-R3

AC 100-240V

N L ⊕

O O CA

Input Terminals

N, L Line input

(1) PE (Protective Earth) input

B Output Terminals

- Positive output
- Negative (return) output

Output voltage potentiometer See chapter 25.2.

D DC-OK LED (green)

On, when the output voltage is above 22V.

E DC-OK Relay Contact

The DC-OK relay contact is synchronized with the DC-OK LED. See chapter 8 for details.

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION CI

CP-Series

24V, 20A, SINGLE PHASE INPUT

16. EMC

The power supply is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions.

EMC Immunity	According generic standards: EN 61000-6-1 and EN 61000-6-2			
Electrostatic discharge	EN 61000-4-2	Contact discharge	8kV	Criterion A
-		Air discharge	15kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	20V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	4kV	Criterion A
		Output lines	2kV	Criterion A
		DC-OK signal (coupling clamp)	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	$L \rightarrow N$	2kV	Criterion A
-		$L \rightarrow PE, N \rightarrow PE$	4kV	Criterion A
Surge voltage on output	EN 61000-4-5	+ → -	1kV	Criterion A
		+ / - → PE	2kV	Criterion A
Surge voltage on Signals	EN 61000-4-5	DC-OK signal → PE	1kV	Criterion A
Conducted disturbance	EN 61000-4-6	0.15-80MHz	20V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100Vac	0Vac, 20ms	Criterion A
		40% of 100Vac	40Vac, 200ms	Criterion C
		70% of 100Vac	70Vac, 500ms	Criterion C
		0% of 200Vac	0Vac, 20ms	Criterion A
		40% of 200Vac	80Vac, 200ms	Criterion A
		70% of 200Vac	140Vac, 500ms	Criterion A
Voltage interruptions	EN 61000-4-11	0% of 200Vac (=0V)	5000ms	Criterion C
Voltage sags	SEMI F47 0706	Dips on the input voltage accordi	ng to SEMI F47 stan	dard
		80% of 120Vac (96Vac)	1000ms	Criterion A
		70% of 120Vac (84Vac)	500ms	Criterion A
		50% of 120Vac (60Vac)	200ms	Criterion A
Powerful transients	VDE 0160	Vver entire load range	750V, 0.3ms	Criterion A
·				

Criterions:

C: Temporary loss of function is possible. Power supply may shut-down and restarts by itself. No damage or hazards for the power supply will occur.

EMC Emission	According generic standards: EN 61000-6-3 and EN 61000-6-4		
Conducted emission input lines	EN 55011, EN 55015, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B	
Conducted emission output lines*)	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1	Limits for DC power port according EN 61000-6-3 fulfilled	
Radiated emission	EN 55011, EN 55022	Class B	
Harmonic input current	EN 61000-3-2	Class A fulfilled between 0A and 12A load Class C fulfilled between 6A and 12A load	
Voltage fluctuations, flicker	EN 61000-3-3	Fulfilled, tested with constant current loads, non pulsing	

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

A: Power supply shows normal operation behavior within the defined limits.

^{*)} for information only, not mandatory for EN 61000-6-3

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION CP-Series

24V, 20A, SINGLE PHASE INPUT

Switching Frequencies	The power supply has three converters included. Two converters have a fixed switching frequency and one operates with a variable switching frequency.	
Switching frequency 1	110kHz	PFC converter
Switching frequency 2	110kHz to 140kHz	Main converter, output power dependent
Switching frequency 3	60kHz	Auxiliary converter

