

Stereo Audio CODEC with FlexSound Technology

General Description

The MAX9888 is a full-featured audio CODEC whose high performance and low power consumption make it ideal for portable applications.

Class D speaker amplifiers provide efficient amplification for two speakers. Low radiated emissions enable completely filterless operation. Integrated bypass switches optionally connect an external amplifier to the transducer when the Class D amplifiers are disabled.

DirectDrive® headphone amplifiers provide a true ground-referenced output, eliminating the need for large DC-blocking capacitors. 1.8V headphone operation ensures low power consumption. The device also includes a differential receiver amplifier.

Three differential analog microphone inputs are available as well as support for two PDM digital microphones. Integrated switches allow microphone signals to be routed out to external devices. Two flexible single-ended or differential line inputs may be connected to an FM radio or other sources.

Integrated FlexSound[™] technology improves loudspeaker performance by optimizing the signal level and frequency response while limiting the maximum distortion and power at the output to prevent speaker damage. Automatic gain control (AGC) and a noise gate optimize the signal level of microphone input signals to make best use of the ADC dynamic range.

The device is fully specified over the -40°C to +85°C extended temperature range.

DirectDrive is a registered trademark and FlexSound is a trademark of Maxim Integrated Products, Inc.

Features

- ♦ 100dB DR Stereo DAC (8kHz < f_S < 96kHz)</p>
- ♦ 91dB DR Stereo ADC (8kHz < fS < 96kHz)
- Stereo Low EMI Class D Amplifiers 950mW/Channel (8Ω, VSPKVDD_ = 4.2V)
- Stereo DirectDrive Headphone Amplifiers
- Differential Receiver Amplifier
- 2 Stereo Single-Ended/Mono Differential Line Inputs
- ♦ 3 Differential Microphone Inputs
- FlexSound Technology 5-Band Parametric EQ Automatic Level Control (ALC) Excursion Limiter Speaker Power Limiter Speaker Distortion Limiter Microphone Automatic Gain Control and Noise Gate
- Dual I²S/PCM/TDM Digital Audio Interfaces
- Asynchronous Digital Mixing
- Supports Master Clock Frequencies from 10MHz to 60MHz
- RF Immune Analog Inputs and Outputs
- Extensive Click-and-Pop Reduction Circuitry
- ♦ I²C Control Interface
- ♦ 63 WLP Package (3.80mm x 3.30mm, 0.4mm Pitch)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE					
MAX9888EWY+	-40°C to +85°C	63 WLP					
+Denotes lead(Pb)-free/RoHS-compliant package							

Simplified Block Diagram

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

TABLE OF CONTENTS

General Description	1
Features	1
Simplified Block Diagram	1
Ordering Information	1
Functional Diagram	5
Absolute Maximum Ratings	6
Electrical Characteristics	6
Digital Input/Output Characteristics	
Input Clock Characteristics	
Audio Interface Timing Characteristics	
Digital Microphone Timing Characterstics	
I ² C Timing Characterstics	
Power Consumption	
Typical Operating Characteristics	
Microphone to ADC	
Line to ADC	
Digital Loopback	
Analog Loopback	
DAC to Receiver	
Line to Receiver	
DAC to Speaker	
Line to Speaker	
DAC to Headphone	
Line to Headphone	
Speaker Bypass Switch	
Pin Configuration	50
Pin Description	
Detailed Description	53
I ² C Slave Address	
Registers	
Power Management	
Microphone Inputs	
Line Inputs	
ADC Input Mixers	
Record Path Signal Processing.	
Microphone AGC	
Noise Gate	

TABLE OF CONTENTS (continued)
ADC Record Level Control
Sidetone
Digital Audio Interfaces
Clock Control
Passband Filtering
Playback Path Signal Processing
Automatic Level Control
Parametric Equalizer
Playback Level Control
DAC Input Mixers
Preoutput Signal Path
Preoutput Mixer
Preoutput PGA
Receiver Amplifier
Receiver Output Volume
Receiver Output Mixer
Speaker Amplifiers
Speaker Output Volume
Speaker Output Mixers
Speaker Amplifier Signal Processing
Excursion Limiter
Power Limiter
Distortion Limiter
Headphone Amplifier
Headphone Output Mixers
Headphone Output Volume
Output Bypass Switches
Click-and-Pop Reduction
Jack Detection
Jack Insertion
Accessory Button Detection
Jack Removal

TABLE OF CONTENTS (continued)

Battery Measurement	
Device Status	
Device Revision	
I ² C Serial Interface	
Bit Transfer	
START and STOP Conditions	
Early STOP Conditions	
Slave Address	
Acknowledge	
Write Data Format	
Read Data Format	
Applications Information	
Typical Operating Circuits	
Analog Microphones and Bypass Switch	
Digital Microphones and Receiver Amplifier	
Filterless Class D Operation	
RF Susceptibility	
Startup/Shutdown Sequencing	
Component Selection	
Optional Ferrite Bead Filter	
Input Capacitor	
Charge-Pump Capacitor Selection	
Charge-Pump Flying Capacitor	
Charge-Pump Holding Capacitor	
Unused Pins	
Recommended PCB Routing	
Supply Bypassing, Layout, and Grounding	
WLP Applications Information	
Package Information	
Revision History	

ABSOLUTE MAXIMUM RATINGS

(Voltages with respect to AGND.)

(Tellagee marreepeer te	
DVDD, AVDD, HPVDD	0.3V to +2.2V
SPKLVDD, SPKRVDD, DV	/DDS1, DVDDS20.3V to +6.0V
DGND, HPGND, SPKLGN	ID, SPKRGND0.1V to +0.1V
HPVSS	(HPGND - 2.2V) to (HPGND + 0.3V)
C1N	(HPVSS - 0.3V) to (HPGND + 0.3V)
C1P	(HPGND - 0.3V) to (HPVDD + 0.3V)
PREG	0.3V to (AVDD + 0.3V)
REF, MICBIAS	0.3V to (SPKLVDD + 0.3V)
MCLK, SDINS1, SDINS2,	JACKSNS,
SDA, SCL, IRQ	-0.3V to +6.0V
LRCLKS1, BCLKS1, SDO	UTS10.3V to (DVDDS1 + 0.3V)

LRCLKS2, BCLKS2, SDOUTS2.......-0.3V to (DVDDS2 + 0.3V)

MIC1N/DIGMICCLK, MIC2P, MIC2N-0.3V to +2.2V HPSNS.....04 (HPGND - 0.3V) to (HPGND + 0.3V) HPL, HPR(HPVSS - 0.3V) to (HPVDD + 0.3V) RECP, RECN(SPKLGND - 0.3V) to (SPKLVDD + 0.3V) SPKLP, SPKLN(SPKLGND - 0.3V) to (SPKLVDD + 0.3V) SPKBP SPKBN (SPKBGND - 0.3V) to (SPKBVDD + 0.3V)

REG, INA1, INA2, INB1, INB2, MIC1P/DIGMICDATA,

Continuous Power Dissipation (TA = $+70^{\circ}$ C)
63-Bump WLP (derate 25.6mW/°C above +70°C)2.05W
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITION	IS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY							
			Vspklvdd, Vspkrvdd	2.8		5.5	
		Guaranteed by PSRR	Vdvdd, Vavdd, Vhpvdd	1.65	1.8	2.0	V
			VDVDDS1, VDVDDS2	1.65		3.6	
			Analog		6.37	10	
		receiver output (note 3)	Speaker		1.98	3.5	mA
			Digital		1.49	3	
		DAC playback 48kHz stereo, headphone outputs (Note 3)	Analog		2.71	4	
			Speaker		1.65	2.5	
			Digital		2.93	4.5	
		DAC playback 49kHz stores	Analog		1.85	3	
Total Supply Current (Note 2)	Ivdd	DAC playback 48kHz stereo, speaker outputs (Note 3)	Speaker		8.22	18	
	, DD		Digital		2.94	5	
		Full-duplex 48kHz stereo,	Analog		12.75	18	
		microphone inputs,	Speaker		1.7	3	
		headphone outputs (Note 3)	Digital		3.75	5.5	
		Stereo line playback,	Analog		5.11	7	
		$IN_DIF = 0$, $INA1$ to HPL ,	Speaker		0.58	1	
		INA2 to HPR, VMCLK = 0V	Digital		0.03	0.06	

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	MAX	UNITS	
			Analog		0.2	2		
Shutdown Supply Current (Note 2)		T _A = +25°C	Speaker		0.1	1	μA	
			Digital		1	5		
REF Voltage			·····		2.5		V	
PREG Voltage					1.6		V	
REG Voltage					0.7		V	
Shutdown to Full Operation		$\overline{\text{SLEW}} = 0$			30			
Shutdown to Full Operation		$\overline{\text{SLEW}} = 1$			17		ms	
MICROPHONE TO ADC PATH								
Dynamic Range (Note 4)	DR	$f_S = 8kHz, MODE = 0$ AVMICPRE_ = 0dB	s = 8kHz, MODE = 0 (IIR voice), AVMICPRE_ = 0dB				dB	
		$V_{IN} = 0.1V_{P-P}$, MCLK = 12.288MHz, fs = 8kHz, f = 1kHz			-77	-65		
Total Harmonic Distortion + Noise	THD+N	AVMICPRE_ = 0dB, VIN = 1VP-P, f = 1kHz			-82		dB	
NOISE		$AV_{MICPRE_} = +30dB, V_{IN} = 32mV_{P-P},$ f = 1kHz			-71			
Common-Mode Rejection Ratio	CMRR	V _{IN} = 100mV _{P-P} , f =	217Hz		65		dB	
		V_{AVDD} = 1.65V to 2.0V, input referred, MIC inputs floating		60	100			
	PSRR	f = 217Hz, VRIPPLE = input referred		100				
Power-Supply Rejection Ratio		f = 1kHz, VRIPPLE = input referred		91		- dB		
		f = 10kHz, VRIPPLE = 100mVP-P, AVADC = 0dB, input referred			70			
			MODE = 0 (IIR voice) 8kHz		2.2			
Path Phase Delay		1kHz, 0dB input, highpass filter	MODE = 0 (IIR voice) 16kHz		1.1			
		disabled measured from analog input to digital output	MODE = 1 (FIR audio) 8kHz		4.5		- ms	
				MODE = 1 (FIR audio) 48kHz		0.76		

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
MICROPHONE PREAMP		•						
Full-Scale Input		AVMICPRE_ = 0	dB		1.05		VP-P	
			PA1EN/PA2EN = 01		0			
Preamplifier Gain	AVMICPRE_	(Note 5)	PA1EN/PA2EN = 10	19.5	20	20.5	dB	
			PA1EN/PA2EN = 11	29.4	30	30.5	1	
DCA Cain		(Nata 5)	PGAM1/PGAM2 = 0x00	19.5	20	20.5	– dB	
PGA Gain	AVMICPGA_	(Note 5)	PGAM1/PGAM2 = 0x14		0			
MIC Input Resistance	RIN_MIC	All gain settings MIC2P/MIC2N	s, measured at MIC1P/MIC1N/	30	50		kΩ	
MICROPHONE BIAS	1							
MICBIAS Output Voltage	VMICBIAS	ILOAD = 1mA		2.14	2.2	2.25	V	
Load Regulation		$I_{LOAD} = 1 mA tc$	2mA		0.5	11	mV	
Line Regulation		VSPKLVDD = 2.8	3V to 5.5V		100		μV	
Disusta Daia atian		f = 217Hz, VRIPPLE (SPKLVDD) = 100mVP-P			92			
Ripple Rejection		f = 10kHz, VRIPPLE (SPKLVDD) = 100mVP-P			83		– dB	
		A-weighted, $f = 20Hz$ to $20kHz$			3.8			
Noise Voltage		P-weighted, $f = 20Hz$ to $4kHz$			2.1		- μVRMS	
		f = 1kHz			33		nV/√Hz	
MICROPHONE BYPASS SWI	тсн							
On-Resistance	Ron	$I_{MIC1_} = 100 \text{mA}$ $V_{MIC2_} = V_{INA_}$	A, INABYP = MIC2BYP = 1, = (0V, V _{AVDD})		3.5	20	Ω	
Total Harmonic Distortion + Noise	THD+N	-	$c_{M} = 0.9V, R_{L} = 10k\Omega,$ YP = MIC2BYP = 1		-80		dB	
Off-Isolation		$V_{IN} = 2V_{P-P}, V_{C}$ f = 1kHz	$c_{M} = 0.9V, R_{L} = 10k\Omega,$		60		dB	
Off-Leakage Current		VMIC1_ = (0V, VAVDD), VMIC2_/VINA_ = (VAVDD, 0V)		-2.5		+2.5	μA	
LINE INPUT TO ADC PATH		·						
Dynamic Range (Note 4)	DR	$f_S = 48$ kHz, MCLK = 12.288MHz, MODE = 1 (FIR audio)			91		dB	
Total Harmonic Distortion + Noise	THD+N	V _{IN} = 1V _{P-P} , f =	: 1kHz		-77		dB	
Gain Error		DC accuracy			1	5	%	

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
LINE INPUT PREAMP								
Full-Scale Input	VIN	$AV_{PGAIN} = 0dB$				1		VP-P
Full-Scale Input	VIN	$AVPGAIN_ = -6dB$				1.4		VP-P
		PGAINA/PGAINB = 0x0)		19	20	21	
		PGAINA/PGAINB = 0x1			13	14	15	
Level Adjust Gain		PGAINA/PGAINB = 0x2	2	(Note 5)	2	3	4	
	AVPGAIN_	PGAINA/PGAINB = 0x3	3	$T_A = +25^{\circ}C$		0		dB
		PGAINA/PGAINB = 0x4	ļ		-4	-3	-2	
		PGAINA/PGAINB = 0x5	ō, 0x6, 0x7	7	-7	-6	-5	1
		AVPGAIN_ = +20dB			14.6	21	27.4	
Input Resistance		$AV_{PGAIN} = +14dB$				20		kΩ
	RIN	$AVPGAIN_ = +3dB$				20		
		AV _{PGAIN} = 0dB			7.3	10	13.7	
		AVPGAIN_ = -3dB				20		
		$AV_{PGAIN} = -6dB$				20		
		$T_{A} = +25^{\circ}C$		5°C	18.5	20	21.5	1.0
Feedback Resistance	R _{IN_FB}	INAEXT/INBEXT = 1	$T_A = T_N$	11N to TMAX	17.5		23	23 kΩ
ADC LEVEL CONTROL	·							
ADC Level Adjust Range	AVADCLVL	AVL/AVR = 0xF to $0x0$	(Note 5)		-12		+3	dB
ADC Level Adjust Step Size						1		dB
ADC Gain Adjust Range	AVADCGAIN	AVLG/AVRG = 00 to 11	(Note 5)		0		18	dB
ADC Gain Adjust Step Size						6		dB
ADC DIGITAL FILTERS								
VOICE MODE IIR LOWPASS F	ILTER (MODI	E1 = 0)						
		Dinale limit eutoff			0.441			
Reachand Cutoff	four	Ripple limit cutoff			x fs			
Passband Cutoff	fplp	-3dB cutoff		0.449			– Hz	
					x fs			
Passband Ripple		f < fplp			-0.1		+0.1	dB
Stopband Cutoff	fSLP						0.47 x f _s	Hz
Stopband Attenuation (Note 6)	1	f > fSLP			74			dB

MAX9888

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (R_{REC}) connected between RECP and RECN. Headphone loads (R_{HP}) connected from HPL or HPR to GND. R_{HP} = ∞ , R_{REC} = ∞ , ZSPK = ∞ , CREF = 2.2µF, C_{MICBIAS} = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AV_{MICPRE} = +20dB, AV_{MICPGA} = 0dB, AV_{DACATTN} = 0dB, AV_{DACGAIN} = 0dB, AV_{ADCLVL} = 0dB, AV_{ADCGAIN} = 0dB, AV_{PGAIN} = 0dB, AV_{PGAOUT} = 0dB, AV_{HP} = 0dB, AV_{REC} = 0dB, AV_{SPK} = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS	
VOICE MODE IIR HIGHPASS F	ILTER (MOD	0E1 = 0)					
		AVFLT = $0x1$ (elliptical tuned for f _s = $16kHz + 217Hz$ notch)			0.0161 x f _s		
		AVFLT = 0x2 (500Hz Butterworth tuned for $f_S = 16$ kHz)			0.0319 x f _s	s 21 s 32	
Passband Cutoff (-3dB from Peak)	fанррв	AVFLT = 0x3 (elliptical tuned for $f_S = 8kHz + 217Hz$ notch)			0.0321 x f _s		
		AVFLT = 0x4 (500Hz Butterworth tuned for $f_S = 8kHz$)			0.0632 x f _S		
		AVFLT = $0x5$ (f _s /240 Butterworth)			0.0043 x f _S		
		AVFLT = 0x1 (elliptical tuned for $f_S = 16$ kHz + 217Hz notch)	0.0139 x f _s				
Stopband Cutoff (-30dB from Peak)		AVFLT = 0x2 (500Hz Butterworth tuned for $f_S = 16$ kHz)	0.0156 x f _s				
	fahpsb	AVFLT = 0x3 (elliptical tuned for $f_s = 8kHz + 217Hz$ notch)	0.0279 x f _s			Hz	
		AVFLT = 0x4 (500Hz Butterworth tuned for $f_{S} = 8kHz$)	0.0312 x f _s				
		$AVFLT = 0x5 (f_s/240 Butterworth)$	0.002 x f _s				
DC Attenuation	DCATTEN	AVFLT ≠ 000		90		dB	
STEREO AUDIO MODE FIR LO	WPASS FIL	TER (MODE1 = 1, DHF1 = 0, LRCLK < 50kHz)					
		Ripple limit cutoff	0.43 x f _s				
Passband Cutoff	fPLP	-3dB cutoff	0.48 x f _s			Hz	
		-6.02dB cutoff	0.5 x f _s				
Passband Ripple		f < fPLP	-0.1		+0.1	dB	
Stopband Cutoff	fSLP				0.58 x f _s	Hz	
Stopband Attenuation (Note 6)		f < f _{SLP}	60			dB	
ADC STEREO AUDIO MODE F	IR LOWPAS	S FILTER (MODE1 = 1, DHF1 = 1, LRCLK > 50k	Hz)				
Passband Cutoff	fere	Ripple limit cutoff	0.208 x f _S			- Hz	
rassuand Culun	fplp	-3dB cutoff	0.28 x f _s				

/N/XI/N

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIC	INS	MIN	TYP	MAX	UNITS
Passband Ripple		f < fpLp		-0.1		+0.1	dB
Stanband Cutoff	four					0.417	
Stopband Cutoff	fSLP					x f _S	Hz
Stopband Attenuation		f < f _{SLP}		60			dB
ADC STEREO AUDIO MODE D	C-BLOCKIN	G HIGHPASS FILTER (MOD)E1 = 1)				
Passband Cutoff (-3dB from Peak)	fанррв	AVFLT ≠ 000				0.000125 x fs	Hz
DC Attenuation	DCAtten	AVFLT ≠ 000			90		dB
MICROPHONE AUTOMATIC G	AIN CONTRO	DL					
ACC Hold Duration		AGCHLD = 01			50		
AGC Hold Duration		AGCHLD = 11			400		ms
AGC Attack Time		AGCATK = 00			2		
		AGCATK = 11			ms		
AGC Release Time		AGCRLS = 000			0.078		
AGC Release Time		AGCRLS = 111			10		S
AGC Threshold Level		AGCTH = $0x0$ to $0xF$		-3		+18	dB
AGC Threshold Step Size							dB
AGC Gain		(Note 5)	lote 5)			20	dB
ADC NOISE GATE							
NG Threshold Level		ANTH = 0x3 to 0xF, referred	d to 0dBFS	-64		-16	dB
NG Attenuation		(Note 5)		0		12	dB
ADC-TO-DAC DIGITAL SIDET	ONE (MODE :	= 0)					
Cidatana Cain Adjust Danga		DVST = 0x01		-0.5			
Sidetone Gain Adjust Range	AVSTGA	DVST = 0x1F			-60.5		- dB
Sidetone Gain Adjust Step Size					2		dB
Sidatana Dath Dhaaa Dalay		1kHz, 0dB input, highpass	8kHz		2.2		
Sidetone Path Phase Delay		filter disabled	16kHz		1.1		ms
ADC-TO-DAC DIGITAL LOOP-	THROUGH P	ATH					
Dynamic Range (Note 4)	DR	f _S = 48kHz, MCLK = 12.288 (FIR audio)	BMHz, MODE = 1		89		dB
Total Harmonic Distortion	THD	f = 1kHz, f _S = 48kHz, MCLK = 12.288MHz, MODE = 1 (FIR audio)			-71	-66	dB
DAC LEVEL CONTROL							
DAC Attenuation Range	AVDACATTN	DV1DV2 = 0xF to $0x0$ (Note	DV1DV2 = 0xF to 0x0 (Note 5)			0	dB
DAC Attenuation Step Size				1	1		dB
DAC Gain Adjust Range	AVDACGAIN	DV1G = 00 to 11 (Note 5)		0		18	dB
DAC Gain Adjust Step Size		· · · · · · · · · · · · · · · · · · ·			6		dB

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DAC DIGITAL FILTERS						
VOICE MODE IIR LOWPASS F	ILTER (MOD	E1 = 0)				
	_	Ripple limit cutoff	0.448 x fs			
Passband Cutoff	fPLP	-3dB cutoff	0.451 x f _s			- Hz
Passband Ripple		f < fpLp	-0.1		+0.1	dB
Stopband Cutoff	fSLP				0.476 x f _s	Hz
Stopband Attenuation (Note 6)		f > fSLP	75			dB
VOICE MODE IIR HIGHPASS F	ILTER (MOD	DE1 = 0)				
		DVFLT = 0x1 (elliptical tuned for $f_s = 16kHz + 217Hz$ notch)			0.0161 x f _s	
	fdнppb	$DVFLT = 0x2$ (500Hz Butterworth tuned for $f_S = 16kHz$)			0.0312 x f _s	
Passband Cutoff (-3dB from Peak)		DVFLT = 0x3 (elliptical tuned for $f_s = 8kHz + 217Hz$ notch)			0.0321 x f _s	Hz
		$DVFLT = 0x4$ (500Hz Butterworth tuned for $f_S = 8kHz$)			0.0625 x f _s	
		$DVFLT = 0x5 (f_s/240 Butterworth)$			0.0042 x f _S	
		DVFLT = 0x1 (elliptical tuned for $f_s = 16kHz + 217Hz notch)$	0.0139 x f _s			
		$DVFLT = 0x2$ (500Hz Butterworth tuned for $f_S = 16kHz$)	0.0156 x f _s			
Stopband Cutoff (-30dB from Peak)	fDHPSB	DVFLT = 0x3 (elliptical tuned for $f_s = 8kHz + 217Hz$ notch)	0.0279 x f _s			Hz
		$DVFLT = 0x4$ (500Hz Butterworth tuned for $f_S = 8kHz$)	0.0312 x f _s			
		DVFLT = 0x5 (f _s /240 Butterworth)	0.002 x f _s			
DC Attenuation	DCATTEN	DVFLT ≠ 000		85		dB