17. ENVIRONMENT

Operational temperature ¹⁾	-40°C to +70°C (-40°F to 158°F)	See also Fig. 17-1	
Storage temperature	-40°C to +85°C (-40°F to 185°F)	For storage and transportation	
Output de-rating	6.4W/°C 12W/°C	+45°C to +60°C (113°F to 140°F), see Fig. 17-1 +60°C to +70°C (140°F to 158°F), see Fig. 17-1	
	The de-rating is not hardware controlle stay below the de-rated current limits i	ed. The customer has to take care by himself to n order not to overload the unit.	
Humidity ²⁾	5 to 95% r.h.	IEC 60068-2-30	
Vibration sinusoidal	2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g ³⁾ 2 hours / axis ³⁾	IEC 60068-2-6	
Shock	30g 6ms, 20g 11ms ³⁾ 3 bumps / direction, 18 bumps in total	IEC 60068-2-27	
Altitude	0 to 2000m (0 to 6 560ft)	Without any restrictions	
	2000 to 6000m (6 560 to 20 000ft)	Reduce output current or ambient temperature, see Fig. 17-2	
		IEC 62477-1, overvoltage category II	
Altitude de-rating	30W/1000m or 5°C/1000m	Above 2000m (6500ft), see Fig. 17-2	
Over-voltage category	III	IEC 62477-1, altitudes up to 2000m	
	II	For altitudes from 2000m to 6000m	
Degree of pollution	2	IEC 62477-1, not conductive	
LABS compatibility	The unit does not release any silicone or other LABS-critical substances and is suitable for use in paint shops.		
Corrosive gases	ISA-71.04-1985, Severity Level G3, IEC 6	0068-2-60 Test Ke Method 4	
Audible noise	Some audible noise may be emitted from the power supply during no load, overload or short circuit.		

¹⁾ Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.

Fig. 17-1 Output current vs. ambient temp.

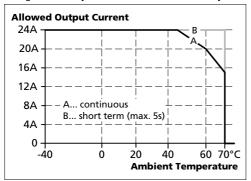
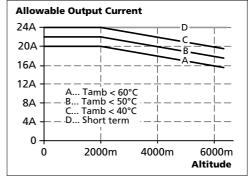



Fig. 17-2 **Output current vs. altitude**

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

²⁾ Do not energize while condensation is present

³⁾ Tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION (

CP-Series

24V, 20A, SINGLE PHASE INPUT

18. PROTECTION FEATURES

Output protection	Electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.		
Output over-voltage protection	typ. 30.5Vdc max. 32Vdc	In case of an internal power supply defect, a redundant circuit limits the maximum output voltage. The output shuts down and automatically attempts to restart.	
Degree of protection	IP 20	EN/IEC 60529	
Penetration protection	> 5mm	E.g. screws, small parts	
Over-temperature protection	yes ¹⁾	Output shut-down with automatic restart	
Input transient protection	MOV (Metal Oxide Varistor)	For protection values see chapter 16 (EMC).	
Internal input fuse	included	Not user replaceable slow-blow high-braking capacity	

¹⁾ The temperature sensor is installed inside the isolating transformer and turns the unit off in safety critical situations (e.g. de-rating requirements not observed, high ambient temperature, ventilation obstructed or the mounting orientation de-rating is not followed). There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods.

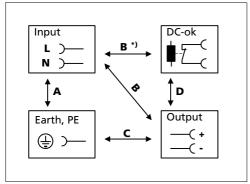
19. SAFETY FEATURES

Input / output separation	Double or reinforced galvanic isolation		
	SELV	IEC/EN 60950-1	
	PELV	IEC/EN 60204-1, EN 62477-1, IEC 60364-4-41	
Class of protection	1	PE (Protective Earth) connection required	
Isolation resistance	> 500MOhm	At delivered condition between input and output, measured with 500Vdc	
	> 500MOhm	At delivered condition between input and PE, measured with 500Vdc	
	> 500MOhm	At delivered condition between output and PE, measured with 500Vdc	
	> 500MOhm	At delivered condition between output and DC-OK contacts, measured with 500Vdc	
PE resistance	< 0.10hm	Resistance between PE terminal and the housing in the area of the DIN-rail mounting bracket.	
Touch current (leakage current)	typ. 0.12mA / 0.31mA	At 100Vac, 50Hz, TN-,TT-mains / IT-mains	
	typ. 0.18mA / 0.45mA	At 120Vac, 60Hz, TN-,TT-mains / IT-mains	
	typ. 0.30mA / 0.76mA	At 230Vac, 50Hz, TN-,TT-mains / IT-mains	
	max. 0.16mA / 0.38mA	At 110Vac, 50Hz, TN-,TT-mains / IT-mains	
	max. 0.23mA / 0.55mA	At 132Vac, 60Hz, TN-,TT-mains / IT-mains	
	max. 0.39mA / 0.94mA	At 264Vac, 50Hz, TN-,TT-mains / IT-mains	