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (R_{REC}) connected between RECP and RECN. Headphone loads (R_{HP}) connected from HPL or HPR to GND. R_{HP} = ∞ , R_{REC} = ∞ , Z_{SPK} = ∞ , C_{REF} = 2.2µF, C_{MICBIAS} = C_{PREG} = C_{REG} = 1µF, C_{C1N-C1P} = 1µF, C_{HPVSS} = 1µF. AV_{MICPRE} = +20dB, AV_{MICPGA} = 0dB, AV_{DACATTN} = 0dB, AV_{DACGAIN} = 0dB, AV_{ADCLVL} = 0dB, AV_{ADCGAIN} = 0dB, AV_{PGAOUT} = 0dB, AV_{HP} = 0dB, AV_{REC} = 0dB, AV_{SPK} = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STEREO AUDIO MODE FIR LO	WPASS FIL	TER (MODE1 = 1, DHF1/DHF2 = 0, LRCLK <	50kHz)			_
		Dipple limit quitoff	0.43			
		Ripple limit cutoff	x f _s			
Passband Cutoff	four	-3dB cutoff	0.47			 Hz
Passband Culon	fplp		x f _S			
		6 02dB outoff	0.5			1
		-6.02dB cutoff	x f _s			
Passband Ripple		f < fpLP	-0.1		+0.1	dB
Stanband Cutoff	four				0.58	Hz
Stopband Cutoff	fSLP				x fs	
Stopband Attenuation (Note 6)		f > f _{SLP}	60			dB
STEREO AUDIO MODE FIR LO	WPASS FIL	TER (MODE1 = 1, DHF1/DHF2 = 1 for LRCL	(> 50kHz)			
		Dipple limit outoff	0.24			
Reachand Cutoff	four	Ripple limit cutoff	x f _S			
Passband Cutoff	fPLP		0.31			Hz
		-3dB cutoff	x f _s			
Passband Ripple		f < fpLp	-0.1		+0.1	dB
0					0.477	
Stopband Cutoff	fSLP				x fs	Hz
Stopband Attenuation (Note 6)		f < fSLP	60			dB
STEREO AUDIO MODE DC-BL	OCKING HIC	GHPASS FILTER				
Passband Cutoff (-3dB from Peak)	fdнppb	DVFLT ≠ 000 (DAI1), DCB2 = 1 (DAI2)			0.000104 x fs	Hz
DC Attenuation	DCATTEN	DVFLT ≠ 000 (DAI1), DCB2 = 1 (DAI2)		90		dB
AUTOMATIC LEVEL CONTRO	1		I			1
Dual Band Lowpass Corner Frequency		ALCMB = 1		5		kHz
Dual Band Highpass Corner Frequency		ALCMB = 1		5		kHz
Gain Range			0		12	dB
Low Signal Threshold		ALCTH = 111 to 001	-48		-12	dBFS
		ALCRLS = 101		0.25		
Release Time		ALCRLS = 000		8		S
PARAMETRIC EQUALIZER			I	-		<u> </u>
Number of Bands				5		Bands
Per Band Gain Range			-12		+12	dB
Preattenuator Gain Range		(Note 5)	-15		0	dB
Preattenuator Step Size	<u> </u>		-	1	-	dB

MAX9888

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL		CONDITIO	NS	MIN	ΤΥΡ	MAX	UNITS
DAC-TO-RECEIVER AMPLIFI	ER PATH							
Dynamic Range (Note 4)	DR	fs = 48kHz, MC	LK = 12.288N	/Hz, f = 1kHz		96		dB
Total Harmonic Distortion + Noise	THD+N	f = 1kHz, Pout	⁻ = 25mW, R _F	EC = 32Ω		-70	-63	dB
		Peak voltage, A	-weighted, 32	Into shutdown		-70		
Click and Pop Level	КСР	samples per see = 0dB	cond, AVREC	Out of shutdown		-73		dBV
PREOUTPUT MIXERS								
Lavel Adjust Caip		(Note E)	PGAOUTA/I PGAOUTC			0		– dB
Level Adjust Gain	AVPGAOUT_	(Note 5)			-25	-23.4	-22	
Level Adjust Step Size						2		dB
Mute Attenuation		f = 1kHz				85		dB
LINE INPUT-TO-RECEIVER A	MPLIFIER PA	ТН						
Dynamic Range (Note 4)	DR	Referenced to	full-scale out	out level		92		dB
Total Harmonic Distortion + Noise	THD+N					-70		dB
		VSPKLVDD = 2.	8V to 5.5V		54	89		
Power-Supply Rejection Ratio		$f = 217Hz, V_{RIF}$	$PPLE = 100m^{1}$	/P-P		-63		
	PSRR	f = 1kHz, VRIPPLE = 100mVP-P				-63		dB
		$f = 10 \text{kHz}, \text{V}_{\text{RIF}}$	PPLE = 100m	/P-P		-65		7
		Peak voltage, A	weighted, 32	Into shutdown		-57		
Click-and-Pop Level	КСР	samples per se = 0dB	cond, AVREC	Out of shutdown		-55		dBV
RECEIVER AMPLIFIER				L				
Output Power	Pout	RREC = 32Ω , f	= 1kHz, THD	= 1%		100		mW
Full-Scale Output		(Note 7)				1		VRMS
	A)/==0			RECVOL = 0x00	-65	-62	-58	
Volume Control	AVREC	(Note 5)		RECVOL = 0x1F	+7.5	+8	+8.5	– dB
		+8dB to +6dB	· · · · · · · · ·			0.5		
		+6dB to +0dB				1		1
Volume Control Step Size		0dB to -14dB				2		dB
		-14dB to -38dB	3			3		1
		-38dB to -62dB	3			4		7
Mute Attenuation		f = 1kHz				95		dB
Output Offset Voltage	Vos	AVREC = -62dE	3	$T_A = +25^{\circ}C$		±0.13	±1	mV
Capacitive Drive Capability		No sustained o		$R_{REC} = 32\Omega$		500		
Capacilive Drive Capability		Invo sustained o	scillations	R _{REC} = ∞		100		- pF

14

M/IXI/M

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (R_{REC}) connected between RECP and RECN. Headphone loads (R_{HP}) connected from HPL or HPR to GND. R_{HP} = ∞ , R_{REC} = ∞ , Z_{SPK} = ∞ , C_{REF} = 2.2µF, C_{MICBIAS} = C_{PREG} = C_{REG} = 1µF, C_{C1N-C1P} = 1µF, C_{HPVSS} = 1µF. AV_{MICPRE_} = +20dB, AV_{MICPGA_} = 0dB, AV_{DACATTN} = 0dB, AV_{DACGAIN} = 0dB, AV_{ADCLVL} = 0dB, AV_{ADCGAIN} = 0dB, AV_{PGAIN_} = 0dB, AV_{PGAOUT_} = 0dB, AV_{HP_} = 0dB, AV_{REC} = 0dB, AV_{SPK_} = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDI	CONDITIONS			ТҮР	MAX	UNITS	
DAC-TO-SPEAKER AMPLIFIE	R PATH	L		L					
Total Harmonic Distortion + Noise	THD+N	f = 1kHz, P _{OUT} = 250mV	W, Z _{SF}	νκ = 8Ω + 68μΗ		-71		dB	
Crosstalk		SPKL to SPKR and SPKF $P_{OUT} = 640$ mW, f = 1kH		PKL,		-75		dB	
Output Noise		A-weighted				43		μVRMS	
		Peak voltage, A-weighted	ł,	Into shutdown		-65			
Click-and-Pop Level	Кср	32 samples per second, AV _{SPK} = 0dB		Out of shutdown		-65		dBV	
LINE INPUT-TO-SPEAKER AM	IPLIFIER PA	ТН		L					
Total Harmonic Distortion + Noise	THD+N	f = 1kHz, P _{OUT} = 200m\	W, ZSF	$P_{K} = 8\Omega + 68\mu H$		-66		dB	
Output Noise		A-weighted				56		µVRMS	
		VSPKLVDD = VRIPPLE = 2	2.8V to	5.5V	43	60			
Power-Supply Rejection Ratio	PSRR	f = 217Hz, VRIPPLE = 10	0mV			75		dB	
Fower-Supply Rejection Ratio	Fonn	f = 1kHz, V _{RIPPLE} = 100mV			73				
		f = 10kHz, VRIPPLE = 10	0mV			50			
		Peak voltage, A-weighted	ł,	Into shutdown		-48			
Click-and-Pop Level	Кср	32 samples per second, AV _{SPK} = 0dB		Out of shutdown		-50		dBV	
SPEAKER AMPLIFIER				ЧЧ					
			VSPKLVDD = VSPKRVDD = 5.0V			1370			
Outout Dourse	Deve	f = 1kHz, THD = 1%,	-	(LVDD = (RVDD = 4.2V		954			
Output Power	Pout	$Z_{\text{SPK}} = 8\Omega + 68\mu\text{H}$		(LVDD = (RVDD = 3.7V		733		- mW	
			-	(LVDD = (RVDD = 3.2V		544			
Full-Scale Output		(Note 7)				2		VRMS	
Volume Control (Note 5)	AV _{SPK} _	SPVOLL/SPVOLR = 0x00	0		-69	-64	-59	- dB	
	AVSPK_	SPVOLL/SPVOLR = 0x1	F		+7.5	+8	+8.5		
		+8dB to +6dB				0.5			
	+6dB to +0dB				1	-			
Volume Control Step Size		0dB to -14dB				2		dB	
		-14dB to -38dB				3		_	
		-38dB to -64dB				4			

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CON	DITIO	NS		MIN	TYP	MAX	UNITS
Mute Attenuation		f = 1kHz					86		dB
Output Offset Voltage	Vos	AVSPK_ = -64dB, TA	= +25°	С			±0.25	±1.25	mV
EXCURSION LIMITER									
Upper-Corner Frequency Range		DHPUCF = 001 to 10	0			400		1000	Hz
Lower-Corner Frequency		DHPLCF = 01 to 10					400		Hz
		DHPUCF = 000 (fixed	d mode)			100		
		DHPUCF = 001					200		
Biquad Minimum Corner Frequency		DHPUCF = 010					300		Hz
riequency		DHPUCF = 011					400		
		DHPUCF = 100					500		
		Z SPK = 8 Ω + 68 μ H,		DHPTI	H = 000		0.34		
Threshold Voltage		VSPKLVDD = VSPKRVE 5.5V, AVSPK_ = +8dE		DHPTI	H = 111		4.95		VP
		ALCRLS = 101					0.25		
Release Time		ALCRLS = 000					4		S
POWER LIMITER									
Attenuation							-64		dB
		$Z_{SPK} = 8\Omega + 68\mu H,$		PWRTH	l = 0x1		0.05		
Threshold		VSPKLVDD = VSPKRVE 5.5V, AVSPK_ = +8dE		PWRTH	H = 0xF		1.80		W
		PWRT1 = 0x1					0.5		
Time Constant 1	tPWR1	PWRT1 = 0xF					8.7		S
T		PWRT2 = 0x1 to 0xF				0.5			
Time Constant 2	tPWR2	PWRT2 = 0xF					8.7		min
Weighting Factor	kpwr	PWRK = 000 to 111				12.5		100	%
DISTORTION LIMITER									
		THDCLP = 0x1					< 1		
Distortion Limit		THDCLP = 0xF					24		%
		THDT1 = 000					0.76		_
Release Time Constant		THDT1 = 111					6.2		S
DAC-TO-HEADPHONE AMPLIF	IER PATH								
Dumonoio Domoro (Noto 4)		fs = 48kHz, MCLK =	Maste	er or sla	ve mode		100		
Dynamic Range (Note 4)	DR	12.288MHz	Slave	mode		94			dB
		fs = 48kHz, MCLK = 1	2.288M	1Hz.	$R_{HP} = 16\Omega$		-71	-64	
Total Harmonic Distortion +		$f = 1 \text{ kHz}, P_{OUT} = 20 \text{ m}$,	$R_{HP} = 32\Omega$		-75		
Noise	THD+N	$f_{S} = 48$ kHz, MCLK = f = 1kHz, VOUT = 1VF					-79		dB

16

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONI	DITION	S	MIN	TYP	MAX	UNITS
		f = 1kHz, Input = -1dB	FS, R _H	$P = 10k\Omega$		-82		dB
Crosstalk		HPL to HPR and HPR t	o HPL,			0.0		-10
		POUT = 5mW, f = 1kHz	z, Rhp	= 32Ω		-82		dB
		VAVDD = VHPVDD = 1.0	65V to	2.0V	60	84		
	DODD	f = 217Hz, VRIPPLE = 100mV, AV _{VOL} = 0dB			92			
Power-Supply Rejection Ratio	PSRR	f = 1kHz, VRIPPLE = 100	DmV, A	V _{VOL} = 0dB		91		dB
		f = 10kHz, VRIPPLE = 10	00mV, /	AV _{VOL} = 0dB		57		1
			MOD	E = 0 (voice) 8kHz		2.2		
		1kHz, 0dB input, highpass filter	MOD 16kH	E = 0 (voice) z		1.1		
DAC Path Phase Delay		disabled measured from digital input to analog output MODE 8kHz		E = 1 (music)		4.5		- ms
			MOD 48kH	E = 1 (music) z		0.76		
Gain Error						1		%
Channel Gain Mismatch						0.5		%
		Peak voltage, A-weight	ed,	Into shutdown		-66		
Click-and-Pop Level	КСР	32 samples per second AV _{HP} _ = 0dB	l,	Out of shutdown		-67		dBV
LINE INPUT-TO-HEADPHONE	AMPLIFIER	PATH			1			1
Total Harmonic Distortion + Noise	THD+N	$V_{IN} = 1V_{P-P}, f = 1kHz, f$	RHP = 3	32Ω		-70		dB
Dynamic Range (Note 4)	DR					91		dB
		VAVDD = VHPVDD = 1.6	65V to	2.0V	42	66		
	DODD	f = 217Hz, VRIPPLE = 1	00mV	р_Р		62		
Power-Supply Rejection Ratio	PSRR	f = 1kHz, VRIPPLE = 10	0mVp-	P		57		- dB
		f = 10kHz, VRIPPLE = 1	00mV _F	р-Р		41		
		Peak voltage, A-weight	ed.	Into shutdown		-62		
Click and Pop Level	КСР	32 samples per second AV _{HP} = 0dB		Out of shutdown		-60		dBV
HEADPHONE AMPLIFIER								
Outout Dower	Davia		F	$R_{HP} = 32\Omega$		32		
Output Power	Pout	f = 1kHz, THD = 1%	F	$R_{HP} = 16\Omega$		40		mW
Full-Scale Output		(Note 7)				1		VRMS
Valuma Cantral	A)/:		H	IPVOL_ = 0x00	-71	-67	-66	
Volume Control	AVHP_	$T_A = +25^{\circ}C$ (Note 5)	F	IPVOL_ = 0x1F	2.4	3	3.5	dB

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS		MIN	TYP	MAX	UNITS
		+3dB to +1dB				0.5		
		+1dB to -5dB				1		
Volume Control Step Size		-5dB to -19dB				2		dB
		-19dB to -43dB				3		
		-43dB to -67dB				4		
Mute Attenuation		f = 1 kHz				82		dB
Output Offset Voltage	Vos	$\Lambda V_{\rm HD} = 67 dB$	$T_A = +25^{\circ}C$			±0.2	±1	mV
Output Onset voltage	VOS	$AV_{HP} = -67 dB$	$T_A = T_{MIN}$ to	T _{MAX}			±2	
Capacitive Drive Capability		No sustained	$R_{HP} = 32\Omega$			500		- pF
		oscillations	R _{HP} = ∞			100		μΓ
Charge Pump Oscillator	fCP				300	667	900	- kHz
Frequency	ICP	Slow mode				74		KIIZ
SPEAKER BYPASS SWITCH								
On-Resistance	Ron	ISPKL_ = 100mA, SPH VRXIN_ = [0V, VSPKLV				2.8	4.5	Ω
Total Harmonic Distortion +		$V_{IN} = 2V_{P-P}, V_{CM} = V_{P-P}$	/SPKLVDD/2,	$R_S = 10\Omega$		-77		
Noise	THD+N	$Z_{SPK} = 8\Omega + 68\mu$ H, f SPKBYP = 1	= 1kHz,	$R_S = 0\Omega$		-60		- dB
Off-Isolation		$V_{IN} = 2V_{P-P}, V_{CM} = V_{ZL} = 8\Omega + 68\mu H, f =$				96		dB
Off-Leakage Current		VRXIN_ = [0V, VSPKLV VSPKL_ = [VSPKLVDD	-		-1		+1	μA
RECEIVER BYPASS SWITCH								
On-Resistance	Ron	IRECP = 100mA, REC VRECN = [0V, VSPKLV				1.2	2	Ω
Total Harmonic Distortion + Noise	THD+N	$V_{IN} = 2V_{P-P}, V_{CM} = V_{R_L} = 32\Omega, f = 1kHz, F$				-66		%
Off-Isolation		$V_{IN} = 2V_{P-P}, V_{CM} = V_{R_L} = 32\Omega, f = 1kHz$	/SPKLVDD/2,			80		dB
Off-Leakage Current		VRECP = [0V, VSPKLV VRECN = [VSPKLVDD,	-		-15		+15	μA

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
JACK DETECTION						
JACKSNS High Threshold	Vth1	MICBIAS enabled	0.92 x VMICBIAS	0.95 x VMICBIAS	0.98 x VMICBIAS	
JACKSNS High Hireshold	VIHI	MICBIAS disabled	0.92 x Vspklvdd	0.95 x Vspklvdd	0.98 x Vspklvdd	
JACKSNS Low Threshold		MICBIAS enabled	0.06 x VMICBIAS	0.10 x VMICBIAS	0.17 x VMICBIAS	
JACKSINS LOW THIESHOLD	VTH2	MICBIAS disabled	0.06 x Vspklvdd	0.10 x Vspklvdd		
JACKSNS Sense Voltage	VSENSE	MICBIAS disabled		Vspklvdd)	V
JACKSNS Sense Resistance	RSENSE	MICBIAS disabled, JDWK = 0	1.7	2.4	2.9	kΩ
JACKSNS Weak Pullup Current	Iwpu	MICBIAS disabled, JDWK = 1	2	5	9.5	μA
IACKENIC Degliteb Devied	tourou	JDEB = 00		25		
JACKSNS Deglitch Period	t GLITCH	JDEB = 11		200		ms
BATTERY ADC		·				
Input Voltage Range			2.8		5.5	V
LSB Size				0.1		V

DIGITAL INPUT/OUTPUT CHARACTERISTICS

 $(V_{AVDD} = V_{HPVDD} = V_{DVDD} = V_{DVDDS1} = V_{DVDDS2} = 1.65V$ to 2.0V, $V_{SPKLVDD} = V_{SPKRVDD} = 3.7V$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
MCLK						
Input High Voltage	VIH		1.2			V
Input Low Voltage	VIL				0.6	V
Input Leakage Current	IIH, IIL	V _{DVDD} = 2.0V, V _{IN} = 0V, 5.5V, T _A = +25°C	-1		+1	μA
Input Capacitance				10		рF
SDINS1, BCLKS1, LRCLKS1-	INPUT					
Input High Voltage	VIH		0.7 x DVDDS1			V
Input Low Voltage	VIL				0.29 x DVDDS1	V
Input Hysteresis				200		mV
Input Leakage Current	Iih, Iil	VDVDDS1 = 3.6V, VIN = 0V, 3.6V; TA = +25°C	-1		+1	μA
Input Capacitance				10		рF

MAX9888

DIGITAL INPUT/OUTPUT CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDDS1 = VDVDDS2 = 1.65V to 2.0V, VSPKLVDD = VSPKRVDD = 3.7V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BCLKS1, LRCLKS1, SDOU	TS1—OUTPUT					
Output Low Voltage	Vol	$V_{DVDDS1} = 1.65V, I_{OL} = 3mA$			0.4	V
Output High Voltage	V _{OH}	$V_{DVDDS1} = 1.65V, I_{OH} = 3mA$	DVDDS1 - 0.4			V
Input Leakage Current	I _{IH} , IIL	$V_{DVDD} = 2.0V, V_{IN} = 0V, 5.5V; T_A = +25^{\circ}C,$ high-impedance state	-1		+1	μA
SDINS2, BCLKS2, LRCLKS	2—INPUT					
Input High Voltage	VIH		0.7 x DVDDS2			V
Input Low Voltage	VIL				0.29 x DVDDS2	V
Input Hysteresis				200		mV
Input Leakage Current	IIH, IIL	$V_{DVDDS2} = 3.6V, V_{IN} = 0V, 3.6V; T_A = +25^{\circ}C$	-1		+1	μA
Input Capacitance				10		рF
BCLKS2, LRCLKS2, SDOU	TS2-OUTPUT	1				
Output Low Voltage	VOL	$V_{DVDDS2} = 1.65V, I_{OL} = 3mA$			0.4	V
Output High Voltage	V _{OH}	$V_{DVDDS2} = 1.65V, I_{OH} = 3mA$	DVDDS2 - 0.4			V
Input Leakage Current	I _{IH} , IIL	$V_{DVDD} = 2.0V, V_{IN} = 0V, 5.5V; T_A = +25^{\circ}C,$ high-impedance state	-1		+1	μA
SDA, SCL—INPUT						
Input High Voltage	Vih		0.7 x DVDD			V
Input Low Voltage	VIL				0.3 x DVDD	V
Input Hysteresis				210		mV
Input Leakage Current	IIH, IIL	$V_{DVDD} = 2.0V, V_{IN} = 0V, 5.5V, T_A = +25^{\circ}C$	-1		+1	μA
Input Capacitance				10		рF
SDA, IRQ—OUTPUT						
Output High Current	Іон	Vout = 5.5V, TA = +25°C			1	mA
Output Low Voltage	VOL	$V_{DVDD} = 1.65V, I_{OL} = 3mA$			0.2 x DVDD	V
DIGMICDATA—INPUT						
Input High Voltage	VIH		0.65 x DVDD			V
Input Low Voltage	VIL				0.35 x DVDD	V
Input Hysteresis				125		mV
Input Leakage Current	IIH, IIL	$V_{DVDD} = 2.0V, V_{IN} = 0V, 2.0V; T_A = +25^{\circ}C$	-25		+25	μA
Input Capacitance				10		pF