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods.

CP20.241-R1, CP20.241-R2, CP20.241-R3


CP-Series

24V, 20A, SINGLE PHASE INPUT

20. DIELECTRIC STRENGTH

The output voltage is floating and has no ohmic connection to the ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

Fig. 20-1 Dielectric strength

		Α	В	С	D
Type test	60s	2500Vac	3000Vac	1000Vac	500Vac
Factory test	5s	2500Vac	2500Vac	500Vac	500Vac
Field test	5s	2000Vac	2000Vac	500Vac	500Vac
Cut-off current	setting	> 10mA	> 10mA	> 20mA	> 1mA

To fulfil the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the – pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

B*) When testing input to DC-OK ensure that the max. voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

21. APPROVALS

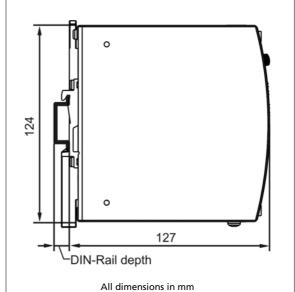
EC Declaration of Conformity	(€	The CE mark indicates conformance with the - EMC directive (available), - Low-voltage directive (available) and the - ATEX directive (planned)
IEC 60950-1 2 nd Edition planned	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508 planned	C UL US LISTED IND. CONT. EQ.	Listed for use as Industrial Control Equipment; U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01); E-File: E198865
UL 60950-1 2 nd Edition planned	c FL °us	Recognized for use as Information Technology Equipment, Level 5; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950-1); E-File: E137006 Applicable for altitudes up to 2000m.
ANSI / ISA 12.12.01-2007 Class I Div 2 planned	© Sus	Recognized for use in Hazardous Location Class I Div 2 T4 Groups A,B,C,D systems; U.S.A. (ANSI / ISA 12.12.01-2007) and Canada (C22.2 No. 213-M1987)
EN 60079-0, EN 60079-7 ATEX planned	II 3G Ex ec nC II T4 Gc	Approval for use in hazardous locations Zone 2 Category 3G. Number of ATEX certificate: will follow after certification process. The power supply must be built-in in an IP54 enclosure.
IEC 60079-0, IEC 60079-7 planned	IECEx	Suitable for use in Class 1 Zone 2 Groups IIa, IIb and IIc locations. Number of IECEx certificate: will follow after certification process.
Marine planned	GL	GL (Germanischer Lloyd) classified Environmental category: C, EMC2 Marine and offshore applications
EAC TR Registration (except CP20.241-R3)	EAC	Registration for the Eurasian Customs Union market (Russia, Kazakhstan, Belarus)

22. Rohs, Reach and Other Fulfilled Standards

RoHS Directive	RoHS✔	Directive 2011/65/EU of the European Parliament and the Council of June 8 th , 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
REACH Directive	REACH ✓	Directive 1907/2006/EU of the European Parliament and the Council of June 1 st , 2007 regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
IEC/EN 61558-2-16 (Annex BB)	Safety Isolating Transformer	Safety Isolating Transformers corresponding to Part 2-6 of the IEC/EN 61558