DIGITAL INPUT/OUTPUT CHARACTERISTICS (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = 1.65V to 2.0V, VSPKLVDD = VSPKRVDD = 3.7V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at $TA = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGMICCLK—OUTPUT						
Output Low Voltage	Vol	$V_{DVDD} = 1.65V, I_{OL} = 1mA$			0.4	V
Output High Voltage	Voh	VDVDD = 1.65V, IOH = 1mA	DVDD - 0.4			V

INPUT CLOCK CHARACTERISTICS

 $(V_{AVDD} = V_{HPVDD} = V_{DVDD} = V_{DVDDS1} = V_{DVDDS2} = +1.8V$, $V_{SPKLVDD} = V_{SPKRVDD} = 3.7V$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MCLK Input Frequency	fMCLK		10		60	MHz
MCLK Input Duty Cycle		PSCLK = 01	40	50	60	%
		PSCLK = 10 or 11	30		70	/0
Maximum MCLK Input Jitter				100		ps _{RMS}
LRCLK Sample Rate (Note 8)		$DHF_{=} 0$	8		48	kHz
LICER Sample Hate (Note 6)		DHF_ = 1	48		96	KLIZ
DAI1 LRCLK Average Frequency		FREQ1 = 0x8 to $0xF$	0		0	%
Error (Note 9)		FREQ1 = 0x0	-0.025		+0.025	/0
DAI2 LRCLK Average Frequency Error (Note 9)			-0.025		+0.025	%
		Rapid lock mode		2	7	
PLL Lock Time		Nonrapid lock mode		12	25	ms
Maximum LRCLK Jitter to Maintain PLL Lock					100	ns
Soft-Start/Stop Time				10		ms

AUDIO INTERFACE TIMING CHARACTERISTICS

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = 1.65V, VSPKLVDD = VSPKRVDD = 2.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS	
BCLK Cycle Time	t BCLK	Slave mode	90			ns	
BCLK High Time	^t BCLKH	Slave mode)	20			ns
BCLK Low Time	t BCLKL	Slave mode)	20			ns
BCLK or LRCLK Rise and Fall Time	t _R , t _F	Master mod				ns	
SDIN to BCLK Setup Time	t SETUP			20			ns
LRCLK to BCLK Setup Time	t SYNCSET	Slave mode	Slave mode				ns
SDIN to BCLK Hold Time	thold						ns
LRCLK to BCLK Hold Time	tSYNCHOLD	Slave mode	20			ns	
Minimum Delay Time from LSB BCLK Falling Edge to High-Impedance State	thizout	Master mode, TDM_ = 1			42		ns
LRCLK Rising Edge to SDOUT MSB Delay	tsynctx	C _L = 30pF, TDM_ = 1, FSW_ = 1				50	ns
BCLK to SDOUT Delay	^t CLKTX	C _L = 30pF	TDM_ = 1, BCLK rising edge TDM_ = 0			50 50	ns
		Master mode	$TDM_ = 1$	-15		+15	
Delay Time from BCLK to LRCLK	tCLKSYNC		$TDM_ = 0$	10		0.8 x	ns
Delay Time from LRCLK to BCLK After LSB	tendsync	Master mode	TDM_ = 1, FSW_ = 1	20			ns

Figure 1. Non-TDM Audio Interface Timing Diagrams (TDM_ = 0)

MAX9888

Figure 2. TDM Audio Interface Timing Diagram (TDM_ = 1, FSW_ = 0)

Figure 3. TDM Audio Interface Timing Diagram (TDM_ = 1, FSW_ = 1)

DIGITAL MICROPHONE TIMING CHARACTERSTICS

(VAVDD = VHPVDD = VDVDDS1 = VDVDDS2 = 2.0V, VSPKLVDD = VSPKRVDD = 2.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGMICCLK Frequency fMIC		MICCLK = 00		MCLK/8	MHz	
	†MICCLK	MICCLK = 01		MCLK/6	CLK/6	
DIGMICDATA to DIGMICCLK Setup Time	tsu,mic	Either clock edge	20			ns
DIGMICDATA to DIGMICCLK Hold Time	^t HD,MIC	Either clock edge	0			ns

Figure 4. Digital Microphone Timing Diagram

I2C TIMING CHARACTERSTICS

 $(V_{AVDD} = V_{HPVDD} = V_{DVDD} = V_{DVDDS1} = V_{DVDDS2} = 1.65V$ to 2.0V, $V_{SPKLVDD} = V_{SPKRVDD} = 3.7V$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial-Clock Frequency	fSCL	Guaranteed by SCL pulse-width low and high	0		400	kHz
Bus Free Time Between STOP and START Conditions	^t BUF		1.3			μs
Hold Time (Repeated) START Condition	thd,sta		0.6			μs
SCL Pulse-Width Low	tlow		1.3			μs
SCL Pulse-Width High	thigh		0.6			μs
Setup Time for a Repeated START Condition	tsu,sta		0.6			μs
Data Hold Time	thd,dat	R _{PU} = 475Ω, CB = 100pF, 400pF	0		900	ns
Data Setup Time	tsu,dat		100			ns
SDA and SCL Receiving Rise Time	tR	(Note 10)	20 + 0.1C _B		300	ns
SDA and SCL Receiving Fall Time	tF	(Note 10)	20 + 0.1C _B		300	ns
SDA Transmitting Fall Time	tF	$R_{PU} = 475\Omega, C_B = 100pF, 400pF (Note 10)$	20 + 0.05CB		250	ns
Setup Time for STOP Condition	tsu,sto		0.6			μs
Bus Capacitance	Св	Guaranteed by SDA transmitting fall time			400	рF
Pulse Width of Suppressed Spike	tSP		0		50	ns

Figure 5. I²C Interface Timing Diagram

- **Note 1:** The IC is 100% production tested at $T_A = +25^{\circ}C$. Specifications over temperature limits are guaranteed by design.
- **Note 2:** Analog supply current = I_{AVDD} + I_{HPVDD}. Speaker supply current = I_{SPKLVDD} + I_{SPKRVDD}. Digital supply current = I_{DVDD} + I_{DVDDS1} + I_{DVDDS1} + I_{DVDDS2}.
- **Note 3:** Clocking all zeros into the DAC. Slave mode.
- Note 4: Dynamic range measured using the EIAJ method. -60dBFS, 1kHz output signal, A-weighted and normalized to 0dBFS. f = 20Hz to 20kHz.
- Note 5: Gain measured relative to the 0dB setting.
- Note 6: The filter specification is accurate only for synchronous clocking modes, where NI is a multiple of 0x1000.
- Note 7: 0dBFS for DAC input. 1VP-P for INA/INB inputs.
- Note 8: LRCLK may be any rate in the indicated range. Asynchronous or noninteger MCLK/LRCLK ratios may exhibit some fullscale performance degradation compared to synchronous integer related MCLK/LRCLK ratios.

Note 9: In master-mode operation, the accuracy of the MCLK input proportionally determines the accuracy of the sample clock rate. **Note 10:** CB is in pF.

Power Consumption

MODE	I _{AVDD} (mA)	I _{HPVDD} (mA)	ISPKLVDD + ISPKRVDD (mA)	IDVDD (mA)	IDVDDS1 + IDVDDS2 (mA)	POWER (mW)
DAC Playback 48kHz Stereo HP DAC → HP 24-bit, music filters	1.35	1.37	1.65	2.91	0.02	16.25
DAC Playback 48kHz Stereo HP DAC → HP 24-bit, music filters, 0.1mW/channel, R _{HP} = 32Ω	1.35	4.19	1.65	3.02	0.02	21.55
DAC Playback 48kHz Stereo HP DAC → HP 24-bit, music filters, ALC enabled	1.35	1.37	1.65	2.96	0.02	16.36

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V)

MAX9888

___Power Consumption (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V)

MODE	I _{AVDD} (mA)	IHPVDD (mA)	ISPKLVDD + ISPKRVDD (mA)	I _{DVDD} (mA)	IDVDDS1 + IDVDDS2 (mA)	POWER (mW)
DAC Playback 48kHz Stereo HP DAC → HP 24-bit, music filters, EQ enabled	1.35	1.36	1.65	3.27	0.02	16.90
DAC Playback 48kHz Stereo HP DAC → HP 24-bit, music filters, digital mixing	1.34	1.36	1.65	2.91	0.02	16.27
DAC Playback 44.1kHz Stereo HP DAC → HP 24-bit, music filters	1.35	1.37	1.69	2.85	0.02	16.29
DAC Playback 8kHz Stereo HP DAC → HP 16-bit, voice filters	1.35	1.37	1.65	1.46	0.01	13.65
DAC Playback 8kHz Mono HP DAC → HP 16-bit, voice filters	1.00	0.71	1.01	1.36	0.01	9.27
DAC Playback 48kHz Stereo SPK DAC → SPK 24-bit, music filters	1.83	0.02	8.22	2.92	0.02	39.09
DAC Playback 48kHz Mono SPK DAC → SPK 24-bit, music filters	1.25	0.02	4.31	2.82	0.02	23.32
Line Stereo Record 48kHz INA → ADC 16-bit, music filters	9.91	0.02	0.39	1.62	0.11	22.48
Line Stereo Record 48kHz, Stereo HP INA → ADC INA → HP 16-bit, music filters	10.64	2.65	0.66	1.63	0.11	29.51
Line Stereo Record 48kHz, Stereo SPK INA → ADC INA → SPK 16-bit, music filters	10.97	0.03	7.15	1.63	0.12	49.50
Differential Line Record 48kHz INA → ADCL INB → ADCR Differential input	10.49	0.02	0.39	1.63	0.16	23.58
Microphone Stereo Record 48kHz MIC1/2 → ADC 16-bit, music filters	10.88	0.03	0.69	1.62	0.17	25.43
Microphone Stereo Record 8kHz MIC1/2 → ADC 16-bit, voice filters	10.77	0.02	0.64	1.03	0.06	23.78

26

Power Consumption (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V) **ISPKLVDD +** POWER IAVDD IHPVDD IDVDD IDVDDS1 + IDVDDS2 MODE ISPKRVDD (mA) (mW) (mA) (mA) (mA) (mA) Microphone Mono Record 48kHz MIC1/2 → ADC 6.01 0.02 0.66 1.37 0.10 15.97 16-bit, music filters Microphone Mono Record 8kHz MIC1/2 → ADC 5.95 0.02 0.64 0.98 0.04 14.94 16-bit, voice filters Microphone Mono Record 8kHz MIC1/2 → ADC 5.95 0.02 0.98 0.04 15.00 0.64 16-bit, voice filters, AGC Microphone Mono Record 8kHz MIC1/2 → ADC 5.96 0.02 0.64 0.98 0.04 14.98 16-bit, voice filters, AGC, noise gate Full-Duplex 48kHz Stereo HP MIC1/2 → ADC 1.70 3.56 36.06 11.38 1.37 0.19 DAC → HP 24-bit, music filters Full-Duplex 8kHz Mono RCV MIC1 → ADC 6.35 0.02 1.98 0.03 21.47 1.47 DAC → REC 16-bit, voice filters Full-Duplex 8kHz Mono HP MIC1 → ADC 0.03 6.09 0.71 1.01 1.46 18.72 DAC → HP 16-bit, voice filters Full-Duplex 8kHz Stereo HP MIC1/2 → ADC 10.92 0.05 28.95 1.37 1.09 1.51 DAC → HP 16-bit, voice filters Line Playback Stereo HP $INA \rightarrow HP$ 1.89 2.65 0.58 0.03 0.01 10.41 Single-ended inputs Line Playback Stereo SPK INA → SPK 2.21 0.02 7.05 0.04 0.02 30.19 Single-ended inputs Line Playback Mono SPK INA → SPK 1.68 0.02 3.70 0.03 0.02 16.90 Single-ended inputs **Differential Line Playback Stereo HP** INA → HPL 2.46 2.65 0.58 0.03 0.01 11.42 INB \rightarrow HPR Differential input

M/IXI/M

Typical Operating Characteristics

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Microphone to ADC

MAX9888

Stereo Audio CODEC with FlexSound Technology

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (R_{REC}) connected between RECP and RECN. Headphone loads (R_{HP}) connected from HPL or HPR to GND. R_{HP} = ∞ , R_{REC} = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Digital Loopback

MAX9888

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Analog Loopback

WAX9888

Stereo Audio CODEC with FlexSound Technology

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

DAC to Receiver

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Downloaded from: http://www.datasheetcatalog.com/

Stereo Audio CODEC with FlexSound Technology

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Line to Receiver

37

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

DAC to Speaker

Stereo Audio CODEC with FlexSound Technology

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞, RREC = ∞, ZSPK = ∞, CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN = 0dB, AVPGAOUT = 0dB, AVHP = 0dB, AVREC = 0dB, AVSPK = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Line to Speaker

42

MAX9888

Stereo Audio CODEC with FlexSound Technology

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

DAC to Headphone

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (R_{REC}) connected between RECP and RECN. Headphone loads (R_{HP}) connected from HPL or HPR to GND. R_{HP} = ∞ , R_{REC} = ∞ , Z_{SPK} = ∞ , C_{REF} = 2.2µF, C_{MICBIAS} = C_{PREG} = C_{REG} = 1µF, C_{C1N-C1P} = 1µF, C_{HPVSS} = 1µF. AV_{MICPRE} = +20dB, AV_{MICPGA} = 0dB, AV_{DACATTN} = 0dB, AV_{DACGAIN} = 0dB, AV_{ADCLVL} = 0dB, AV_{ADCGAIN} = 0dB, AV_{PGAUT} = 0dB, AV_{PGAUT} = 0dB, AV_{HP} = 0dB, AV_{REC} = 0dB, AV_{SPK} = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. T_A = +25°C, unless otherwise noted.)

FFT, OdBFS (DAC TO HEADPHONE)

M/IXI/M

Downloaded from: http://www.datasheetcatalog.com/

M/IXI/M

Stereo Audio CODEC with FlexSound Technology **Typical Operating Characteristics (continued)** MAX9888

(VAVDD = VHPVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞, RREC = ∞, ZSPK = ∞, CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = OdB, AVPGAOUT_ = OdB, AVHP_ = OdB, AVREC = OdB, AVSPK_ = OdB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞ , RREC = ∞ , ZSPK = ∞ , CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. TA = +25°C, unless otherwise noted.)

Line to Headphone

Typical Operating Characteristics (continued)

(VAVDD = VHPVDD = VDVDDS1 = VDVDDS2 = +1.8V, VSPKLVDD = VSPKRVDD = 3.7V. Speaker loads (ZSPK) connected between SPK_P and SPK_N. Receiver load (RREC) connected between RECP and RECN. Headphone loads (RHP) connected from HPL or HPR to GND. RHP = ∞, RREC = ∞, ZSPK = ∞, CREF = 2.2µF, CMICBIAS = CPREG = CREG = 1µF, CC1N-C1P = 1µF, CHPVSS = 1µF. AVMICPRE_ = +20dB, AVMICPGA_ = 0dB, AVDACATTN = 0dB, AVDACGAIN = 0dB, AVADCLVL = 0dB, AVADCGAIN = 0dB, AVPGAIN_ = 0dB, AVPGAOUT_ = 0dB, AVHP_ = 0dB, AVREC = 0dB, AVSPK_ = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1. $T_A = +25^{\circ}C$, unless otherwise noted.)

RECEIVER AMP DRIVING RXIN

1000

FREQUENCY (Hz)

10,000

100,000

100

Speaker Bypass Switch

-80

-100

-120 10

M/IXI/M

MAX9888

Pin Description

PIN	NAME	FUNCTION
A1, B1	SPKRN	Negative Right-Channel Class D Speaker Output
A2, B2	SPKRGND	Right-Speaker Ground
A3, B3	SPKLVDD	Left-Speaker, REF, Receiver Amplifier Power Supply. Bypass to SPKLGND with a 1μ F and a 10μ F capacitor.
A4, B4	SPKLP	Positive Left-Channel Class D Speaker Output
A5, B5	SPKLN	Negative Left-Channel Class D Speaker Output
A6	RECP/RXINP	Positive Receiver Amplifier Output. Can be positive bypass switch input when receiver amp is shut down.
A7	HPVDD	Headphone Power Supply. Bypass to HPGND with a 1µF capacitor.
A8	HPGND	Headphone Ground
A9	HPVSS	Inverting Charge-Pump Output. Bypass to HPGND with a 1µF ceramic capacitor.
B6	RECN/RXINN	Negative Receiver Amplifier Output. Can be negative bypass switch input when receiver amp is shut down.
B7	C1P	Charge-Pump Flying Capacitor Positive Terminal. Connect a $1\mu\text{F}$ ceramic capacitor between C1N and C1P.
B8	C1N	Charge-Pump Flying Capacitor Negative Terminal. Connect a $1\mu\text{F}$ ceramic capacitor between C1N and C1P.
B9	HPL	Left-Channel Headphone Output
C1, C2	SPKRP	Positive Right-Channel Class D Speaker Output
C3, D3	SPKRVDD	Right-Speaker Power Supply. Bypass to SPKRGND with a 1µF capacitor.
C4, C5	SPKLGND	Left-Speaker Ground
C6	HPSNS	Headphone Amplifier Ground Sense. Connect to the headphone jack ground terminal or connect to ground.
C7, D5, D7, E3, E6, E7	N.C.	No Connection
C8	INB2	Single-Ended Line Input B2. Also positive differential line input B.
C9	HPR	Right-Channel Headphone Output
D1	BCLKS1	S1 Digital Audio Bit Clock Input/Output. BCLKS1 is an input when the MAX9888 is in slave mode and an output when in master mode. The input/output voltage is referenced to DVDDS1.
D2	LRCLKS1	S1 Digital Audio Left-Right Clock Input/Output. LRCLKS1 is the audio sample rate clock and determines whether S1 audio data is routed to the left or right channel. In TDM mode, LRCLKS1 is a frame sync pulse. LRCLKS1 is an input when the MAX9888 is in slave mode and an output when in master mode. The input/output voltage is referenced to DVDDS1.
D4	SDINS1	S1 Digital Audio Serial-Data DAC Input. The input voltage is referenced to DVDDS1.
D6	JACKSNS	Jack Sense. Detects the insertion of a jack. See the Headset Detection section.
D8	INB1	Single-Ended Line Input B1. Also negative differential line input B.
D9	INA2/ EXTMICN	Single-Ended Line Input A2. Also positive differential line input A or negative differential external microphone input.

MAX9888

Pin Description (continued)

PIN	NAME	FUNCTION
E1	DVDDS1	S1 Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1µF capacitor.
E2	MCLK	Master Clock Input. Acceptable input frequency range is 10MHz to 60MHz.
E4	SDOUTS1	S1 Digital Audio Serial-Data ADC Output. The output voltage is referenced to DVDDS1.
E5	ĪRQ	Hardware Interrupt Output. \overline{IRQ} can be programmed to pull low when bits in status register 0x00 change state. Read status register 0x00 to clear \overline{IRQ} once set. Repeat faults have no effect on \overline{IRQ} until it is cleared by reading the I ² C status register 0x00. Connect a 10k Ω pullup resistor to DVDD for full output swing.
E8	MIC1P/ DIGMICDATA	Positive Differential Microphone 1 Input. AC-couple a microphone with a series 1µF capacitor. Can be retasked as a digital microphone data input.
E9	INA1/ EXTMICP	Single-Ended Line Input A1. Also negative differential line input A or positive differential external microphone input.
F1	DGND	Digital Ground
F2	BCLKS2	S2 Digital Audio Bit Clock Input/Output. BCLKS2 is an input when the IC is in slave mode and an output when in master mode. The input/output voltage is referenced to DVDDS2.
F3	LRCLKS2	S2 Digital Audio Left-Right Clock Input/Output. LRCLKS2 is the audio sample rate clock and determines whether audio data on S2 is routed to the left or right channel. In TDM mode, LRCLKS2 is a frame sync pulse. LRCLKS2 is an input when the IC is in slave mode and an output when in master mode. The input/output voltage is referenced to DVDDS2.
F4	SDA	I ² C Serial-Data Input/Output. Connect a pullup resistor to DVDD for full output swing.
F5	SCL	I ² C Serial-Clock Input
F6	REG	Common-Mode Voltage Reference. Bypass to AGND with a 1µF capacitor.
F7	REF	Converter Reference. Bypass to AGND with a 2.2µF capacitor.
F8	MIC1N/ DIGMICCLK	Negative Differential Microphone 1 Input. AC-couple a microphone with a series 1µF capacitor. Can be retasked as a digital microphone clock output.
F9	MIC2P	Positive Differential Microphone 2 Input. AC-couple a microphone with a series 1µF capacitor.
G1	SDOUTS2	S2 Digital Audio Serial-Data ADC Output. The output voltage is referenced to DVDDS2.
G2	DVDDS2	S2 Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1µF capacitor.
G3	SDINS2	S2 Digital Audio Serial-Data DAC Input. The input voltage is referenced to DVDDS2.
G4	DVDD	Digital Power Supply. Supply for the digital core and I ² C interface. Bypass to DGND with a 1μ F capacitor.
G5	AVDD	Analog Power Supply. Bypass to AGND with a 1µF capacitor.
G6	PREG	Positive Internal Regulated Supply. Bypass to AGND with a 1µF capacitor.
G7	AGND	Analog Ground
G8	MICBIAS	Low-Noise Bias Voltage. Outputs a 2.2V microphone bias. An external resistor in the 2.2k Ω to 1k Ω range should be used to set the microphone current.
G9	MIC2N	Negative Differential Microphone 2 Input. AC-couple a microphone with a series 1µF capacitor.