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3


DIMONSION CP-Series 24V, 20A, SINGLE PHASE INPUT

23. Physical Dimensions and Weight

Width	48mm 1.89"				
Height	124mm 4.88" (without plug-connectors)				
Depth	127mm 5.0" (without plug-connector) The DIN-rail height must be added to the unit depth to calculate the total required installation depth.				
Weight	830g / 1.83lb for CP20.241-R1 and CP20.241-R3 850g / 1.87lb for CP20.241-R2				
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.				
Housing material	Body: Aluminium alloy Cover: zinc-plated steel				
Installation clearances	See chapter 2				

Fig. 23-1 Front view CP20.241-R1 CP20.241-R3 31.8 31.8 $\Phi\Phi\Phi\Phi\Phi$ DC ok O DC ok O DC \ III Input Input NLPE ΦΦΦ 19 19 48 48 All dimensions in mm

Fig. 23-2 Side view CP20.241-R1 and CP20.241-R3

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

Fig. 23-3 Front view CP20.241-R2

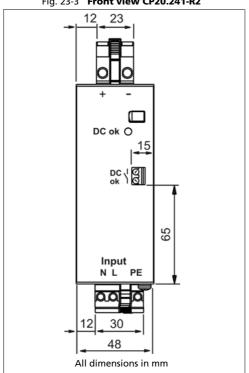
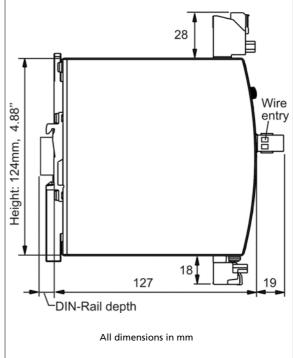



Fig. 23-4 Side view CP20.241-R2

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

24. Accessories

24.1. ZM5.WALL - WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing a DIN-Rail. It is suitable for the CP20.241-R1, CP20.241-R2 and CP20.241-R3.

The bracket can be mounted without detaching the DIN-rail brackets.

Fig. 24-1 **Isometric view** (Picture shows the CP20.241-R2)

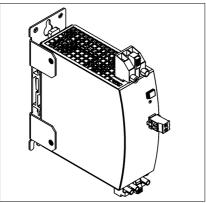


Fig. 24-2 **Isometric view-** (Picture shows the CP20.241-R2)

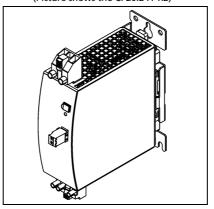


Fig. 24-3 **Isometric view** (Picture shows the CP20.241-R2)

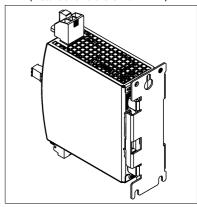


Fig. 24-4 Wall/panel mounting, front view

(Picture shows the CP20.241-R2)

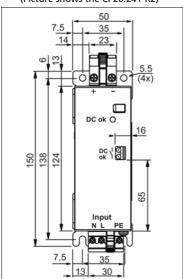


Fig. 24-5 **Hole pattern for wall mounting**

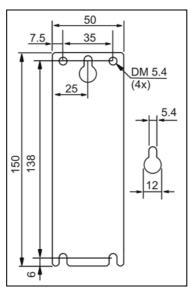
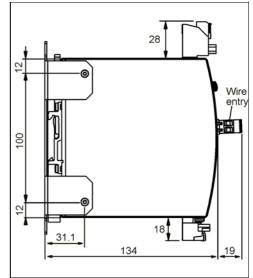



Fig. 24-6 **Wall/panel mounting,** side view

(Picture shows the CP20.241-R2)

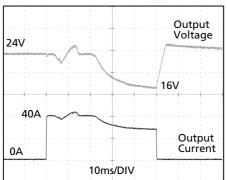
June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION

CP-Series

24V, 20A, SINGLE PHASE INPUT


25. APPLICATION NOTES

25.1. PEAK CURRENT CAPABILITY

The device has a power reserve of 20% included, which may even be used continuously at temperatures up to +45°C. Additionally, it can deliver about 3 times the nominal output current for 12ms which helps to trip fuses on faulty output branches or to start peak current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current (including the PowerBoost). The same situation applies when starting a capacitive load.