Detailed Description

The MAX9888 is a fully integrated stereo audio codec with FlexSound technology and integrated amplifiers.

Two differential microphone amplifiers can accept signals from three analog inputs. One input can be retasked to support two digital microphones. Any combination of two microphones (analog or digital) can be recorded simultaneously. The analog signals are amplified up to 50dB and recorded by the stereo ADC. The digital record path supports voice filtering with selectable preset highpass filters and high stopband attenuation at fs/2. An automatic gain control (AGC) circuit monitors the digitized signal and automatically adjusts the analog microphone gain to make best use of the ADC's dynamic range. A noise gate attenuates signals below the user-defined threshold to minimize the noise output by the ADC.

The IC includes two analog line inputs. One of the line inputs can be optionally retasked as a third analog microphone input. Both line inputs support either stereo singleended input signals or mono differential signals. The line inputs are preamplified and then routed either to the ADC for recording or to the output amplifiers for playback.

Integrated analog switches allow two differential microphone signals to be routed out the third microphone input to an external device. This eliminates the need for an external analog switch in systems that have two devices recording signals from the same microphone.

Through two digital audio interfaces, the device can transmit one stereo audio signal and receive two stereo audio signals in a wide range of formats including I²S, PCM, and up to four mono slots in TDM. Each interface can be connected to either of two audio ports (S1 and S2) for communication with external devices. Both audio interfaces support 8kHz to 96kHz sample rates. Each input signal is independently equalized using 5-band parametric equalizers. A multiband automatic level control (ALC) boosts signals by up to 12dB. One signal path additionally supports the same voiceband filtering as the ADC path.

The IC includes a differential receiver amplifier, stereo Class D speaker amplifiers, and DirectDrive true ground stereo headphone amplifiers.

When the receiver amplifier is disabled, analog switches allow RECP/RXINP and RECN/RXINN to be reused for signal routing. In systems where a single transducer is used for both the loudspeaker and receiver, an external receiver amplifier can be routed to the left speaker through RECP/RXINP and RECN/RXINN, bypassing the Class D amplifier, to connect to the loudspeaker. If the internal receiver amplifier is used, then leave RECP/ RXINP and RECN/RXINN unconnected. In systems where an external amplifier drives both the receiver and the MAX9888's input, one of the differential signals can be disconnected from the receiver when not needed by passing it through the analog switch that connects RECP/RXINP to RECN/RXINN.

The stereo Class D amplifier provides efficient amplification for two speakers. The amplifier includes active emissions limiting to minimize the radiated emissions (EMI) traditionally associated with Class D. In most systems, no output filtering is required to meet standard EMI limits.

To optimize speaker sound quality, the IC includes an excursion limiter, a distortion limiter, and a power limiter. The excursion limiter is a dynamic highpass filter with variable corner frequency that increases in response to high signal levels. Low-frequency energy typically causes more distortion than useful sound at high signal levels, so attenuating low frequencies allows the speaker to play louder without distortion or damage. At lower signal levels, the filter corner frequency reduces to pass more low frequency energy when the speaker can handle it. The distortion limiter reduces the volume when the output signal exceeds a preset distortion level. This ensures that regardless of input signal and battery voltage, excessive distortion is never heard by the user. The power limiter monitors the continuous power into the loudspeaker and lowers the signal level if the speaker is at risk of overheating.

The stereo DirectDrive headphone amplifier uses an inverting charge pump to generate a ground-referenced output signal. This eliminates the need for DC-blocking capacitors or a midrail bias for the headphone jack ground return. Ground sense reduces output noise caused by ground return current.

The IC integrates jack detection allowing the detection of insertion and removal of accessories as well as button presses.

MAX9888

I²C Slave Address

Registers

Configure the MAX9888 using the I²C control bus. The IC uses a slave address of 0x20 or 00100000 for write operations and 0x21 or 00100001 for read operations. See the I²C Serial Interface section for a complete interface description.

Table 1 lists all of the registers, their addresses, and power-on-reset states. Registers 0x00 to 0x03 and 0xFF are read-only while all of the other registers are read/ write. Write zeros to all unused bits in the register table when updating the register, unless otherwise noted.

Table 1. Register Map

rr	-				1				1		·	
REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	ADDRESS	DEFAULT	R/W	PAGE
STATUS												
Status	CLD	SLD	ULK		_	_	JDET	—	0x00	_	R	<u>103</u>
Microphone AGC/NG		NG				AGC			0x01	_	R	<u>65</u>
Jack Status	JKS	INS		_					0x02		R	<u>101</u>
Battery Voltage		_				VBAT	<u>`</u>		0x03	_	R/W	<u>102</u>
Interrupt Enable	ICLD	ISLD	IULK	0	0	0	IJDET	0	0x0F	0x00	R/W	<u>103</u>
MASTER CLC	OCK CON	TROL									·	
Master Clock	0	0	PS	CLK	0	0	0	0	0x10	0x00	R/W	<u>76</u>
DAI1 CLOCK	CONTRO	L										
Clock Mode		S	R1			FRE	Q1		0x11	0x00	R/W	<u>76</u>
Any Clock	PLL1				NI1[14:8]				0x12	0x00	R/W	77
Control				NI1[7:1]				NI1[0]	0x13	0x00	R/W	77
DAI1 CONFIG	URATION	1							,			
Format	MAS1	WCI1	BCI1	DLY1	0	TDM1	FSW1	WS1	0x14	0x00	R/W	<u>71</u>
Clock	OS	R1	0	0	0		BSEL1	1	0x15	0x00	R/W	<u>72</u>
I/O Configuration	SE	L1	LTEN1	LBEN1	DMONO1	HIZOFF1	SDOEN1	SDIEN1	0x16	0x00	R/W	<u>72</u>
Time-Division Multiplex	SLO	TL1	SLC)TR1	SLOTDLY1				0x17	0x00	R/W	<u>73</u>
Filters	MODE1		AVFLT1		DHF1		DVFLT1		0x18	0x00	R/W	<u>79</u>
DAI2 CLOCK	CONTRO	L										
Clock Mode		S	R2		0	0	0	0	0x19	0x00	R/W	<u>76</u>
Any Clock	PLL2				NI2[14:8]				0x1A	0x00	R/W	77
Control				NI2[7:1]				NI2[0]	0x1B	0x00	R/W	77
DAI2 CONFIG	URATION	1										
Format	MAS2	WCI2	BCI2	DLY2	0	TDM2	FSW2	WS2	0x1C	0x00	R/W	<u>71</u>
Clock	0	0 0 0 0 BSEL2		0x1D	0x00	R/W	<u>72</u>					
I/O Configuration	SE	L2	0	LBEN2	DMONO2	HIZOFF2	SDOEN2	SDIEN2	0x1E	0x00	R/W	<u>72</u>

Table 1. Register Map (continued)

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	ADDRESS	DEFAULT	R/W	PAGE
Time-Division Multiplex	SLO	TL2	SLO	DTR2		SLOT	DLY2		0x1F	0x00	R/W	<u>73</u>
Filters	0	0	0	0	DHF2	0	0	DCB2	0x20	0x00	R/W	<u>79</u>
MIXERS												
DAC Mixer		MIXDAL				MIXI	DAR		0x21	0x00	R/W	<u>85</u>
Left ADC Mixer				MIXA	ADL				0x22	0x00	R/W	<u>64</u>
Right ADC Mixer				MIXA	ADR				0x23	0x00	R/W	<u>64</u>
Preoutput 1 Mixer	0	0	0	0		MIXC)UT1		0x24	0x00	R/W	<u>86</u>
Preoutput 2 Mixer	0	0	0	0		MIXC)UT2		0x25	0x00	R/W	<u>86</u>
Preoutput 3 Mixer	0	0	0	0		MIXC)UT3		0x26	0x00	R/W	<u>86</u>
Headphone Amplifier Mixer		MIX	(HPL		MIXHPR				0x27	0x00	R/W	<u>97</u>
Receiver Amplifier Mixer	0	0	0	0	D MIXREC				0x28	0x00	R/W	<u>88</u>
Speaker Amplifier Mixer		MIX	(SPL			MIX	SPR		0x29	0x00	R/W	<u>90</u>
LEVEL CONT	ROL											
Sidetone	DS	TS	0		DVST				0x2A	0x00	R/W	<u>69</u>
DAI1 Playback Level	DV1M	0	יס	/1G		D	/1		0x2B	0x00	R/W	<u>84</u>
DAI1 Playback Level	0	0	0	EQCLP1		DVE	EQ1		0x2C	0x00	R/W	<u>83</u>
DAI2 Playback Level	DV2M	0	0	0	DV2		0x2D	0x00	R/W	<u>84</u>		
DAI2 Playback Level	0	0	0	EQCLP2	Z DVEQ2		0x2E	0x00	R/W	<u>83</u>		
Left ADC Level	0	0	A	/LG	AVL			0x2F	0x00	R/W	<u>68</u>	
Right ADC Level	0	0	A١	/RG	AVR				0x30	0x00	R/W	<u>68</u>
Microphone 1 Input Level	0	PA	1EN			PGAM1			0x31	0x00	R/W	<u>61</u>

MAX9888

Table 1. Register Map (continued)

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	ADDRESS	DEFAULT	R/W	PAGE
Microphone 2 Input Level	0	PA2	2EN			PGAM2			0x32	0x00	R/W	<u>61</u>
INA Input Level	0	INAEXT	0	0	0	PGAINA		0x33	0x00	R/W	<u>63</u>	
INB Input Level	0	INBEXT	0	0	0		PGAINB		0x34	0x00	R/W	<u>63</u>
Preoutput 1 Level	0	0	0	0		PGAC)UT1		0x35	0x00	R/W	<u>87</u>
Preoutput 2 Level	0	0	0	0		PGAC)UT2		0x36	0x00	R/W	<u>87</u>
Preoutput 3 Level	0	0	0	0		PGAC	DUT3		0x37	0x00	R/W	<u>87</u>
Left Headphone Amplifier Volume Control	HPLM	0	0		HPVOLL				0x38	0x00	R/W	<u>97</u>
Right Headphone Amplifier Volume Control	HPRM	0	0	HPVOLR				0x39	0x00	R/W	<u>97</u>	
Receiver Amplifier Volume Control	RECM	0	0			RECVOL			0x3A	0x00	R/W	<u>88</u>
Left Speaker Amplifier Volume Control	SPLM	0	0			SPVOLL			0x3B	0x00	R/W	<u>90</u>
Right Speaker Amplifier Volume Control	SPRM	0	0		SPVOLR				0x3C	0x00	R/W	<u>90</u>
MICROPHON												
Configuration	AGCSRC		AGCRLS		AGC		AGC	HLD	0x3D	0x00	R/W	<u>65</u>
Threshold			ITH			AGO	TH		0x3E	0x00	R/W	<u>66</u>
SPEAKER SI	GNAL PR	OCESSIN	G		1				1	1		
Excursion Limiter Filter	0		DHPUCF		0	0	DHP	LCF	0x3F	0x00	R/W	<u>92</u>
Excursion Limiter Threshold	0	0	0	0	0		DHPTH		0x40	0x00	R/W	<u>92</u>
ALC	ALCEN		ALCRLS		ALCMB		ALCTH		0x41	0x00	R/W	<u>82</u>

56

Table 1. Register Map (continued)

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	ADDRESS	DEFAULT	R/W	PAGE
Power Limiter		PW	'RTH		0		PWRK	,	0x42	0x00	R/W	<u>93</u>
Power Limiter		PW	/RT2			PWRT1			0x43	0x00	R/W	<u>94</u>
Distortion Limiter		THE	DCLP		0		THDT1		0x44	0x00	R/W	<u>95</u>
CONFIGURA	TION											
Audio Input	INADIFF	INBDIFF	0	0	0	0	0	0	0x45	0x00	R/W	<u>63</u>
Microphone	MIC	CLK	DIGMICL	DIGMICR	0	0	EXT	MIC	0x46	0x00	R/W	<u>61</u>
Level Control	VS2EN	VSEN	ZDEN	0	0	0	EQ2EN	EQ1EN	0x47	0x00	R/W	<u>99, 83</u>
Bypass Switches	INABYP	0	0	MIC2BYP	0	0	RECBYP	SPKBYP	0x48	0x00	R/W	<u>62, 98</u>
Jack Detection	JDETEN	0	0	0	0	0	JD	EB	0x49	0x00	R/W	<u>101</u>
POWER MAN												
Input Enable	INAEN	INBEN	0	0	MBEN	0	ADLEN	ADREN	0x4A	0x00	R/W	<u>59</u>
Output Enable	HPLEN	HPREN	SPLEN	SPREN	RECEN	0	DALEN	DAREN	0x4B	0x00	R/W	<u>59</u>
System Enable	SHDN	VBATEN	0	0	0	0	JDWK	0	0x4C	0x00	R/W	<u>59</u>
DSP COEFFI	CIENTS											
				K_1[15:8]				0x50/0x82	0xXX	R/W	<u>82</u>
				K_1[7:0]				0x51/0x83	0xXX	R/W	<u>82</u>
				K1_1[15:8]				0x52/0x84	0xXX	R/W	<u>82</u>
				K1_1	[7:0]				0x53/0x85	0xXX	R/W	<u>82</u>
EQ Band 1			-	K2_1[15:8]				0x54/0x86	0xXX	R/W	<u>82</u>
(DAI1/DAI2)				K2_1	[7:0]			-	0x55/0x87	0xXX	R/W	<u>82</u>
				c1_1[15:8]				0x56/0x88	0xXX	R/W	<u>82</u>
				c1_1				0x57/0x89	0xXX	R/W	<u>82</u>	
				c2_1[0x58/0x8A	0xXX	R/W	<u>82</u>
				c2_1					0x59/0x8B	0xXX	R/W	<u>82</u>
				K_2[-				0x5A/0x8C	0xXX	R/W	<u>82</u>
				K_2[7:0]				0x5B/0x8D	0xXX	R/W	<u>82</u>
				K1_2[0x5C/0x8E	0xXX	R/W	<u>82</u>
				K1_2					0x5D/0x8F	0xXX	R/W	<u>82</u>
EQ Band 2				K2_2[0x5E/0x90	0xXX	R/W	<u>82</u>	
(DAI1/DAI2)				K2_2	[7:0]				0x5F/0x91	0xXX	R/W	<u>82</u>
				c1_2[[15:8]				0x60/0x92	0xXX	R/W	<u>82</u>
				c1_2					0x61/0x93	0xXX	R/W	<u>82</u>
				c2_2[0x62/0x94	0xXX	R/W	<u>82</u>
				c2_2	[7:0]				0x63/0x95	0xXX	R/W	<u>82</u>

Table 1. Register Map (continued)

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	ADDRESS	DEFAULT	R/W	PAGE
				K_3[[15:8]				0x64/0x96	0xXX	R/W	<u>82</u>
Γ				K_3	[7:0]				0x65/0x97	0xXX	R/W	<u>82</u>
Γ				K1_3	[15:8]				0x66/0x98	0xXX	R/W	<u>82</u>
Γ				K1_3		0x67/0x99	0xXX	R/W	82			
EQ Band 3				K2_3	[15:8]				0x68/0x9A	0xXX	R/W	<u>82</u>
(DAI1/DAI2)				K2_3		0x69/0x9B	0xXX	R/W	82			
				c1_3	[15:8]				0x6A/0x9C	0xXX	R/W	<u>82</u>
				c1_3	3[7:0]				0x6B/0x9D	0xXX	R/W	<u>82</u>
				c2_3	[15:8]				0x6C/0x9E	0xXX	R/W	<u>82</u>
Γ				c2_3	3[7:0]				0x6D/0x9F	0xXX	R/W	<u>82</u>
				K_4[[15:8]				0x6E/0xA0	0xXX	R/W	<u>82</u>
				K_4	[7:0]				0x6F/0xA1	0xXX	R/W	<u>82</u>
				K1_4	[15:8]				0x70/0xA2	0xXX	R/W	<u>82</u>
				K1_4	4[7:0]				0x71/0xA3	0xXX	R/W	<u>82</u>
EQ Band 4				K2_4	[15:8]				0x72/0xA4	0xXX	R/W	<u>82</u>
(DAI1/DAI2)				K2_4	4[7:0]				0x73/0xA5	0xXX	R/W	<u>82</u>
Γ				c1_4	[15:8]				0x74/0xA6	0xXX	R/W	<u>82</u>
				c1_4	4[7:0]				0x75/0xA7	0xXX	R/W	<u>82</u>
Γ				c2_4	[15:8]				0x76/0xA8	0xXX	R/W	82
Γ				c2_4	4[7:0]				0x77/0xA9	0xXX	R/W	<u>82</u>
				K_5[[15:8]				0x78/0xAA	0xXX	R/W	82
				K_5	[7:0]			0x79/0xAB	0xXX	R/W	<u>82</u>	
Γ				K1_5	[15:8]				0x7A/0xAC	0xXX	R/W	82
				K1_	5[7:0]				0x7B/0xAD	0xXX	R/W	<u>82</u>
EQ Band 5				K2_5	[15:8]				0x7C/0xAE	0xXX	R/W	<u>82</u>
(DAI1/DAI2)				K2_5	5[7:0]				0x7D/0xAF	0xXX	R/W	<u>82</u>
Γ				c1_5	[15:8]				0x7E/0xB0	0xXX	R/W	<u>82</u>
				c1_5	5[7:0]				0x7F/0xB1	0xXX	R/W	<u>82</u>
Γ				c2_5	[15:8]				0x80/0xB2	0xXX	R/W	<u>82</u>
				c2_5	5[7:0]				0x81/0xB3	0xXX	R/W	<u>82</u>
				a1[⁻	15:8]				0xB4/0xBE	0xXX	R/W	<u>91</u>
				a1[7:0]				0xB5/0xBF	0xXX	R/W	<u>91</u>
				a2[*	15:8]				0xB6/0xC0	0xXX	R/W	<u>91</u>
Excursion				a2[7:0]				0xB7/0xC1	0xXX	R/W	<u>91</u>
Limiter				b0[15:8]				0xB8/0xC2	0xXX	R/W	<u>91</u>
Biquad				b0[7:0]				0xB9/0xC3	0xXX	R/W	<u>91</u>
(DAI1/DAI2)				b1[15:8]				0xBA/0xC4	0xXX	R/W	<u>91</u>
Γ				b1[[7:0]				0xBB/0xC5	0xXX	R/W	<u>91</u>
Γ				0xBC/0xC6	0xXX	R/W	<u>91</u>					
				0xBD/0xC7	OxXX	R/W	<u>91</u>					
REVISION ID												
Rev ID				R	EV				0xFF	0x43	R	<u>104</u>

Power Management

The IC includes comprehensive power management to allow the disabling of all unused circuits, minimizing supply current.

REGISTER	BIT	NAME	DESCRIPTION
0x4C	7	SHDN	Global ShutdownDisables everything except the headset detection circuitry, which is controlled separately.0 = Device shutdown 1 = Device enabled
	6	VBATEN	See the Battery Measurement section.
	1	JDWK	See the Headset Detection section.
	7	INAEN	Line Input A Enable 0 = Disabled 1 = Enabled
	6	INBEN	Line Input B Enable 0 = Disabled 1 = Enabled
0x4A	3	MBEN	Microphone Bias Enable 0 = Disabled 1 = Enabled
	1	ADLEN	Left ADC Enable 0 = Disabled 1 = Enabled
	0	ADREN	Right ADC Enable 0 = Disabled 1 = Enabled
	7	HPLEN	Left Headphone Enable 0 = Disabled 1 = Enabled
	6	HPREN	Right Headphone Enable0 = Disabled1 = Enabled
	5	SPLEN	Left Speaker Enable 0 = Disabled 1 = Enabled
0x4B	4	SPREN	Right Speaker Enable 0 = Disabled 1 = Enabled
	3	RECEN	Receiver Enable 0 = Disabled 1 = Enabled
	1	DALEN	Left DAC Enable 0 = Disabled 1 = Enabled
	0	DAREN	Right DAC Enable 0 = Disabled 1 = Enabled

Table 2. Power Management Registers

WAX9888

Microphone Inputs

The device includes three differential microphone inputs and a low-noise microphone bias for powering the microphones (Figure 6). One microphone input can also be configured as a digital microphone input accepting signals from up to two digital microphones. Two microphones, analog or digital, can be recorded simultaneously.

In the typical application, one microphone input is used for the handset microphone and the other is used as an accessory microphone. In systems using a background noise microphone, INA can be retasked as another microphone input.

In systems where the codec is not the only device recording microphone signals, connect microphones to

MIC2P/MIC2N and EXTMICP/EXTMICN. MIC1P/MIC1N then become outputs that route the microphone signals to an external device as needed. Two devices can then record microphone signals without needing external analog switches.

Analog microphone signals are amplified by two stages of gain and then routed to the ADCs. The first stage offers selectable 0dB, 20dB, or 30dB settings. The second stage is a programmable-gain amplifier (PGA) adjustable from 0dB to 20dB in 1dB steps. To maximize the signalto-noise ratio, use the gain in the first stage whenever possible. Zero-crossing detection is included on the PGA to minimize zipper noise while making gain changes.

Figure 6. Microphone Input Block Diagram

M/X/M

Table 3. Microphone Input Registers

REGISTER	BIT	NAME		DESCR	RIPTION					
	6	PA1EN/PA2EN	MIC1/MIC2 Preamplifier Gain Course microphone gain adjustment. 00 = Preamplifier disabled 01 = 0dB 10 = 20dB 11 = 30dB							
	4		MIC1/MIC2 PGA Fine microphone ga	ain adjustment.						
			VALUE	GAIN (dB)	VALUE	GAIN (dB)				
	3		0x00	+20	0x0B	+9				
0x31/0x32			0x01	+19	0x0C	+8				
			0x02	+18	0x0D	+7				
	2		0x03	+17	0x0E	+6				
		PGAM1/PGAM2	0x04	+16	0x0F	+5				
			0x05	+15	0x10	+4				
	0	0x06	+14	0x11	+3					
			0x07	+13	0x12	+2				
			0x08	+12	0x13	+1				
			0x09	+11	0x14 to 0x1F	0				
			0x0A	+10						
	7	MICCLK	Select a frequency	e Clock Frequency that is within the digita using a digital microp	al microphone's clock fr bhone.	requency range.				
			11 = Reserved Left Digital Microp	hone Enable						
010	5	DIGMICL	Set PAL1EN = 00 fo 0 = Disabled 1 = Enabled							
0x46	4	DIGMICR	Right Digital Micro Set PAR1EN = 00 fo 0 = Disabled 1 = Enabled	phone Enable or proper operation.						
	1	EXTMIC	INA_/EXTMIC_ as a 00 = Disabled	C_ to the microphone	preamplifiers. Set INA	EN = 0 when using				
	0		01 = MIC1 input 10 = MIC2 input 11 = Reserved							

MAX9888

Table 3. Microphone Input Registers (continued)

REGISTER	BIT	NAME	DESCRIPTION
	7	INABYP	INA_/EXTMIC_ to MIC1_ Bypass Switch 0 = Disabled 1 = Enabled
040	4	MIC2BYP	MIC1_ to MIC2_ Bypass Switch 0 = Disabled 1 = Enabled
0x48	1 RECBYP		See the Output Dunces Switches section
	0	SPKBYP	See the Output Bypass Switches section.

Line Inputs

The device includes two sets of line inputs (Figure 7). Each set can be configured as a stereo single-ended input or as a mono differential input. Each input includes adjustable gain to match a wide range of input signal levels. If a custom gain is needed, the external gain mode provides a trimmed feedback resistor. Set the gain

Figure 7. Line Input Block Diagram

by choosing the appropriate input resistor and using the following formula:

$AVPGAIN = 20 \times \log (20K/RIN)$

The external gain mode also allows summing multiple signals into a single input, by connecting multiple input resistors as show in Figure 8, and inputting signals larger than 1VP-P.

Figure 8. Summing Multiple Input Signals into INA/INB

REGISTER	BIT	NAME	DESCRIPTION
REGISTER	DII	INAIVIE	DESCRIPTION
	6	INAEXT/INBEXT	 Line Input A/B External Gain Switches out the internal input resistor and selects a trimmed 20kΩ feedback resistor. Use an external input resistor to set the gain of the line input. 0 = Disabled 1 = Enabled
			Line Input A/B Internal Gain Settings
0x33/0x34	2		000 = +20dB
0,00,0,0,04			001 = +14dB
			010 = +3dB
	1	PGAINA/PGAINB	011 = 0dB
			100 = -3dB
			101 = -6dB
	0		110 = -6dB
			111 = -6dB
			Line Input A Differential Enable
	7	INADIFF	0 = Stereo single-ended input
0.45			1 = Mono differential input
UX45	0x45		Line Input B Differential Enable
	6	INBDIFF	0 = Stereo single-ended input
			1 = Mono differential input

Table 4. Line Input Registers

ADC Input Mixers

The device's stereo ADC accepts input from the microphone amplifiers and line inputs. The ADC mixer routes any combination of the six audio inputs to the left and right ADCs (Figure 9).

Figure 9. ADC Input Mixer Block Diagram

MAX9888

Table 5. ADC Input Mixer Register

REGISTER	BIT	NAME	DESCRIPTION
	7		Left/Right ADC Input Mixer
	6		Selects which analog inputs are recorded by the left/right ADC.
	5		1xxxxxx = MIC1 x1xxxxx = MIC2
0x22/0x23	4	MIXADL/MIXADR	x1xxxxx = Reserved
0x22/0x23	3	IVIIADL/IVIIADR	xxx1xxxx = Reserved
	2		xxxx1xxx = INA1 xxxxx1xx = INA2 (INADIFF = 0) or INA2 - INA1 (INADIFF = 1)
	1		xxxxx1xx = INA2 (INADIFF = 0) 01 INA2 - INAT (INADIFF = 1) xxxxxx1x = INB1
	0		xxxxxx1 = INB2 (INBDIFF = 0) or INB2 - INB1 (INBDIFF = 1)

Record Path Signal Processing

The device's record signal path includes both automatic gain control (AGC) for the microphone inputs and a digital noise gate at the output of the ADC (Figure 10).

Microphone AGC

The IC's AGC monitors the signal level at the output of the ADC and then adjusts the MIC1 and MIC2 analog PGA settings automatically. When the signal level is below the predefined threshold, the gain is increased up to its maximum (20dB). If the signal exceeds the threshold, the gain is reduced to prevent the output signal level exceeding the threshold. When AGC is enabled, the microphone PGA is not user programmable. The AGC provides a more constant signal level and improves the available ADC dynamic range.

Since the AGC increases the levels of all signals below a user-defined threshold, the noise floor is effectively increased by 20dB. To counteract this, the noise gate reduces the gain at low signal levels. Unlike typical noise gates that completely silence the output below a defined level, the noise gate in the IC applies downward expansion. The noise gate attenuates the output at a rate of 1dB for each 2dB the signal is below the threshold.

The noise gate can be used in conjunction with the AGC or on its own. When the AGC is enabled, the noise gate reduces the output level only when the AGC has set the gain to the maximum setting. Figure 11 shows the gain response resulting from using the AGC and noise gate.

Figure 10. Record Path Signal Processing Block Diagram

Figure 11. AGC and Noise Gate Input vs. Output Gain

Table 6. Record Path Signal Processing Registers

REGISTER	BIT	NAME	DESCRIPTION				
	7		Noise Gate Attenuation Reports the current noise gate attenuation. 000 = 0dB 001 = 1dB				
	6	NG	001 = 10B 010 = 2dB 011 = 3dB to 5dB 100 = 6dB to 7dB				
	5		101 = 8 dB to 9 dB 110 = 10 dB to 11 dB 111 = 12 dB				
			AGC Gain				
	4		Reports the current AGC gain setting.				
0x01			VALUE	GAIN (dB)	VALUE	GAIN (dB)	
			0x00	+20	0x0B	+9	
	3	AGC	0x01	+19	0x0C	+8	
			0x02	+18	0x0D	+7	
	2		0x03	+17	0x0E	+6	
			0x04	+16	0x0F	+5	
			0x05	+15	0x10	+4	
	1		0x06	+14	0x11	+3	
			0x07	+13	0x12	+2	
			0x08	+12	0x13	+1	
	0		0x09	+11	0x14 to 0x1F	0	
			0x0A	+10			
0x3D	7	AGCSRC	AGC/Noise Gate Signal Source Determines which ADC channel the AGC and noise gates analyze. Gain is adjusted on both channels regardless of the AGCSRC setting. 0 = Left ADC output 1 = Maximum of either the left or right ADC output				
	6		AGC Release Time Defined as the duration from start to finish of gain increase in the region shown in Figure 12. Release times are longer for low AGC threshold levels. 000 = 78ms				
	5	AGCRLS	001 = 156ms 010 = 312ms 011 = 625ms 100 = 1.25s				
	4		100 = 1.25s 101 = 2.5s 110 = 5s 111 = 10s				

MAX9888

Downloaded from: http://www.datasheetcatalog.com/

Table 6. Record Path Signal Processing Registers (continued)

REGISTER	BIT	NAME	DESCRIPTION					
0x3D	3	AGCATK	AGC Attack Time Defined as the time required to reduce gain by 63% of the total gain reduction (one time constant of the exponential response). Attack times are longer for low AGC threshold levels. See Figure 12 for details. 00 = 2ms 01 = 7.2ms 10 = 31ms 11 = 123ms					
	1	AGCHLD	AGC Hold Time The delay before the AGC release begins. The hold time counter starts whenever the signal drops below the AGC threshold and is reset by any signal that exceeds the threshold. Set AGCHLD to enable the AGC circuit. See Figure 12 for details.					
	0		00 = AGC disabled 01 = 50ms 10 = 100ms 11 = 400ms					
	7	ANTH	Noise Gate Threshold Gain is reduced for signals below the threshold to quiet noise. The thresholds are relative to the ADC's full-scale output voltage.					
	6		VALUE	THRESHOLD (dBFS)	VALUE	THRESHOLD (dBFS)		
			0x0	Noise gate disabled	0x8	-45		
			0x1	Reserved	0x9	-41		
			0x2	Reserved	0xA	-38		
	5		0x3	-64	0xB	-34		
			0x4	-62	0xC	-30		
	4		0x5	-58	0xD	-27		
			0x6	-53	0xE	-22		
0x3E			0x7	-50	0xF	-16		
	3		AGC Threshold Gain is reduced when signals exceed the threshold to prevent clipping. The thresholds are relative to the ADC's full-scale voltage.					
	2	AGCTH	VALUE	THRESHOLD (dBFS)	VALUE	THRESHOLD (dBFS)		
			0x0	-3	0x8	-11		
			0x1	-4	0x9	-12		
	1		0x2	-5	0xA	-13		
			0x3	-6	0xB	-14		
			0x4	-7	0xC	-15		
	0		0x5	-8	0xD	-16		
			0x6	-9	0xE	-17		
			0x7	-10	0xF	-18		

MAX9888

Figure 12. AGC Timing

ADC Record Level Control

The IC includes separate digital level control for the left and right ADC outputs (Figure 13). To optimize dynamic

range, use analog gain to adjust the signal level and set the digital level control to 0dB whenever possible. Digital level control is primarily used when adjusting the record level for digital microphones.

Figure 13. ADC Record Level Control Block Diagram

MAX9888

Table 7. ADC Record Level Control Register

REGISTER BIT NAME DESCRIPTION Left/Right ADC Gain 5 00 = 0 dB01 = 6dB AVLG/AVRG 10 = 12dB 4 11 = 18dB Left/Right ADC Level З VALUE GAIN (dB) VALUE GAIN (dB) 0x0 +3 0x8 -5 0x2F/0x30 2 +2 -6 0x1 0x9 -7 0x2 +1 0xA AVL/AVR 1 0x3 0 0xB -8 0x4 -1 0xC -9 0x5 -2 0xD -10 0 -3 0x6 0xE -11 0x7 -4 0xF -12

Sidetone

Enable sidetone during full-duplex operation to add a low-level copy of the recorded audio signal to the playback audio signal (Figure 14). Sidetone is commonly used in telephony to allow the speaker to hear himself speak, providing a more natural user experience. The IC implements sidetone digitally. Doing so helps prevent unwanted feedback into the playback signal path and better matches the playback audio signal.

Figure 14. Sidetone Block Diagram

68

REGISTER	BIT	NAME	DESCRIPTION				
	7	DSTS	Sidetone Source Selects which ADC output is fed back as sidetone. When mixing the left and right ADC outputs, each is attenuated by 6dB to prevent full-scale signals from clipping. 00 = Sidetone disabled 01 = Left ADC 10 = Right ADC 11 = Left + Right ADC				
	4		Sidetone Level Adjusts the sidetone signal level. All levels are referenced to the ADC's full-scale output.				
			VALUE	LEVEL (dB)	VALUE	LEVEL (dB)	
		DVST	0x00	Sidetone disabled	0x10	-30.5	
	3		0x01	-0.5	0x11	-32.5	
			0x02	-2.5	0x12	-34.5	
0x2A			0x03	-4.5	0x13	-36.5	
	2		0x04	-6.5	0x14	-38.5	
			0x05	-8.5	0x15	-40.5	
			0x06	-10.5	0x16	-42.5	
			0x07	-12.5	0x17	-44.5	
			0x08	-14.5	0x18	-46.5	
	1		0x09	-16.5	0x19	-48.5	
			0x0A	-18.5	0x1A	-50.5	
			0x0B	-20.5	0x1B	-52.5	
			0x0C	-22.5	0x1C	-54.5	
	0		0x0D	-24.5	0x1D	-56.6	
			0x0E	-26.5	0x1E	-58.5	
			0x0F	-28.5	0x1F	-60.5	

Table 8. Sidetone Register

Digital Audio Interfaces

The IC includes two separate playback signal paths and one record signal path. Digital audio interface 1 (DAI1) is used to transmit the recorded stereo audio signal and receive a stereo audio signal for playback. Digital audio interface 2 (DAI2) is used to receive a second stereo audio signal. Use DAI1 for all full-duplex operations and for all voice signals. Use DAI2 for music and to mix two playback audio signals. The digital audio interfaces are separate from the audio ports to enable either interface to communicate with any external device connected to the audio ports.

Each audio interface can be configured in a variety of formats including left justified, I²S, PCM, and time division multiplexed (TDM). TDM mode supports up to 4 mono audio slots in each frame. The IC can use up to

2 mono slots per interface, leaving the remaining two slots available for another device. Table 9 shows how to configure the device for common digital audio formats. Figures 16 and 17 show examples of common audio formats. By default, SDOUTS1 and SDOUTS2 are set high impedance when the IC is not outputting data to facilitate sharing the bus. Configure the interface in TDM mode using only slot 1 to transmit and receive mono PCM voice data.

The IC's digital audio interfaces support both ADC to DAC loop-through and digital loopback. Loop-through allows the signal converted by the ADC to be routed to the DAC for playback. The signal is routed from the record path to the playback path in the digital audio interface to allow the IC's full complement of digital signal processing to be used. Loopback allows digital

MAX9888

data input to either SDINS1 or SDINS2 to be routed from one interface to the other for output on SDOUTS2 or SDOUTS1. Both interfaces must be configured for the same sample rate, but the interface format need not be the same. This allows the IC to route audio data from one device to another, converting the data format as needed. Figure 15 shows the available digital signal routing options.

Figure 15. Digital Audio Signal Routing

Table 9. Common Digital Audio Formats

MODE	WCI1/WCI2	BCI1/BCI2	DLY1/DLY2	TDM1/TDM2	SLOTL1/SLOTL2	SLOTR1/SLOTR2
Left Justified	Set as desired	Set as desired	0	0	Х	Х
I ² S	1	0	1	0	Х	Х
PCM	Х	1	Х	1	0	0
TDM	Х	1	Х	1	Set as	desired

X = Don't care.

70

MAX9888

Table 10. Digital Audio Interface Registers

REGISTER	BIT	NAME	DESCRIPTION
nedisten	БП	INAME	DAI1/DAI2 Master Mode
	7	MAS1/MAS2	In master mode, DAI1/DAI2 outputs LRCLK and BCLK. In slave mode, DAI1/DAI2 accept LRCLK and BCLK as inputs. 0 = Slave mode 1 = Master mode
	6	WCI1/WCI2	DAI1/DAI2 Word Clock Invert TDM1/TDM2 = 0: 0 = Left-channel data is transmitted while LRCLK is low. 1 = Right-channel data is transmitted while LRCLK is low. TDM1/TDM2 = 1: Always set WCI = 0.
	5	BCI1/BCI2	 DAI1/DAI2 Bit Clock Invert BCI1/BCI2 must be set to 1 when TDM1/TDM2 = 1. 0 = SDIN is accepted on the rising edge of BCLK. SDOUT is valid on the rising edge of BCLK. 1 = SDIN is accepted on the falling edge of BCLK. SDOUT is valid on the falling edge of BCLK. Master Mode: 0 = LRCLK transitions on the falling edge of BCLK. 1 = LRCLK transitions on the rising edge of BCLK.
0x14/0x1C	4	DLY1/DLY2	 DAI1/DAI2 Data Delay DLY1/DLY2 has no effect when TDM1/TDM2 = 1. 0 = The most significant data bit is clocked on the first active BCLK edge after an LRCLK transition. 1 = The most significant data bit is clocked on the second active BCLK edge after an LRCLK transition.
	2	TDM1/TDM2	 DAI1/DAI2 Time-Division Multiplex Mode (TDM Mode) Set TDM1/TDM2 when communicating with devices that use a frame synchronization pulse on LRCLK instead of a square wave. 0 = Disabled 1 = Enabled (BCI1/BCI2 must be set to 1)
	1	FSW1/FSW2	DAI1/DAI2 Wide Frame Sync Pulse Increases the width of the frame sync pulse to the full data width when TDM1/TDM2 = 1. FSW1/FSW2 has no effect when TDM1/TDM2 = 0. 0 = Disabled 1 = Enabled
	0	WS1/WS2	DAI1/DAI2 Audio Data Bit Depth Determines the maximum bit depth of audio being transmitted and received. Data is always 16 bit when TDM1/TMD2 = 0. 0 = 16 bits 1 = 24 bits

MAX9888

Table 10. Digital Audio Interface Registers (continued)

REGISTER	BIT	NAME	DESCRIPTION	
0x15/0x1D	7	0054	ADC Oversampling Ratio Use the higher setting for maximum performance. Use the lower setting for reduced power consumption at the expense of performance.	
	6	OSR1	00 = 96x 01 = 64x 10 = Reserved 11 = Reserved	
	2	BSEL1/ BSEL2	DAI1/DAI2 BCLK Output Frequency When operating in master mode, BSEL1/BSEL2 set the frequency of BCLK. When operating in slave mode, BSEL1/BSEL2 have no effect. Select the lowest BCLK frequency that clocks all data input to the DAC and output by the ADC.	
	1		000 = BCLK disabled $001 = 64 \times LRCLK$ $010 = 48 \times LRCLK$ $011 = 128 \times LRCLK \text{ (invalid for DHF1/DHF2 = 1)}$	
	0		100 = PCLK/2 101 = PCLK/4 110 = PCLK/8 111 = PCLK/16	
0x16/0x1E	7		DAI1/DAI2 Audio Port Selector Selects which port is used by DAI1/DAI2. 00 = None	
	6	SEL1/SEL2	01 = Port S1 10 = Port S2 11 = Reserved	
	5	LTEN1	DAI1 Digital Loopthrough Connects the output of the record signal path to the input of the playback path. Da input to DAI1 from an external device is mixed with the recorded audio signal. 0 = Disabled 1 = Enabled	
	4	LBEN1/ LBEN2	 DAI1/DAI2 Digital Audio Interface Loopback LBEN1 routes the digital audio input to DAI1 back out on DAI2. LBEN2 routes the digital audio input to DAI2 back out on DAI1. Selecting LBEN2 disables the ADC output data. 0 = Disabled 1 = Enabled 	
	3	DMONO1/ DMONO2	 DAI1/DAI2 DAC Mono Mix Mixes the left and right digital input to mono and routes the combined signal to the left and right playback paths. The left and right input data is attenuated by 6dB prior to the mono mix. 0 = Disabled 1 = Enabled 	
Table 10. Digital Audio Interface Registers (continued)

REGISTER	BIT	NAME	DESCRIPTION
	2	HIZOFF1/ HIZOFF2	Disable DA1/DAI2 Output High-Impedance Mode Normally SDOUT is set high impedance between data words. Set HIZOFF1/HIZOFF2 to force a level on SDOUT at all times. 0 = Disabled 1 = Enabled
0x16/0x1E	1	SDOEN1/ SDOEN2	DAI1/DAI2 Record Path Output Enable DAI2 outputs data only if LBEN1 = 1. 0 = Disabled 1 = Enabled
	0	SDIEN1/ SDIEN2	DAI1/DAI2 Playback Path Input Enable 0 = Disabled 1 = Enabled
	7	SLOTL1/ SLOTL2 SLOTR1/	TDM Left Time Slot Selects which of the four slots is used for left data on DAI1/DAI2. If the same slot is selected for left and right audio, left audio is placed in the slot. 00 = Slot 1
	6		00 = Slot 1 01 = Slot 2 10 = Slot 3 11 = Slot 4
0x17/0x1F	5		TDM Right Time Slot Selects which of the four slots is used for right data on DAI1/DAI2. If the same slot is selected for left and right audio, left audio is placed in the slot. 00 = Slot 1
	4	SLOTR2	00 = Slot 1 01 = Slot 2 10 = Slot 3 11 = Slot 4
	3		TDM Slot Delay
	2	SLOTDLY1/	Adds 1 BCLK cycle delay to the data in the specified TDM slot. 1xxx = Slot 4 delayed
	1	SLOTDLY1/	xxx = Slot 4 delayed x1xx = Slot 3 delayed
	0		xx1x = Slot 2 delayed xxx1 = Slot 1 delayed

	WCI_=0, BCI_=0, DLY_=0, TDM_=0, FSW_=0, WS_=0, HIZOFF_=1, SL0TL_=0,	SLOTE =0		
LRCLK	LEFT		RIGHT	
SDOUT	XD15XD14XD13XD12XD11XD10XD9XD8XD7XD6XD5XD4XD3XD2XD1XD0X	XD15XD14XD13XD12XD11XD10XD9	(D8\D7\D6\D5\D4\D3\D2\D1\D0\	
BCLK				
SDIN		D15XD14XD13XD12XD11XD10XD9		
	WCI_ = 1, BCI_ = 0, DLY_ = 0, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0,	SLOTR_ = 0		
LRCLK	LEFT		RIGHT	
SDOUT	XD15/D14/D13/D12/D11/D10/D9/D8/D7/D6/D5/D4/D3/D2/D1/D0/	D15D14D13D12D11D10D9	(D8\D7\D6\D5\D4\D3\D2\D1\D0\	
BCLK				
SDIN	\	D15XD14XD13XD12XD11XD10XD9		
	$WCI_=0, BCI_=1, DLY_=0, TDM_=0, FSW_=0, WS_=0, HIZOFF_=1, SLOTL_=0, SLOTL=0, SLOTL_=0, SLOTL=0, \mathsf$	SLOTR_=0		
LRCLK	LEFT		RIGHT	
SDOUT	<u></u>	D15/D14/D13/D12/D11/D10/D9	(D8\D7\D6\D5\D4\D3\D2\D1\D0\	
BCLK			₹₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
SDIN		XD15XD14XD13XD12XD11XD10XD9		
	WCI_ = 0, BCI_ = 0, DLY_ = 1, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0,	SLOTR_=0		
LRCLK	LEFT		RIGHT	
SDOUT		XD15XD14XD13XD12XD11XD10	D9\D8\D7\D6\D5\D4\D3\D2\D1\D	10
BCLK				
SDIN		XD15XD14XD13XD12XD11XD10	(D9\D8\D7\D6\D5\D4\D3\D2\D1\D	10////

Figure 16. Non-TDM Data Format Examples

74

MAX9888

	WCI_=0, BCI_=1, DLY_=0, TDM_=1, FSW_=0, WS_=0, HIZOFF_=0, SLOTL_=0, SLOTL_=1
LRCLK	
SDOUT	
BCLK	
SDIN	<u> </u>
LRCLK	WCI_= 0, BCI_= 1, DLY_= 0, TDM_= 1, FSW_= 1, WS_= 0, HIZOFF_= 0, SLOTL_= 0, SLOTR_= 1
SDOUT	— HI-Z — (L15)(L14)(L13)(L12)(L11)(L10)(L9)(L8)(L7)(L6)(L5)(L4)(L3)(L2)(L1)(L0)(R15)(R14)(R13)(R12)(R11)(R10)(R9)(R8)(R7)(R6)(R5)(R4)(R3)(R2)(R1)(R0)HI-Z()
BCLK	
SDIN	XL15/L14/L13/L12/L11/L10/L9/L8/L7/L6/L5/L4/L3/L2/L1/L0/R15/R14/R13/R12/R11/R10/R9/R8/R7/R6/R5/R4/R3/R2/R1/R0/
	WCI_=0, BCI_=1, DLY_=0, TDM_=1, FSW_=0, WS_=0, HIZOFF_=1, SLOTL_=0, SLOTR_=1
LRCLK	
SDOUT	
BCLK	
SDIN	<u> </u>
	WCI_=0, BCI_=1, DLY_=0, TDM_=1, FSW_=0, WS_=0, HIZOFF_=0, SLOTL_=2, SLOTR_=3
LRCLK	
SDOUT	HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z
BCLK	
SDIN	XL15/L14/L13/L12/L11/L10/L9/L8/L7/L6/L5/L4/L3/L2/L1/L0/R15/R14/R13/R12/R11/R10/R9/R8/R7/R6/R5/R4/R3/R2/R1/R0/
	WCI_=0, BCI_=1, DLY_=0, TDM_=1, FSW_=0, WS_=0, HIZOFF_=0, SLOTL_=0, SLOTL_=1
LRCLK	16 CYCLES 16 CYCLES 16 CYCLES
SDOUT	-H-Z-(L)(L)(L)(L)(L)(L)(R)(R)(R)(R)(R)(R)(R)(R)(R)(R)(R)(R)(R)
SDOUT BCLK	

Figure 17. TDM Mode Data Format Examples

MAX9888

Clock Control

The digital signal paths in the IC require a master clock (MCLK) between 10MHz and 60MHz to function. Internally, the MAX9888 requires a clock between 10MHz and 20MHz. A prescaler divides MCLK by 1, 2, or 4 to create the internal clock (PCLK). PCLK is used to clock all portions of the IC.