The following examples show typical voltage dips:

Fig. 25-1 Peak load with 2x the nominal current for 50ms, typ.

40A Peak load (resistive) for 50ms Output voltage dips from 24V to 16V.

Fig. 25-3 60A Peak load for 12ms, typ.

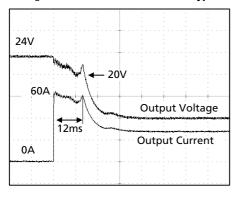
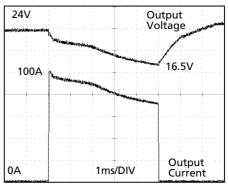



Fig. 25-2 **Peak load with 5x the nominal** current for 5ms, typ.

100A Peak load (resistive) for 5ms Output voltage dips from 24V to 16.5V.

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

Peak current voltage dips	typ.	from 24V to 16V	At 40A for 50ms, resistive load	
	typ.	from 24V to 21V	At 100A for 2ms, resistive load	
	typ.	from 24V to 16.5V	At 100A for 5ms, resistive load	

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION

CP-Series

24V, 20A, SINGLE PHASE INPUT

25.2. Adjusting the Output Voltage

A voltage adjustment potentiometer can be found behind the flap on the front of the unit (see chapter 15). However, it is not recommended to change the output voltage since load sharing between power supplies connected in parallel can only be achieved by a precise setting of the output voltages. The factory settings allow precise load sharing and only qualified personnel should change the adjustment potentiometer.

Adjustment range	range min. 24 - 28\		Please note the "soft output regulation characterist where the voltage at no load is approx. 4% higher than at nominal load. See chapter 6 for details.		
	max.	30V	Maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not a guaranteed value which can be achieved. The typical value is about 29.5V.		
Output current at 28V	nom.	20.6A	Below +45°C ambient		
	nom.	17.1A	At +60°C ambient		
	nom	13.0A	At +70°C ambient		
		Current values between 24V and 28V can be interpolated.			

The output voltage shall only be changed when absolutely necessary, e.g. for battery charging.

25.3. CHARGING OF BATTERIES

This redundancy power supply is ideal for charging batteries due to the decoupling circuit built in to the output stage which does not require a fuse or diode between the power supply and the battery.

It can be used to charge sealed lead acid (SLA) or valve regulated lead acid (VRLA) lead batteries when following these instructions:

a) Set output voltage (measured at disconnected battery) very precisely to the end-of-charge voltage. Use the potentiometer, which is hidden behind the flap on the front of the unit.

Battery temperature	10°C	20°C	30°C	40°C
End-of-charge voltage	27.8V	27.5V	27.15V	26.8V

- b) Ensure that the ambient temperature of the power supply stays below 40°C.
- c) Use only matched batteries when putting 12V types in series.
- d) The return current to the power supply (battery discharge current) is typically 11mA when the power supply is switched off.

25.4. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (<u>E</u>lectro <u>M</u>agnetic <u>F</u>orce).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off.

The maximum allowed feed-back-voltage is 35Vdc.

CP20.241-R1, CP20.241-R2, CP20.241-R3

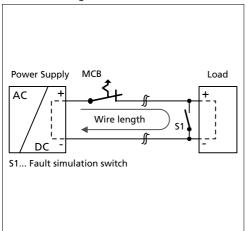
CP-Series

24V, 20A, SINGLE PHASE INPUT

25.5. EXTERNAL INPUT PROTECTION

The unit is tested and approved for branch circuits up to 30A (UL) and 32A (IEC). An external protection is only required if the supplying branch has an ampacity greater than this. Check also local codes and local requirements. In some countries local regulations might apply.

If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the circuit breaker. A minimum value of 10A B- or C-Characteristic breaker should be used.


25.6. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCB's or UL 1077 circuit breakers) are commonly used for AC-supply systems and may also be used on 24V branches.