The MAX9888 includes two digital audio signal paths, both capable of supporting any sample rate from 8kHz to 96kHz. Each path is independently configured to allow different sample rates. To accommodate a wide range of system architectures, three main clocking modes are supported:

• **PLL Mode:** When operating in slave mode, enable the PLL to lock onto any LRCLK input. This mode

requires the least configuration, but provides the lowest performance. Use this mode to simplify initial setup or when normal mode and exact integer mode cannot be used.

- Normal Mode: This mode uses a 15-bit clock divider to set the sample rate relative to PCLK. This allows high flexibility in both the PCLK and LRCLK frequencies and can be used in either master or slave mode.
- Exact Integer Mode (DAI1 only): In both master and slave modes, common MCLK frequencies (12MHz, 13MHz, 16MHz, and 19.2MHz) can be programmed to operate in exact integer mode for both 8kHz and 16kHz sample rates. In these modes, the MCLK and LRCLK rates are selected by using the FREQ1 bits instead of the NI, and PLL control bits.

REGISTER	BIT	NAME	DESCRIPTION					
0.410	5	PSCLK	MCLK Prescaler Generates PCLK, which is used by all internal circuitry. 00 = PCLK disabled					
0x10	4	FOULK	$\begin{array}{l} 01 = 10 MHz \leq MCLK \leq 20 MHz \mbox{ (PCLK} = MCLK) \\ 10 = 20 MHz \leq MCLK \leq 40 MHz \mbox{ (PCLK} = MCLK/2) \\ 11 = 40 MHz \leq MCLK \leq 60 MHz \mbox{ (PCLK} = MCLK/4) \end{array}$					
	7			Rate correctly set the dual-b lefined corner frequence		cy and the excursion		
	6	SR1/SR2	VALUE	SAMPLE RATE (kHz)	VALUE	SAMPLE RATE (kHz)		
			0x0	Reserved	0x8	48		
0x11/0x19			0x1	8	0x9	88.2		
	5		0x2	11.025	0xA	96		
	5		0x3	16	0xB	Reserved		
			0x4	22.05	0xC	Reserved		
			0x5	24	0xD	Reserved		
	4		0x6	32	0xE	Reserved		
			0x7	44.1	0xF	Reserved		

Table 11. Clock Control Registers

Table 11. Clock Control Registers (continued)

REGISTER	BIT	NAME		DESC	RIPTION			
			Exact Integer Mode Overrides PLL1 and N	II1 and configures a	specific PCLK to	LRCLK ratio.		
	3		VALUE	SAMPLE RATE	VALUE	SAMPLE RATE		
			0x0	Disabled	0x8	PCLK = 12MHz, LRCLK = 8kHz		
			0x1	Reserved	0x9	PCLK = 12MHz, LRCLK = 16kHz		
0.44	2		0x2	Reserved	0xA	PCLK = 13MHz, LRCLK = 8kHz		
0x11		FREQ1	0x3	Reserved	0xB	PCLK = 13MHz, LRCLK = 16kHz		
			0x4	Reserved	0xC	PCLK = 16MHz, LRCLK = 8kHz		
			0x5	Reserved	0xD	PCLK = 16MHz, LRCLK = 16kHz		
	1		0x6	Reserved	0xE	PCLK = 19.2MHz, LRCLK = 8kHz		
			0x7	Reserved		PCLK = 19.2MHz, LRCLK = 16kHz		
	7	PLL1/PLL2	PLL Mode Enable (Si PLL1/PLL2 enables a frequency and automa 0 = Disabled 1 = Enabled	digital PLL that locks		3 11		
0x12/0x1A	6 5 4		When PLL1/PLL2 = 0,	Normal Mode LRCLK Divider When PLL1/PLL2 = 0, the frequency of LRCLK is determir for common NI values.				
	3		SAMPLE RATE	DHF	1/DHF2	NI1/NI2 FORMULA		
	1	NI1/	8 kHz \leq LRCLK \leq 48	кНz	0	$NI = \frac{65536 \times 96 \times f_{LRCLK}}{f_{PCLK}}$		
	7 6 5	NI2	48kHz < LRCLK ≤ 96	48kHz < LRCLK ≤ 96kHz 1		$NI = \frac{65536 \times 48 \times f_{LRCLK}}{f_{PCLK}}$		
0x13/0x1B	4 3 2 1		f _{LRCLK} = LRCLK frequency fPCLK = Prescaled MCLK frequency (PCLK)					
	0	NI1[0]/NI2[0]	to enable rapid lock n adjusts NI1/NI2. When	node. Normally, the f n rapid lock mode is prrect value, thus spe	PLL automatically properly configu eeding up lock ti	NI2[0] when PLL1/PLL2 = 1 / calculates and dynamically red, the PLL starting point is me. Wait one LRCLK period		

LRCLK (kHz)												
DHF1/2 = 0										DHF1/2 = 1		
8	11.025	12	16	22.05	24	32	44.1	48	64	88.2	96	
13A9	1B18	1D7E	2752	3631	3AFB	4EA5	6C61	75F7	4EA5	6C61	75F7	
11E0	18A2	1ACF	23BF	3144	359F	477E	6287	6B3E	477E	6287	6B3E	
116A	1800	1A1F	22D4	3000	343F	45A9	6000	687D	45A9	6000	687D	
1062	1694	1893	20C5	2D29	3127	4189	5A51	624E	4189	5A51	624E	
1000	160D	1800	2000	2C1A	3000	4000	5833	6000	4000	5833	6000	
0F20	14D8	16AF	1E3F	29AF	2D5F	3C7F	535F	5ABE	3C7F	535F	5ABE	
0C4A	10EF	126F	1893	21DE	24DD	3127	43BD	49BA	3127	43BD	49BA	
0B9C	1000	116A	1738	2000	22D4	2E71	4000	45A9	2E71	4000	45A9	
0AAB	0EB3	1000	1555	1D66	2000	2AAB	3ACD	4000	2AAB	3ACD	4000	
09D5	0D8C	0EBF	13A9	1B18	1D7E	2752	3631	3AFB	2752	3631	3AFB	
	13A9 11E0 116A 1062 1000 0F20 0C4A 0B9C 0AAB	13A9 1B18 11E0 18A2 116A 1800 1062 1694 1000 160D 0F20 14D8 0C4A 10EF 0B9C 1000 0AAB 0EB3	13A91B181D7E11E018A21ACF11E018A21A1F1062169418931000160D18000F2014D816AF0C4A10EF126F0B9C1000116A0AAB0EB31000	811.025121613A91B181D7E275211E018A21ACF23BF116A18001A1F22D410621694189320C51000160D180020000F2014D816AF1E3F0C4A10EF126F18930B9C1000116A17380AAB0EB310001555	8 11.025 12 16 22.05 13A9 1B18 1D7E 2752 3631 11E0 18A2 1ACF 23BF 3144 11E0 18A2 1ACF 23BF 3144 116A 1800 1A1F 22D4 3000 1062 1694 1893 20C5 2D29 1000 160D 1800 2000 2C1A 0F20 14D8 16AF 1E3F 29AF 0C4A 10EF 126F 1893 21DE 0B9C 1000 116A 1738 2000 0AAB 0EB3 1000 1555 1D66	DHF1/2 = 0 8 11.025 12 16 22.05 24 13A9 1B18 1D7E 2752 3631 3AFB 11E0 18A2 1ACF 23BF 3144 359F 11E0 18A2 1ACF 22D4 3000 343F 1062 1694 1893 20C5 2D29 3127 1000 160D 1800 2000 2C1A 3000 0F20 14D8 16AF 1E3F 29AF 2D5F 0C4A 10EF 126F 1893 21DE 24DD 0B9C 1000 116A 1738 2000 22D4 0AAB 0EB3 1000 1555 1D66 2000	DHF1/2 = 0 8 11.025 12 16 22.05 24 32 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 11E0 18A2 1ACF 23BF 3144 359F 477E 116A 1800 1A1F 22D4 3000 343F 45A9 1062 1694 1893 20C5 2D29 3127 4189 1062 160D 1800 2000 2C1A 3000 4000 0F20 14D8 16AF 1E3F 29AF 2D5F 3C7F 0C4A 10EF 126F 1893 21DE 24DD 3127 0B9C 1000 116A 1738 2000 22D4 2E71 0AAB 0EB3 1000 1555 1D66 2000 2AAB	DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 116A 1800 1A1F 22D4 3000 343F 45A9 6000 1062 1694 1893 20C5 2D29 3127 4189 5A51 1000 160D 1800 2000 2C1A 3000 4000 5833 0F20 14D8 16AF 1E3F 29AF 2D5F 3C7F 535F 0C4A 10EF 126F 1893 21DE 24DD 3127 43BD 0B9C 1000 116A 1738 2000 22D4 2E71 4000 0AAB 0EB3 1000 1555 1D66 2000 2AAB 3ACD	DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 1000 160D 1800 2000 2C1A 3000 4000 5833 6000 0F20 14D8 16AF 1E3F 29AF 2D5F 3C7F 535F 5ABE 0C4A 10EF 126F 1893 21DE 24DD 3127 43BD 49BA 0B9C 1000 116A 1738 2000 22D4 2E71 4000 45A9 0AAB <td< th=""><th>DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 64 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 4EA5 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 477E 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 45A9 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 1062 160D 1800 2000 2C1A 3000 4000 5833 6000 4000 0F20 14D8 16AF 1E3F 29AF 2D5F 3C7F 535F 5ABE 3C7F 0C4A 10EF 126F 1893 21DE 24DD 3127 43BD 49BA 3127 0B9C 1000 116A <t< th=""><th>DHF1/2 = 0 DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 64 88.2 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 4EA5 6C61 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 477E 6287 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 45A9 6000 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1800 2000 2C1A 3000 4000 5833 6000 4000 5833 0F20 14D8 16AF 1E3F 29AF <td< th=""></td<></th></t<></th></td<>	DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 64 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 4EA5 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 477E 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 45A9 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 1062 160D 1800 2000 2C1A 3000 4000 5833 6000 4000 0F20 14D8 16AF 1E3F 29AF 2D5F 3C7F 535F 5ABE 3C7F 0C4A 10EF 126F 1893 21DE 24DD 3127 43BD 49BA 3127 0B9C 1000 116A <t< th=""><th>DHF1/2 = 0 DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 64 88.2 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 4EA5 6C61 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 477E 6287 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 45A9 6000 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1800 2000 2C1A 3000 4000 5833 6000 4000 5833 0F20 14D8 16AF 1E3F 29AF <td< th=""></td<></th></t<>	DHF1/2 = 0 DHF1/2 = 0 8 11.025 12 16 22.05 24 32 44.1 48 64 88.2 13A9 1B18 1D7E 2752 3631 3AFB 4EA5 6C61 75F7 4EA5 6C61 11E0 18A2 1ACF 23BF 3144 359F 477E 6287 6B3E 477E 6287 116A 1800 1A1F 22D4 3000 343F 45A9 6000 687D 45A9 6000 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1893 20C5 2D29 3127 4189 5A51 624E 4189 5A51 1062 1694 1800 2000 2C1A 3000 4000 5833 6000 4000 5833 0F20 14D8 16AF 1E3F 29AF <td< th=""></td<>	

Table 12. Common NI1/NI2 Values

MAX9888

Note: Values in bold are exact integers that provide maximum full-scale performance.

Passband Filtering

Each digital signal path in the IC includes options for defining the path bandwidth (Figure 18). The playback and record paths connected to DAI1 support both voice and music filtering while the playback path connected to DAI2 supports music filtering only.

The voice IIR filters provide greater than 70dB stopband attenuation at frequencies above fs/2 to reduce aliasing. Three selectable highpass filters eliminate unwanted low-frequency signals.

Use music mode when processing high-fidelity audio content. The music FIR filters reduce power consumption and are linear phase to maintain stereo imaging. An optional DC-blocking filter is available to eliminate unwanted DC offset.

In music mode, a second set of FIR filters are available to support sample rates greater than 50kHz. The filters can be independently selected for DAI1 and DAI2 and support both the playback and record audio paths.

Figure 18. Digital Passband Filtering Block Diagram

Table 13. Passband Filtering Registers

REGISTER	BIT	NAME	DESCRIPTION				
	7	MODE1	 DAI1 Passband Filtering Mode 0 = Voice filters 1 = Music filters (recommended for f_S > 24kHz) 				
	6		DAI1 ADC Highpass	s Filter Mode			
	5	AVFLT1	MODE1	AVFLT1			
		AVELII	0	See Table 14			
	4		1	Select a nonzero value to enable the DC-blocking filter			
0x18	3 DHF1		DAI1 High Sample Rate ModeSelects the sample rate range. $0 = 8kHz \le LRCLK \le 48kHz$ $1 = 48kHz \le LRCLK < 96kHz$				
	2		DAI1 DAC Highpass Filter Mode				
	1	DVFLT1	MODE1	DVFLT1			
			0	See Table 14			
	0		1	Select a nonzero value to enable the DC-blocking filter			
	3	DHF2	DAI2 High Sample ISelects the sample r0 = 8kHz ≤ LRCLK ≤1 = 48kHz < LRCLK	ate range. 5 48kHz			
0x20	0	DCB2	1 = 48kHz < LRCLK ≤ 96kHz				

MAX9888

Table 14. Voice Highpass Filters

Playback Path Signal Processing

The IC playback signal path includes automatic level control (ALC) and a 5-band parametric equalizer (EQ) (Figure 19). The DAI1 and DAI2 playback paths include separate ALCs controlled by a single set of registers. Two completely separate parametric EQs are included for the DAI1 and DAI2 playback paths.

Automatic Level Control

The automatic level control (ALC) circuit ensures maximum signal amplitude without producing audible clipping. This is accomplished by a variable gain stage that works on a sample by sample basis to increase the gain up to 12dB. A look-ahead circuit determines if the next sample exceeds full scale and reduces the gain so that the sample is exactly full scale.

A programmable low signal threshold determines the minimum signal amplitude that is amplified. Select a threshold that prevents the amplification of background noise. When the signal level drops below the low signal threshold, the ALC reduces the gain to 0dB until the signal increases above the threshold. Figure 20 shows an example of ALC input vs. output curves.

Figure 19. Playback Path Signal Processing Block Diagram

The ALC can optionally be configured in dual-band mode. In this mode, the input signal is filtered into two bands with a 5kHz center frequency. Each band is routed through independent ALCs and then summed together. In multiband mode, both bands use the same parameters.

Figure 20. ALC Input vs. Output Examples

Table 15. Automatic Level Control Registers

REGISTER	BIT	NAME	DESCR	RIPTION		
	7	ALCEN	ALC Enable Enables ALC on both the DAI1 and DAI2 playback paths. 0 = Disabled 1 = Enabled			
	6		ALC and Excursion Limiter Release Time Sets the release time for both the ALC and Excursion Limiter. See the <i>Excursion</i> <i>Limiter</i> section for Excursion Limiter release times. ALC release time is defined as the time required to adjust the gain from 12dB to 0dB.			
			VALUE	ALC RELEASE TIME (s)		
			000	8		
	5	ALCRLS	001	4		
	Ũ		010	2		
			011	1		
			100	0.5		
	4		101	0.25		
0x41			110	Reserved		
			111 Reserved			
	3	ALCMB	Multiband Enable Enables dual-band processing with a 5kHz center frequency. SR1 and SR2 must be configured properly to achieve the correct center frequency for each playback path. 0 = Single-band ALC 1 = Dual-band ALC			
	2		Low Signal Threshold Selects the minimum signal level to be boosted by the ALC. $000 = -\infty dB$ (low-signal threshold disabled)			
	1	ALCTH	001 = -12dB 010 = -18dB 011 = -24dB 100 = -30dB			
	0		101 = -36dB 110 = -42dB 111 = -48dB			

Parametric Equalizer

The parametric EQ contains five independent biquad filters with programmable gain, center frequency, and bandwidth. Each biquad filter has a gain range of ± 12 dB and a center frequency range from 20Hz to 20kHz. Use a filter Q less than that shown in Figure 21 to achieve ideal frequency responses. Setting a higher Q results in non-ideal frequency response. The biquad filters are series connected, allowing a total gain of ± 60 dB.

Figure 21. Maximum Recommended Filter Q vs. Frequency

Use the attenuator at the EQ's input to avoid clipping the signal. The attenuator can be programmed for fixed attenuation or dynamic attenuation based on signal level. If the dynamic EQ clip detection is enabled, the signal level from the EQ is fed back to the attenuator circuit to determine the amount of gain reduction necessary to avoid clipping. The MAX9888 EV kit software includes a graphic interface for generating the EQ coefficients. The coefficients are sample rate dependent and stored in registers 0x50 through 0xB3.

Table 16. EQ Registers

REGISTER	BIT	NAME	DESCRIPTION						
	4	EQCLP1/ EQCLP2	DAI1/DAI2 EQ Clip Detection Automatically controls the EQ attenuator to prevent clipping in the EQ. 0 = Enabled 1 = Disabled						
	3		Provides attenuation to p	DAI1/DAI2 EQ Attenuator Provides attenuation to prevent clipping in the EQ when full-scale signals are boost- ed. DVEQ1/DVEQ2 operates only when EQ1EN/EQ2EN = 1 and EQCLP1/EQCLP2 = 1					
0x2C/0x2E			VALUE	GAIN (dB)	VALUE	GAIN (dB)			
	2		0x0	0	0x8	-8			
		DVEQ1/DVEQ2	0x1	-1	0x9	-9			
	1		0x2	-2	0xA	-10			
			0x3	-3	0xB	-11			
			0x4	-4	0xC	-12			
			0x5	-5	0xD	-13			
	0		0x6	-6	0xE	-14			
			0x7	-7	0xF	-15			
	7	VS2EN	See the <i>Click-and-Pop Reduction</i> section.						
	6	VSEN							
0x47	5	ZDEN							
	1	EQ2EN	DAI2 EQ Enable 0 = Disabled 1 = Enabled						
	0	EQ1EN	DAI1 EQ Enable 0 = Disabled 1 = Enabled						

Playback Level Control

The IC includes separate digital level control for the DAI1 and DAI2 playback audio paths. The DAI1 signal path

allows boost when MODE1 = 0 and attenuation in any mode. The DAI2 signal path allows attenuation only.

Figure 22. Playback Level Control Block Diagram

Table 17. DAC Playback Level Control Register

REGISTER	BIT	NAME		DESCRIPTION					
	7	DV1M/DV2M	DAI1/DAI2 Mute 0 = Disabled 1 = Enabled						
	5			DAI1 Voice Mode Gain DV1G only applies when MODE1 = 0.					
	4	DV1G	00 = 00B 01 = 6dB 10 = 12dB 11 = 18dB						
0x2B/0x2D	3		DAI1/DAI2 Attenuation						
0,20,0,20			VALUE	GAIN (dB)	VALUE	GAIN (dB)			
			0x0	0	0x8	-8			
	2		0x1	-1	0x9	-9			
			0x2	-2	0xA	-10			
		DV1/DV2	0x3	-3	0xB	-11			
	1		0x4	-4	0xC	-12			
			0x5	-5	0xD	-13			
			0x6	-6	0xE	-14			
	0		0x7	-7	0xF	-15			

84

MAX9888

DAC Input Mixers

The IC's stereo DAC accepts input from two digital audio paths. The DAC mixer routes any audio path to the left and right DACs (Figure 23).

Figure 23. DAC Input Mixer Block Diagram

REGISTER	BIT	NAME	DESCRIPTION
	7		Left DAC Input Mixer
	6		1xxx = DAI1 left channel
	5	MIXDAL	$x_1x_x = DAI1$ right channel $xx_1x = DAI2$ left channel
0x21	4		xxx1 = DAI2 right channel
UXZI	3		Right DAC Input Mixer
	2	- MIXDAR	1xxx = DAI1 left channel
	1		$x_1x_x = DAl1$ right channel $xx_1x = DAl2$ left channel
	0		xxx1 = DAI2 right channel

Table	18.	DAC	Input	Mixer	Register
-------	-----	-----	-------	-------	----------

Preoutput Signal Path

The IC's preoutput mixer stage provides mixing and level adjustment for line input signals routed to the output amplifiers. Figure 24 shows a block diagram of the preoutput signal path. 9dB is added between the line input amplifiers and the output amplifiers to boost the 1VP-P maximum line input signal level to the 1VRMS maximum DAC signal level.

Figure 24. Preoutput Signal Path Block Diagram

Preoutput Mixer

The IC's output amplifiers each accept input from one of the three preoutput mixers. Configure each preoutput mixer to mix any combination of the four line input signals.

Table 19. Preoutput Mixer Registers

REGISTER	BIT	NAME	DESCRIPTION
	3		Preoutput Mixer 1
0x24/0x25/	2	MIXOUT1/	1xxx = INA1
0x26	1	MIXOUT2/ MIXOUT3	x1xx = INA2 (INADIFF = 0) or INA2 - INA1 (INADIFF = 1) xx1x = INB1
	0		xxx1 = INB2 (INBDIFF = 0) or INB2 - INB1 (INBDIFF = 1)

86

MAX9888

Preoutput PGA

The IC's preoutput PGAs allow line input signals to be attenuated to match DAC output signal levels. Use the 0dB setting for maximum performance.

REGISTER	BIT	NAME	DESCRIPTION					
			Preoutput PGA Lev	el				
	3		VALUE	GAIN (dB)	VALUE	GAIN (dB)		
	2		0x0	0	0x8	-15		
		2 PGAOUT1/ PGAOUT2/ PGAOUT3 0	0x1	-1	0x9	-17		
0x35/0x36/			0x2	-3	0xA	-19		
0x37	1		0x3	-5	0xB	-21		
			0x4	-7	0xC	-23		
			0x5	-9	0xD	Mute		
	0		0x6	-11	0xE	Mute		
			0x7	-13	0xF	Mute		

Table 20. Preoutput PGA Registers

Receiver Amplifier

The IC includes a single differential receiver amplifier. The receiver amplifier is designed to drive 32Ω receivers. In cases where a single transducer is used for the loudspeaker and receiver, use the SPKBYP switch to route the receiver amplifier output to the left speaker outputs.

Figure 25. Receiver Amplifier Block Diagram

Receiver Output Mixer

The IC's receiver amplifier accepts input from the stereo DAC and the line inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals, 9.5dB for 3 signals, or 12dB for 4 signals.

REGISTER	BIT	NAME	DESCRIPTION
	3		Receiver Output Mixer
000	2		1xxx = Left DAC
0x28	1	MIXREC	x1xx = Right DAC xx1x = Preoutput mixer 1
	0		xxx1 = Preoutput mixer 2

Table 21. Receiver Output Mixer Register

Receiver Output Volume

Table 22. Receiver Output Level Register

REGISTER	BIT	NAME		DESCR	IPTION	
	7	RECM	Receiver Output Mu 0 = Disabled 1 = Enabled	ite		
	4		Receiver Output Vo	lume Level	1	
	4		VALUE	VOLUME (dB)	VALUE	VOLUME (dB)
			0x00	-62	0x10	-10
	3		0x01	-58	0x11	-8
	3	RECVOL	0x02	-54	0x12	-6
			0x03	-50	0x13	-4
	2		0x04	-46	0x14	-2
0x3A			0x05	-42	0x15	0
			0x06	-38	0x16	+1
			0x07	-35	0x17	+2
			0x08	-32	0x18	+3
	1		0x09	-29	0x19	+4
			0x0A	-26	0x1A	+5
			0x0B	-23	0x1B	+6
			0x0C	-20	0x1C	+6.5
			0x0D	-17	0x1D	+7
	0		0x0E	-14	0x1E	+7.5
			0x0F	-12	0x1F	+8

Speaker Amplifiers

The IC integrates a stereo filterless Class D amplifier that offers much higher efficiency than Class AB without the typical disadvantages.

The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. In a Class D amplifier, the output transistors act as current steering switches and consume negligible additional power. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance, and quiescent current overhead.

The theoretical best efficiency of a linear amplifier is 78%, however, that efficiency is only exhibited at peak output power. Under normal operating levels (typical music reproduction levels), efficiency falls below 30%, whereas the IC's Class D amplifier still exhibits 80% efficiency under the same conditions.

Traditional Class D amplifiers require the use of external LC filters or shielding to meet EN55022B and FCC electromagnetic-interference (EMI) regulation standards. Maxim's patented active emissions limiting edge-rate control circuitry reduces EMI emissions (Figure 26).

Figure 26. EMI with 15cm of Speaker Cable

Figure 27. Speaker Amplifier Path Block Diagram

Speaker Output Mixers

The IC's speaker amplifiers accept input from the stereo DAC and the line inputs. Configure the mixer to mix any combination of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals, 9.5dB for 3 signals, or 12dB for four signals.

REGISTER	BIT	NAME	DESCRIPTION
	7		Left Speaker Output Mixer
	6	MIXSPL	1xxx = Left DAC
	5	IVIIASPL	x1xx = Right DAC xx1x = Reserved
0x29	4		xxx1 = Preoutput mixer 3
UX29	3		Right Speaker Output Mixer
	2	MIVEDD	1xxx = Left DAC
	1	MIXSPR	x1xx = Right DAC xx1x = Reserved
	0		xxx1 = Preoutput mixer 2

Table 23. Speaker Output Mixer Register

Speaker Output Volume

Table 24. Speaker Output Mixer Register

REGISTER	BIT	NAME	DESCRIPTION				
	7	SPLM/SPRM	Left/Right Speake 0 = Disabled 1 = Enabled	er Output Mute			
			Left/Right Speake	er Output Volume Leve	el		
	4		VALUE	VOLUME (dB)	VALUE	VOLUME (dB)	
	4		0x00	-64	0x10	-10	
			0x01	-59	0x11	-8	
			0x02	-55	0x12	-6	
	3	SPVOLL/SPVOLR	0x03	-50	0x13	-4	
			0x04	-46	0x14	-2	
0x3B/0x3C	2		0x05	-42	0x15	0	
			0x06	-38	0x16	+1	
			0x07	-35	0x17	+2	
			0x08	-32	0x18	+3	
	1		0x09	-29	0x19	+4	
			0x0A	-26	0x1A	+5	
			0x0B	-23	0x1B	+6	
			0x0C	-20	0x1C	+6.5	
	0		0x0D	-17	0x1D	+7	
			0x0E	-14	0x1E	+7.5	
			0x0F	-12	0x1F	+8	

Speaker Amplifier Signal Processing

The IC includes signal processing to improve the sound quality of the speaker output and protect transducers from damage. An excursion limiter dynamically adjusts the highpass corner frequency, while a power limiter and distortion limiter prevent the amplifier from outputting too much distortion or power. The excursion limiter is located in the DSP while the distortion limiter and power limiter control the analog volume control (Figure 28). All three limiters analyze the speaker amplifier's output signal to determine when to take action.

Excursion Limiter

The excursion limiter is a dynamic highpass filter that monitors the speaker outputs and increases the highpass corner frequency when the speaker amplifier's output exceeds a predefined threshold. The filter smoothly transitions between the high and low corner frequency to prevent unwanted artifacts. The filter can operate in four different modes:

- **Fixed Frequency Preset Mode.** The highpass corner frequency is fixed at the upper corner frequency and does not change with signal level.
- **Fixed Frequency Programmable Mode.** The highpass corner frequency is fixed to that specified by the programmable biquad filter.

- **Preset Dynamic Mode.** The highpass filter automatically slides between a preset upper and lower corner frequency based on output signal level.
- User Programmable Dynamic Mode. The highpass filter slides between a user-programmed biquad filter on the low side to a predefined corner frequency on the high side.

The transfer function for the user-programmable biquad is:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

The coefficients b₀, b₁, b₂, a₁, and a₂ are sample rate dependent and stored in registers 0xB4 through 0xC7. Store b₀, b₁, and b₂ as positive numbers. Store a₁ and a₂ as negated two's complement numbers. Separate filters can be stored for the DAI1 and DAI2 playback paths.

The MAX9888 EV kit software includes a graphic interface for generating the user-programmable biquad coefficients.

Note: Only change the excursion limiter settings when the signal path is disabled to prevent undesired artifacts.

Figure 28. Speaker Amplifier Signal Processing Block Diagram

Table 25. Excursion Limiter Registers

MAX9888

REGISTER	BIT	NAME	DESCRIPTION						
			Excursion Limiter Cor						
6	6		The excursion limiter ha	is limited sliding range a	and minimum corner freque	ncies. Liste	d below		
		-	are all the valid filter co			1	[
	5		LOWER CORNER FREQUENCY	UPPER CORNER FREQUENCY	MINIMUM BIQUAD CORNER FREQUENCY	DHPUCF	DHPLCF		
		DHPUCF	Excursion lin	niter disabled		000	00		
			400)Hz	_	001	00		
			600)Hz	_	010	00		
	4		800)Hz	_	011	00		
			1k	Hz	_	100	00		
0x3F			Programmable	e using biquad	100Hz	000	11		
0,01			200Hz	400Hz	_	001	01		
	4		400Hz	600Hz	_	010	10		
	1		400Hz	800Hz	_	011	10		
			Programmable using biquad	400Hz	200Hz	001	11		
		- DHPLCF	Programmable using biquad	600Hz	300Hz	010	11		
	0		Programmable using biquad	800Hz	400Hz	011	11		
			Programmable using biquad	1kHz	500Hz	100	11		
	6		section for ALC release	r both the ALC and Exc	ursion Limiter. See the Auto release time is defined as corner frequency				
				LUE	EXCURSION LIMITER	RELEASE	TIME (s)		
				00	4		(0)		
0x41		ALCRLS	001		2				
0x4 I	5	ALCRES	010		1				
			010		0.5				
		1	100		0.25				
			101		0.25				
	4			10	Reserved				
			111		Reserved				
			Excursion Limiter Three		10001	100			
	3		Measured at the Class	D speaker amplifier outp	outs. Signals above the thre	shold use t	he upper		
			corner frequency. Signals below the threshold use the lower corner frequency. VBAT must						
			correctly reflect the voltage of SPKLVDD to achieve accurate thresholds.						
	2		000 = 0.34VP 001 = 0.71VP						
0x40		DHPTH	001 = 0.71VP 010 = 1.30VP						
	1		010 = 1.00 VP 011 = 1.77 VP						
		-	100 = 2.33V _P						
	6		101 = 3.25V _P						
	0		110 = 4.25VP						
			$111 = 4.95 V_P$						

92

Power Limiter

The IC's power limiter tracks the RMS power delivered to the loudspeaker and briefly mutes the speaker amplifier output if the speaker is at risk of sustaining permanent damage.

Loudspeakers are typically damaged when the voice coil overheats due to extended operation above the rated power. During normal operation, heat generated in the voice coil is transferred to the speaker's magnet, which transfers heat to the surrounding air. For the voice coil to overheat, both the voice coil and the magnet must overheat. The result is that a loudspeaker can operate above its rated power for a significant time before it heats sufficiently to cause damage. The IC's power limiter includes user-programmable time constants and power thresholds to match a wide range of loudspeakers. Program the power limiter's threshold to match the loudspeaker's rated power handling. This can be determined through measurement or the loudspeaker's specification. Program time constant 1 to match the voice coil's thermal time constant. Program time constant 2 to match the magnet's thermal time constant. The time constants can be determined by plotting the voice coil's resistance vs. time as power is applied to the speaker.

REGISTER	BIT	NAME		DESCRIPTIO	N	
	7		put is briefly muted to p	r from the speaker amplifi rotect the speaker. The th nust correctly reflect the	ireshold is measu	red in watts assun
			VALUE	THRESHOLD (W)	VALUE	THRESHOLD (W)
	6	PWRTH	0x0	Power limiter disabled	0x8	0.27
			0x1	0.05	0x9	0.35
			0x2	0.06	0xA	0.48
	5	2	0x3	0.09	0xB	0.72
			0x4	0.11	0xC	1.00
			0x5	0.13	0xD	1.43
0x42	4		0x6	0.18	0xE	1.57
			0x7	0.22	0xF	1.80
	2		Power Limiter Weightin Determines the balance each time constant in th	between time constant 1	and 2 to match th	ne dominance of
			VALUE	T1 (%)		T2 (%)
			000	50		50
	1		001	62.5		37.5
		PWRK	010	75		25
			011	87.5		12.5
			100	100		0
	0		101	12.5		87.5
			110	25		75
			111	37.5		62.5
REGISTER	BIT	NAME		DESCRIPTIO	N	

Table 26. Power Limiter Registers

Table 26. Power Limiter Registers (continued)

	7		Power Limiter Tim Select a value that	e Constant 2 matches the thermal time	e constant of the loud	lspeaker's magnet.
			VALUE	TIME CONSTANT (min)	VALUE	TIME CONSTANT (min)
	6		0x0	Disabled	0x8	3.75
		PWRT2	0x1	0.50	0x9	5.00
		PWRIZ	0x2	0.67	0xA	6.66
	5		0x3	0.89	0xB	8.88
			0x4	1.19	0xC	Reserved
			0x5	1.58	0xD	Reserved
	4		0x6	2.11	0xE	Reserved
0.40			0x7	2.81	0xF	Reserved
0x43	3		Power Limiter Tim Select a value that	e Constant 1 matches the thermal time	e constant of the loud	lspeaker's voice coil.
			VALUE	TIME CONSTANT (s)	VALUE	TIME CONSTANT (s)
	2		0x0	Disabled	0x8	3.75
			0.1	0.50	0.0	
			0x1	0.50	0x9	5.00
		PWRT1	0x1	0.50	0x9 0xA	5.00 6.66
	1	PWRT1	-			
	1	PWRT1	0x2	0.67	0xA	6.66
	1	PWRT1	0x2 0x3	0.67 0.89	0xA 0xB	6.66 8.88
	1	PWRT1	0x2 0x3 0x4	0.67 0.89 1.19	0xA 0xB 0xC	6.66 8.88 Reserved

Distortion Limiter

The IC's distortion limiter ensures that the speaker amplifier's output does not exceed the programmed THD+N limit. The distortion limiter analyzes the Class D output duty cycle to determine the percentage of the waveform that is clipped. If the distortion exceeds the programmed threshold, the output gain is reduced.

MAX9888

REGISTER	BIT	NAME		DESCRIPTION				
	7		Distortion Limit Measured in % THD+N.					
	6		VALUE	THD+N LIMIT (%)	VALUE	THD+N LIMIT (%)		
	0		0x0	Limiter disabled	0x8	12		
			0x1	< 1	0x9	14		
	5	THDCLP	0x2	1	0xA	16		
			0x3	2	0xB	18		
			0x4	4	0xC	20		
	4		0x5	6	0xD	21		
			0x6	8	0xE	22		
0x44			0x7	10	0xF	24		
	2	THDT1	Duration of time red	Release Time Constant quired for the speaker amp a large signal has passed		to adjust back to the		
	1		001 = 3.1s 010 = 1.6s 011 = 815ms					
	0		100 = 419ms 101 = 223ms 110 = 116ms 111 = 76ms					

Table 27. Distortion Limiter Registers

Headphone Amplifier

The IC's headphone amplifier integrates Maxim's DirectDrive architecture to eliminate the need for large DC-blocking capacitors. Traditional single-supply headphone amplifiers have outputs biased at a nominal DC voltage (typically half the supply). Large coupling capacitors are needed to block this DC bias from the headphone. Without these capacitors, a significant amount of DC current flows to the headphone, resulting in unnecessary power dissipation and possible damage to both the headphone amplifier.

The DirectDrive architecture uses a charge pump to create an internal negative supply voltage. This allows the IC's headphone outputs to be biased at GND while operating from a single supply (Figure 29). Without a DC component, there is no need for the large DC-blocking capacitors. Instead of two large (220μ F, typ) capacitors, the IC charge pump requires two small ceramic capacitors, conserving board space, reducing cost, and

improving the frequency response of the headphone amplifier. There is a low DC voltage on the amplifier outputs due to amplifier offset. However, the offset of the IC is typically ± 0.2 mV, which, when combined with a 32 Ω load, results in less than 6µA of DC current flow to the headphones.

In addition to the cost and size disadvantages of the DC-blocking capacitors required by conventional headphone amplifiers, these capacitors limit the amplifier's low-frequency response and can distort the audio signal. The DC-blocking capacitor not only blocks DC, but also low-frequency audio. Improving the low-frequency response of a conventional headphone amplifier requires increasing the capacitor size, further adding to the cost and size of the solution. Due to the voltage coefficient of the capacitors used for DC blocking, they introduce significant distortion near the corner frequency of the highpass filter they create. This distortion further degrades the low-frequency audio quality.

MAX988

Alternative approaches to eliminating the output-coupling capacitors involve biasing the headphone return (sleeve) to the DC bias voltage of the headphone amplifiers. This method raises some issues:

- The sleeve is typically grounded to the chassis. Using the midrail biasing approach, the sleeve must be isolated from system ground, complicating product design.
- During an ESD strike, the amplifier's ESD structures are the only path to system ground. Thus, the amplifier must be able to withstand the full energy from an ESD strike.
- When using the headphone jack as a line out to other equipment, the bias voltage on the sleeve may conflict with the ground potential from other equipment, resulting in possible damage to the amplifiers.

The IC features a low-noise charge pump to generate a negative supply for the headphone amplifier. The nominal switching frequency is well beyond the audio range, and thus does not interfere with audio signals. The switch drivers feature a controlled switching speed that minimizes noise generated by turn-on and turn-off transients. By limiting the switching speed of the charge pump, the di/dt noise caused by the parasitic trace inductance is minimized. The charge pump is active only in headphone modes.

To reduce audible noise at the outputs, the IC's headphone amplifier includes headphone ground sensing. Connect the sense line (HPSNS) to the ground terminal of the device's headphone jack. Any noise present at the headphone ground is then added to the headphone output. The result is elimination of this noise from the audible output. If ground sensing is not required, connect HPSNS directly to ground. Figure 30 shows a block diagram of the headphone output section including the headphone sense function.

Headphone Output Mixers

The IC's headphone amplifier accepts input from the stereo DAC and the line inputs. The output of the left and right DAC cannot be mixed at the headphone mixer. Use MIXDAL/MIXDAR to mix the left and right audio channels before conversion.

Figure 29. Traditional Amplifier Output vs. DirectDrive Output

Figure 30. Headphone Amplifier Block Diagram

Table 28. Headphone Output Mixer Register

REGISTER	BIT	NAME	DESCRIPTION
	7	-	Left Headphone Output Mixer
	6		10xx = Left DAC 01xx = Right DAC (requires DALEN = 0 for proper operation)
	5	MIXHPL	11xx = Left DAC
007	4		xx1x = Reserved xxx1 = Preoutput mixer 1
0x27	3		Right Headphone Output Mixer
	2		10xx = Left DAC (requires DAREN = 0 for proper operation) 01xx = Right DAC
	1	MIXHPR	11xx = Right DAC
	0		xx1x = Reserved xxx1 = Preoutput mixer 2

Headphone Output Volume

Table 29. Headphone Output Level Register

REGISTER	BIT	NAME	DESCRIPTION			
	7	HPLM/HPRM	Headphone Outpu 0 = Disabled 1 = Enabled	ut Mute		
			Left/Right Headph	one Output Volume	Level	-
			VALUE	VOLUME (dB)	VALUE	VOLUME (dB)
	4		0x00	-67	0x10	-15
			0x01	-63	0x11	-13
			0x02	-59	0x12	-11
	3		0x03	-55	0x13	-9
		HPVOLL/HPVOLR	0x04	-51	0x14	-7
0x38/0x39			0x05	-47	0x15	-5
			0x06	-43	0x16	-4
			0x07	-40	0x17	-3
	2		0x08	-37	0x18	-2
			0x09	-34	0x19	-1
			0x0A	-31	0x1A	0
	1		0x0B	-28	0x1B	+1
			0x0C	-25	0x1C	+1.5
			0x0D	-22	0x1D	+2
	0		0x0E	-19	0x1E	+2.5
			0x0F	-17	0x1F	+3

MAX9888

Output Bypass Switches

The IC includes two output bypass switches that solve common applications problems. When a single transducer is used for the loudspeaker and receiver, the need exists for two amplifiers to power the same transducer. Bypass switches connect the IC's receiver amplifier output to the speaker amplifier's output, allowing either amplifier to power the same transducer. In systems where an external receiver amplifier is used, route its output to the left speaker through RECP/RXINP and RECN/RXINN, bypassing the Class D amplifier. In systems where an external amplifier drives both the receiver and the IC's line input, one of the differential signals can be disconnected from the receiver when not needed by passing it through the analog switch that connects RECP/RXINP to RECN/RXINN.

Figure 31. Output Bypass Switch Block Diagrams

REGISTER	BIT	NAME	DESCRIPTION
	7	INABYP	See the Migraphane Innute costion
	4	MIC2BYP	See the Microphone Inputs section.
0x48 RECBYP RXINP to RXINN Bypass Switch Shorts RXINP to RXINN allowing a signal to pass through the MAX988 receiver amplifier when RECBYP = 1. 0 = Disabled 1 = Enabled		Shorts RXINP to RXINN allowing a signal to pass through the MAX9888. Disable the receiver amplifier when RECBYP = 1. 0 = Disabled	
	0	SPKBYP	RXIN to SPKL Bypass Switch Shorts RXINP/RXINN to SPKLP/SPKLN allowing either the internal or an external receiver amplifier to power the left speaker. Disable the left speaker amplifier when SPKBYP = 1. 0 = Disabled 1 = Enabled

Table 30. Output Bypass Switches Register

98

Click-and-Pop Reduction

The IC includes extensive click-and-pop reduction circuitry. The circuitry minimizes clicks and pops at turn-on, turn-off, and during volume changes.

Zero-crossing detection is implemented on all analog PGAs and volume controls to prevent large glitches when volume changes are made. Instead of making a volume change immediately, the change is made when the audio signal crosses the midpoint. If no zero-crossing occurs within the timeout window, the change is forced.