MCB's are designed to protect wires and circuits. If the ampere value and the characteristics of the MCB are adapted to the wire size that is used, the wiring is considered as thermally safe regardless of whether the MCB opens or not.

To avoid voltage dips and under-voltage situations in adjacent 24V branches which are supplied by the same source, a fast (magnetic) tripping of the MCB is desired. A quick shutdown within 10ms is necessary corresponding roughly to the ride-through time of PLC's. This requires power supplies with high current reserves and large output capacitors. Furthermore, the impedance of the faulty branch must be sufficiently small in order for the current to actually flow. The best current reserve in the power supply does not help if Ohm's law does not permit current flow. The following table has typical test results showing which B- and C-Characteristic MCBs magnetically trip depending on the wire cross section and wire length.

Fig. 25-4 Test circuit

Maximal wire length*) for a fast (magnetic) tripping:

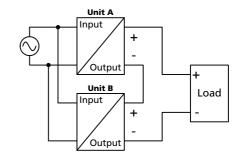
	0.75mm ²	1.0mm ²	1.5mm ²	2.5mm ²
C-2A	34m	45m	64m	101m
C-3A	27m	36m	52m	79m
C-4A	19m	26m	35m	56m
C-6A	9m	12m	16m	23m
C-8A	4m	8m	12m	18m
C-10A	4m	6m	9m	15m
C-13A	2m	3m	4m	5m
B-6A	23m	30m	38m	67m
B-10A	11m	14m	21m	32m
B-13A	7m	12m	17m	23m
B-16A	4m	6m	8m	11m
B-20A	1m	1m	2m	4m

*) Don't forget to consider twice the distance to the load (or cable length) when calculating the total wire length (+ and - wire).

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION

CP-Series


24V, 20A, SINGLE PHASE INPUT

25.7. SERIES OPERATION

Power supplies of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.

Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies.

25.8. PARALLEL USE TO INCREASE OUTPUT POWER

Power supplies can be paralleled to increase the output power. For redundancy applications one extra power supply is always needed for sufficient output current in case one unit fails.

The unit is permanently set to "parallel use" mode in order to achieve load sharing between power supplies connected in parallel. The "Parallel use" mode regulates the output voltage in such a manner that the voltage at no load is approx. 4% higher than at nominal load. See also chapter 6.

Energize all units at the same time to avoid the overload Hiccup^{PLUS} mode. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in Hiccup^{PLUS} mode due to overload or short circuits and the required output current is higher than the current of one unit.

Unit A Input + - Load - - Output

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other.

Do not use power supplies in parallel in mounting orientations other than the standard mounting orientation (input terminals on bottom of the unit) or in any other condition where a derating of the output current is required (e.g. altitude).

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple power supplies. Do not load paralleled power supplies with higher currents as shown in the following diagrams:

Fig. 25-5 Output current vs. ambient temp. for two paralleled units

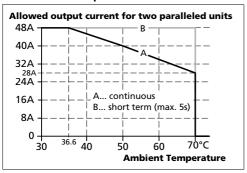
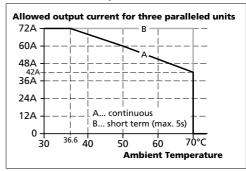



Fig. 25-6 Output current vs. ambient temp. for three paralleled units

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

25.9. Parallel Use for Redundancy

Power supplies can be paralleled for redundancy to gain higher system availability. The unit is already equipped with a MOSFET as decoupling device on the output to avoid, that a faulty unit becomes a load for the other power supplies and the output voltage cannot be maintained any more.

Recommendations for building redundant power systems:

- Use separate input fuses for each power supply.
- Monitor the individual power supply units by utilizing the built-in DC-OK relay contacts on each power supply.