Volume slewing breaks up large volume changes into the smallest available step size and the steps through each step between the initial and final volume setting. When enabled, volume slewing also occurs at device turn-on and turn-off. During turn-on the volume is set to mute before the output is enabled. Once the output is on, the volume ramps to the desired level. At turn-off the volume is ramped to mute before the outputs are disabled.

When there is no audio signal zero-crossing detection can prevent volume slewing from occurring. Enable enhanced volume slewing to prevent the volume controller from requesting another volume level until the previous one has been set. Each step in the volume ramp then occurs after a zero crossing has occurred in the audio signal or the timeout window has expired. During turn-off, enhance volume slewing is always disabled.

REGISTER	BIT	NAME	DESCRIPTION		
	7	VS2EN	 Enhanced Volume Smoothing During volume slewing, the controller waits for each step in the ramp to be applied before sending the next step. When zero-crossing detection is enabled this prevents large steps in the output volume when no zero crossings are detected. 0 = Enabled 1 = Disabled Applies to volume changes in HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR. 		
0x49	6	VSEN	Volume Adjustment SmoothingVolume changes are smoothed by stepping through intermediate steps. Also rampsthe volume from minimum to the programmed value at turn-on and back to minimum atturn-off.0 = Enabled1 = DisabledApplies to volume changes in HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR.		
	5	ZDEN	Zero-Crossing DetectionHolds volume changes until there is a zero crossing in the audio signal. This reducesclick and pop during volume changes (zipper noise). If no zero crossing is detectedwithin 100ms, the volume change is forced.0 = Enabled1 = DisabledApplies to volume changes in PGAM1, PGAM2, PGAOUTA, PGAOUTB, PGAOUTC,HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR.		
	1	EQ2EN	See the 5-Band Parametric EQ section.		
	0	EQ1EN	See the <i>S-Banu Parametric EQ</i> section.		

Table 31. Click-and-Pop Reduction Register

AAX9888

Jack Detection

The IC features jack detection that can detect the insertion and removal of a jack as well as the load type. When a jack is detected, an interrupt on \overline{IRQ} can be triggered to alert the microcontroller of the event. Figure 32 shows the typical configuration for jack detection.

Jack Insertion

To detect a jack insertion, the IC must have a power supply and MICBIAS should be disabled. Set JDETEN to enable jack detection circuitry and apply a pullup current to JACKSNS. Set JDWK to minimize supply current. Clear JDWK to differentiate between headsets with a microphone and headphones without a microphone. The voltage on JACKSNS is equal to SPKLVDD as long as no load is applied to JACKSNS. Table 32 shows the change in JKSNS that occurs when a jack is inserted.

Accessory Button Detection

After jack insertion, the MAX9888 can detect button presses on accessories that include a microphone and a switch that shorts the microphone signal to ground. Set JDETEN to enable jack detection circuitry. A pullup current is automatically applied to JACKSNS if MICBIAS is disabled. Clear JDWK to allow differentiation between the microphone load and a short to ground. Button presses can be detected both when MICBIAS is enabled and disabled. Table 33 shows the change in JKSNS that occurs when the accessory button is pressed.

Figure 32. Typical Configuration for Jack Detection

Table 32. Change in JKSNS Upon Jack Insertion

JACK TYPE	JDWK = 1	JDWK = 0
GND GND R L	JKSNS: 11 → 00	JKSNS: 11 → 00
MIC GND R L	JKSNS: 11 → 00	JKSNS: 11 ➔ 01

Table 33. Change in JKSNS Upon Button Press

JACK TYPE	MICBIAS ENABLED OR DISABLED
MIC GND R L	JKSNS: 01 ➔ 00

Jack Removal

The IC detects jack removal by monitoring JACKSNS for transitions to the 11 state. Set JDETEN to enable jack detection circuitry. A pullup current is automatically

applied to JACKSNS if MICBIAS is disabled. Set JDWK to minimize supply current if button detection is not required. Table 34 shows the change in JKSNS that occurs when a jack is removed.

Table 34. Change in JKSNS Upon Jack Removal

JACK TYPE	JDWK = 1 AND MICBIAS DISABLED	JDWK = 0 OR MICBIAS ENABLED	
GND GND R L	JKSNS: 00 → 11	JKSNS: 00 → 11	
MIC GND R L	JKSNS: 00 → 11	JKSNS: 01 → 11	

Table 35. Jack Detection Registers

REGISTER	BIT	NAME	DESCRIPTION			
			JACKSNS State Reports the status of JACKSNS when JDETEN = 1.			
	7		VALUE	MODE	DESCRIPTION	
			00	MBEN = 1	VJACKSNS < 0.1 × VMICBIAS	
000			00	MBEN = 0	VJACKSNS < 0.1 × VSPKLVDD	
0x02 (Read Only)		JKSNS	01	MBEN = 1	0.1 x VMICBIAS < VJACKSNS < 0.95 x VMICBIAS	
(nead only)			01	MBEN = 0	0.1 x Vspklvdd < Vjacksns < 0.95 x Vspklvdd	
			10	MBEN = 1	Reserved	
	6		10	MBEN = 0	Reserved	
			11	MBEN = 1	0.95 x VMICBIAS < VJACKSNS	
				MBEN = 0	0.95 x V _{SPKLVDD} < VJACKSNS	
	7	JDETEN	Jack Detection 0 = Disabled 1 = Enabled			
0x49	1	12 5 2	Jack Detection Debounce Configures the debounce time for setting JDET. 00 = 25ms			
	0	JDEB	01 = 50ms 10 = 100ms 11 = 200ms			
	7	SHDN	See the Power I	<i>Management</i> secti	on.	
	6	VBATEN	See the Battery	Measurement sec	tion.	
0x4C	1	JDWK	JDETEN = 1 to Valid when MBI $0 = 2.4k\Omega$ to SP	1 JACKSNS is slov prevent false dete AS = 0 or SHDN =	0. crophone detection)	

Battery Measurement

The IC measures the voltage applied to SPKLVDD (typically the battery voltage) and reports the value in register 0x03. This value is also used by the speaker limiter circuitry to set accurate thresholds. When the battery measurement function is disabled, the battery voltage is user programmable.

Table 36. Battery Measurement Registers

REGISTER	BIT	NAME	DESCRIPTION	
	4		Battery Voltage	
	3		Read VBAT when $V_{BATEN} = 1$ to determine $V_{SPKLVDD}$. Program VBAT when V_{BATEN}	
0x03	2	VBAT	= 0 to allow proper speaker amplifier signal processing. Calculate the battery voltage	
	1		using the following formula:	
	0	-	$V_{BATTERY} = 2.55V + [VBAT/10]$	
	7	SHDN	See the Power Management section.	
	6	6 VBATEN	Battery Measurement Enable	
0x4C			Enables an internal ADC to measure VSPKLVDD.	
0,40	0		0 = Disabled (register 0x03 readable and writeable)	
			1 = Enabled (register 0x03 read only)	
	1	JDWK	See the Headset Detection section.	

Device Status

The IC uses register 0x00 and \overline{IRQ} to report the status of various device functions. The status register bits are set when their respective events occur, and cleared upon reading the register. Device status can be determined

either by poling register 0x00 or configuring the \overline{IRQ} to pull low when specific events occur. \overline{IRQ} is an opendrain output that requires a pullup resistor for proper operation. Register 0x0F determines which bits in the status register trigger \overline{IRQ} to pull low.

Table 37.	Status	and	Interrupt	Registers
-----------	--------	-----	-----------	-----------

REGISTER	BIT	NAME	DESCRIPTION
	7	CLD	 Full Scale 0 = All digital signals are less than full scale. 1 = The DAC or ADC signal path has reached or exceeded full scale. This typically indicates clipping.
0x00 (Read Only)	6	SLD	 Volume Slew Complete SLD reports that any of the programmable-gain arrays or volume controllers has completed slewing from a previous setting to a new programmed setting. If multiple gain arrays or volume controllers are changed at the same time, the SLD flag is set after the last volume slew completes. SLD also reports when the digital audio interface soft-start or soft-stop process has completed. MCLK is required for proper SLD operation. 0 = No volume slewing sequences have completed since the status register was last read. 1 = Volume slewing complete.
	5	ULK	Digital Audio Interface Unlocked 0 = Both digital audio interfaces are operating normally. 1 = Either digital audio interface is configured incorrectly or receiving invalid data.
	1	JDET	Jack Configuration Change JDET reports changes to any bit in the Jack Status register (0x02). Changes to the Jack Status bits are debounced before setting JDET. The debounce period is programmable using the JDEB bits. JDET is always set the first time JDETEN or SHDN is set the first time power is applied to the IC. Read the status register following such an event to clear JDET and allow for proper jack detection. 0 = No change in jack configuration. 1 = Jack configuration has changed.
	7	ICLD	Full-Scale Interrupt Enable 0 = Disabled 1 = Enabled
0.05	6	ISLD	Volume Slew Complete Interrupt Enable 0 = Disabled 1 = Enabled
0x0F	5	IULK	Digital Audio Interface Unlocked Interrupt Enable 0 = Disabled 1 = Enabled
	1	IJDET	Jack Configuration Change Interrupt Enable 0 = Disabled 1 = Enabled

Device Revision

Table 38. Device Revision Register

REGISTER	BIT	NAME	DESCRIPTION
	7		
	6		
	5		
0xFF	4	REV	Device Revision Code
(Read Only)	3	nev	REV is always set to 0x43.
	2		
	1		
	0		

I²C Serial Interface

The IC features an I²C/SMBus[™]-compatible, 2-wire serial interface comprising a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 400kHz. Figure 5 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the IC by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the IC is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the IC transmits the proper slave address followed by a series of nine SCL pulses. The IC transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START or REPEATED START condition, a not acknowledge, and a STOP condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500Ω , is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500 Ω , is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the IC from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the *START and STOP Conditions* section).

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 33). A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

Early STOP Conditions

The IC recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

Figure 33. START, STOP, and REPEATED START Conditions SMBus is a trademark of Intel Corp.

Slave Address

The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the IC, the seven most significant bits are 0010000. Setting the read/write bit to 1 (slave address = 0x21) configures the IC for read mode. Setting the read/write bit to 0 (slave address = 0x20) configures the IC for write mode. The address is the first byte of information sent to the IC after the START condition.

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the IC uses to handshake receipt each byte of data when in write mode (Figure 34). The IC pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device

is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master retries communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the IC is in read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not acknowledge is sent when the master reads the final byte of data from the IC, followed by a STOP condition.

Write Data Format

A write to the IC includes transmission of a START condition, the slave address with the R/W bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 35 illustrates the proper frame format for writing one byte of data to the IC. Figure 35 illustrates the frame format for writing n-bytes of data to the IC.

Figure 34. Acknowledge

Figure 35. Writing One Byte of Data to the IC

Figure 36. Writing n-Bytes of Data to the IC

The slave address with the R/W bit set to 0 indicates that the master intends to write data to the IC. The IC acknowledges receipt of the address byte during the master-generated 9th SCL pulse.

The second byte transmitted from the master configures the IC's internal register address pointer. The pointer tells the IC where to write the next byte of data. An acknowledge pulse is sent by the IC upon receipt of the address pointer data.

The third byte sent to the IC contains the data that is written to the chosen register. An acknowledge pulse from the IC signals receipt of the data byte. The address pointer autoincrements to the next register address after each received data byte. This autoincrement feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition. Register addresses greater than 0xC7 are reserved. Do not write to these addresses.

Read Data Format Send the slave address with the R/W bit set to 1 to initiate a read operation. The IC acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00.

The first byte transmitted from the IC is the content of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer autoincrements after each read data byte. This autoincrement feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read is from register 0x00.

The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the IC's slave address with the R/W bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R/W bit set to 1. The IC then transmits the contents of the specified register. The address pointer autoincrements after transmitting the first byte.

The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 37 illustrates the frame format for reading one byte from the IC. Figure 38 illustrates the frame format for reading multiple bytes from the IC.

Figure 37. Reading One Byte of Data from the IC

Figure 38. Reading n Bytes of Data from the IC

Applications Information

Typical Operating Circuits

Figures 39 and 40 provide example operating circuits for the IC. The external components shown are the minimum

required for the IC to operate. Additional components may be required by the application.

Analog Microphones and Bypass Switch

MAX9888

Figure 39. Typical Application Circuit Using Analog Microphone Inputs and the Bypass Switch

Digital Microphones and Receiver Amplifier

Figure 40. Typical Application Circuit Using the Digital Microphone Input and Receiver Amplifier

108

MAX9888

M/IXI/M

Filterless Class D Operation

Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier's output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency and THD+N performance. The traditional PWM scheme uses large differential output swings (2 x VDD peak to peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency.

The IC does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output. Eliminating the output filter results in a smaller, less costly, more efficient solution.

Because the frequency of the IC output is well beyond the bandwidth of most speakers, voice coil movement due to the square-wave frequency is very small. Although this movement is small, a speaker not designed to handle the additional power can be damaged. For optimum results, use a speaker with a series inductance > 10µH. Typical 8Ω speakers exhibit series inductances in the 20µH to 100µH range.

RF Susceptibility

GSM radios transmit using time-division multiple access (TDMA) with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers. The IC is designed specifically to reject RF signals; however, PCB layout has a large impact on the susceptibility of the end product. In RF applications, improvements to both layout and component selection decrease the IC's susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Trace lengths should be kept below 1/4 of the wavelength of the RF frequency of interest. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the IC. The wavelength (λ) in meters is given by: $\lambda = c/f$ where $c = 3 \times 10^8$ m/s, and f = the RF frequency of interest.

Route audio signals on middle layers of the PCB to allow ground planes above and below to shield them from RF interference. Ideally, the top and bottom layers of the PCB should primarily be ground planes to create effective shielding.

Additional RF immunity can also be obtained by relying on the self-resonant frequency of capacitors as it exhibits a frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self resonance at the RF frequencies of interest. These capacitors, when placed at the input pins, can effectively shunt the RF noise to ground. For these capacitors to be effective, they must have a lowimpedance, low-inductance path to the ground plane. Avoid using microvias to connect to the ground plane whenever possible as these vias do not conduct well at RF frequencies.

Startup/Shutdown Sequencing

To ensure proper device initialization and minimal clickand-pop, program the IC's $\overline{SHDN} = 1$ after configuring all registers. Table 39 lists an example startup sequence for the device. To shut down the IC, simply set $\overline{SHDN} = 0$.

SEQUENCE	DESCRIPTION	REGISTERS
1	Ensure $\overline{\text{SHDN}} = 0$	0x4C
2	Configure clocks	0x10 to 0x13, 0x19 to 0x1B
3	Configure digital audio interface	0x14 to 0x17, 0x1C to 0x1F
4	Configure digital signal processing	0x18, 0x20, 0x3D to 0x44
5	Load coefficients	0x50 to 0xC7
6	Configure mixers	0x21 to 0x29
7	Configure gain and volume controls	0x2A to 0x3C
8	Configure miscellaneous functions	0x45 to 0x49
9	Enable desired functions	0x4A, 0x4B
10	Set $\overline{SHDN} = 1$	0x4C

Table 39. Example Startup Sequence

While many configuration options in the IC can be made while the device is operating, some registers should only be adjusted when the corresponding audio path is disabled. Table 40 lists the registers that are sensitive during operation. Either disable the corresponding audio path or set $\overline{SHDN} = 0$ while changing these registers.

Component Selection Optional Ferrite Bead Filter

In applications where speaker leads exceed 20mm, additional EMI suppression can be achieved by using a filter constructed from a ferrite bead and a capacitor to ground (Figure 41). Use a ferrite bead with low DC resistance, high-frequency (> 600MHz) impedance between 100 Ω and 600 Ω , and rated for at least 1A. The capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Select a capacitor less than 1nF based on EMI performance.

Input Capacitor An input capacitor, C_{IN}, in conjunction with the input impedance of the IC line inputs forms a highpass filter

that removes the DC bias from an incoming analog

signal. The AC coupling capacitor allows the amplifier to automatically bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$

Choose C_{IN} so that f_{-3dB} is well below the lowest frequency of interest. For best audio quality use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies.

Charge-Pump Capacitor Selection

Use capacitors with an ESR less than $100m\Omega$ for optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. Most surface-mount ceramic capacitors satisfy the ESR requirement. For best performance over the extended temperature range, select capacitors with an X7R dielectric.

Table 40. Registers That Are Sensitive to Changes During Operation

REGISTER	DESCRIPTION
0x10 to 0x13, 0x19 to 0x1B	Clock Control Registers
0x14 to 0x17, 0x1C to 0x1F	Digital Audio Interface Configuration
0x18, 0x20	Digital Passband Filters
0x24 to 0x29	Analog Mixers
0x50 to 0xC7	Digital Signal Processing Coefficients

Figure 41. Optional Class D Ferrite Bead Filter

Charge-Pump Flying Capacitor

The value of the flying capacitor (connected between C1N and C1P) affects the output resistance of the charge pump. A value that is too small degrades the device's ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of the flying capacitor reduces the charge-pump output resistance to an extent. Above 1μ F, the on-resistance of the internal switches and the ESR of external charge-pump capacitors dominate.

Charge-Pump Holding Capacitor

The holding capacitor (bypassing HPVSS) value and ESR directly affect the ripple at HPVSS. Increasing the capacitor's value reduces output ripple. Likewise, decreasing the ESR reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. See the Output Power vs. Load Resistance graph in the *Typical Operating Characteristics* section for more information

Unused Pins

MAX9888

Table 41 shows how to connect the IC's pins when unused.

NAME	CONNECTION	NAME	CONNECTION	
SPKRP	Unconnected	INB1	Unconnected	
SPKRVDD	Always connected	INA2/MICEXTN	Unconnected	
SPKLVDD	Always connect	LRCLKS2	Unconnected	
SPKLP	Unconnected	MCLK	Always connect	
RECN/RXINN	Unconnected	SDINS2	AGND	
HPVDD	Always connect	ĪRQ	Unconnected	
C1P	Unconnected	MIC1P/DIGMICDATA	Unconnected	
HPGND	AGND	INA1/MICEXTP	Unconnected	
SPKRN	Unconnected	DGND	Always connect	
SPKRGND	Always connect	BCLKS2	Unconnected	
SPKLGND	Always connect	SDA	Always connect	
SPKLN	Unconnected	SCL	Always connect	
RECP/RXINP	Unconnected	REG	Always connect	
C1N	Unconnected	REF	Always connect	
HPL	Unconnected	MIC1N/DIGMICCLK	Unconnected	
HPVSS	Unconnected	MIC2P	Unconnected	
SDINS1	AGND	SDOUTS2	Unconnected	
LRCLKS1	Unconnected	DVDDS2	DVDD	
HPSNS	AGND	DVDD	Always connect	
INB2	Unconnected	AVDD	Always connect	
HPR	Unconnected	PREG	Always connect	
DVDDS1	DVDD	AGND	Always connect	
SDOUTS1	Unconnected	MICBIAS	Unconnected	
BCLKS1	Unconnected	MIC2N	Unconnected	
JACKSNS	Unconnected			

Table 41. Unused Pins

Recommended PCB Routing

The IC uses a 63-bump WLP package. Figure 42 provides an example of how to connect to all active bumps using 3 layers of the PCB. To ensure uninterrupted ground returns, use layer 2 as a connecting layer between layer 1 and layer 2 and flood the remaining area with ground.

Figure 42. Suggested Routing

112

Supply Bypassing, Layout, and Grounding

Proper layout and grounding are essential for optimum performance. When designing a PCB for the IC, partition the circuitry so that the analog sections of the IC are separated from the digital sections. This ensures that the analog audio traces are not routed near digital traces.

Use a large continuous ground plane on a dedicated layer of the PCB to minimize loop areas. Connect AGND, DGND, HPGND, SPKLGND, and SPKRGND directly to the ground plane using the shortest trace length possible. Proper grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital noise from coupling into the analog audio signals.

Ground the bypass capacitors on MICBIAS, REG, PREG, and REF directly to the ground plane with minimum trace length. Also be sure to minimize the path length to AGND. Bypass AVDD directly to AGND.

Connect all digital I/O termination to the ground plane with minimum path length to DGND. Bypass DVDD, DVDDS1, and DVDDS2 directly to DGND.

Place the capacitor between C1P and C1N as close as possible to the IC to minimize trace length from C1P to C1N. Inductance and resistance added between C1P and C1N reduce the output power of the headphone amplifier. Bypass HPVSS with a capacitor located close to HPVSS with a short trace length to HPGND. Close decoupling of HPVSS minimizes supply ripple and maximizes output power from the headphone amplifier.

HPSNS senses ground noise on the headphone jack and adds the same noise to the output audio signal, thereby making the output (headphone output minus ground) noise free. Connect HPSNS to the headphone jack shield to ensure accurate pickup of headphone ground noise.

Bypass SPKLVDD and SPKRVDD to SPKLGND and SPKRGND, respectively, with as little trace length as possible. Connect SPKLP, SPKLN, SPKRP, and SPKRN to the stereo speakers using the shortest traces possible. Reducing trace length minimizes radiated EMI. Route SPKLP/SPKLN and SPKRP/SPKRN as differential pairs on the PCB to minimize loop area, thereby the inductance of the circuit. If filter components are used on the speaker outputs, be sure to locate them as close as possible to the IC to ensure maximum effectiveness. Minimize the trace length from any ground-connected passive components to SPKLGND and SPKRGND to further minimize radiated EMI.

Route microphone signals from the microphone to the IC as a differential pair, ensuring that the positive and negative signals follow the same path as closely as possible with equal trace length. When using single-ended microphones or other single-ended audio sources, ground the negative microphone input as close as possible to the audio source and then treat the positive and negative traces as differential pairs.

An evaluation kit (EV kit) is available to provide an example layout for the IC. The EV kit allows quick setup of the IC and includes easy-to-use software allowing all internal registers to be controlled.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: *Wafer-Level Packaging (WLP) and Its Applications*. Figure 43 shows the dimensions of the WLP balls used on the IC.

Figure 43. WLP Ball Dimensions

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.	
63 WLP	W633A3+1	<u>21-0462</u>	Refer to Application Note 1891	

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/10	Initial release	—
1	2/11	Updated DAC playback 48kHz stereo, speaker outputs, speaker maximum value	6

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

___115