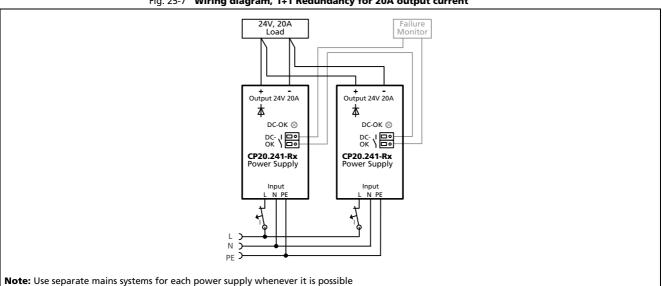
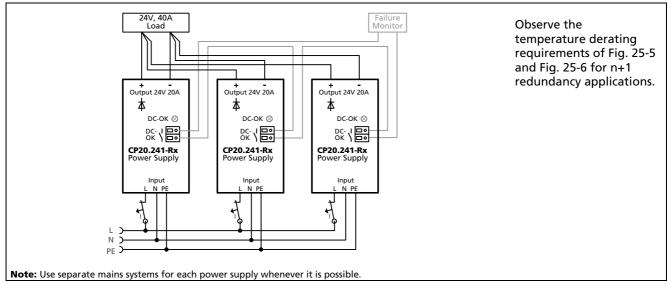



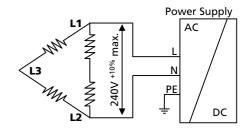
Fig. 25-7 Wiring diagram, 1+1 Redundancy for 20A output current

Fig. 25-8 Wiring diagram, N+1 Redundancy for 40A output current

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN

CP20.241-R1, CP20.241-R2, CP20.241-R3

DIMENSION CP-Series


24V, 20A, SINGLE PHASE INPUT

25.10. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or "UltraCaps") with a capacitance > 1F are connected to the output, the unit might charge the capacitor in the Hiccup^{PLUS} mode (see chapter 6).

25.11. OPERATION ON TWO PHASES

The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below $240V^{+10\%}$.

25.12. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the power supply.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

The power supply is placed in the middle of the box, no other heat producing items are inside the box

Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm

Load: 24V, 16A; (=80%) load is placed outside the box

Input: 230Vac

Temperature inside enclosure: 51.9°C (in the middle of the right side of the power supply with a distance of 2cm)

Temperature outside enclosure: 25.6°C Temperature rise: 26.3K

CP20.241-R1, CP20.241-R2, CP20.241-R3

CP-Series

24V, 20A, SINGLE PHASE INPUT

25.13. Mounting Orientations

Mounting orientations other than all terminals on the bottom require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.

Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).

Fig. 25-9

Mounting
Orientation A
(Standard
orientation)

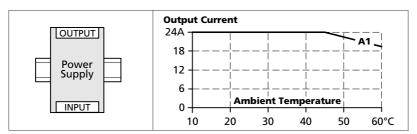


Fig. 25-10

Mounting

Orientation B

(Upside down)

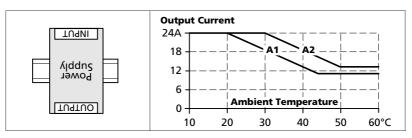


Fig. 25-11

Mounting

Orientation C

(Table-top
mounting)

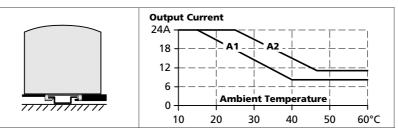


Fig. 25-12

Mounting

Orientation D

(Horizontal cw)

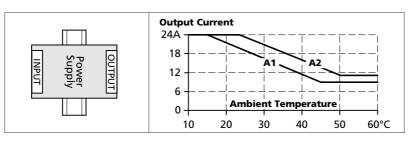
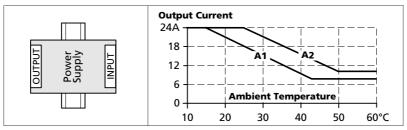



Fig. 25-13

Mounting

Orientation E

(Horizontal ccw)

June 2017 / Rev. 0.1 DS-CP20.241-R2-EN