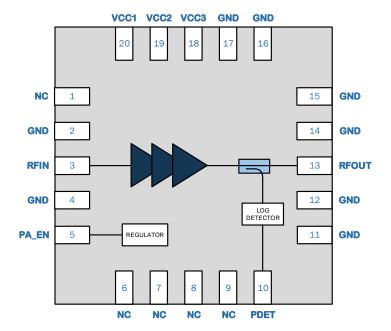
RFMD + TriQuint = Qorvo

RFPA5562

Wi-Fi Integrated PA Module 4900MHz to 5925MHz

Package: QFN, 20-pin, 4mm x 4mm x 0.9mm max

Product Description


The RFPA5562 is a three-stage power amplifier (PA) designed for Wi-Fi 802.11a/n/ac systems. The compact form factor and integrated matching minimizes layout area in the application and greatly reduces the number of external components.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput.

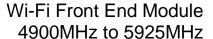
A key feature is the integration of a logarithmic power detector which enables power control across the entire power spectrum for applications which use higher gain antennas or end users wanting to reduce device calibration time in production.

The RFPA5552 integrates a 5GHz power amplifier (PA), regulator and power detector into a single device. The device is provided in 4mm x 4mm x 0.9mm, 20-pin QFN package.

Functional Block Diagram

Feature Overview

- P_{OUT} = +23dBm, 802.11ac, VHT80 MCS9 at-35dB Dynamic EVM
- P_{OUT} = +25dBm, 802.11n, HT20/40 MCS7 at-30dB Dynamic EVM
- P_{OUT} = +27dBm, HT20 MCS0 at Spectral Mask Compliance
- Optimized for 5V Operation
- Typical Gain 33dB
- Low Power Consumption
- Integrated Logarithm Power Detector
- Input and Output Matched to 50Ω


Applications

- Wireless Routers
- Access Points
- Residential Gateways
- Consumer Premise Equipment
- Internet of Things

1 of 5

Ordering Information

PART NUMBER	DESCRIPTION
RFPA5562SB	Sample bag with 5 pieces
RFPA5562SQ	Sample bag with 25 pieces
RFPA5562SR	7" Reel with 100 pieces
RFPA5562TR13	13" Reel with 2,500 pieces
RFPA5562PCK-410	Assembled Evaluation Board + 5 pieces

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
DC Supply Voltage (No RF Applied)	-0.5 to +6	V _{DC}
DC Supply Current	1000	mA
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Maximum TX Input Power into 50Ω Load for $11a/n/ac$ (No Damage). *R1= 0Ω	+10	dBm
Maximum TX Input Power into 50Ω , 10:1 Load for 11a/n/ac (No Damage) *R1=15 Ω	+15	dBm

Note:

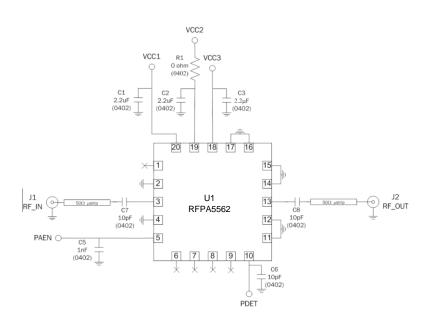
For R1 placement, refer to Evaluation Board Schematic

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage of the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. This is an InGaP device designed for high duty cycle applications with Tj>30 °C over ambient

Nominal Operating Parameters

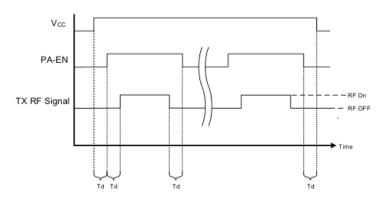
PARAMETER	MIN	TYP	MAX	UNIT	CONDITION
COMPLIANCE					802.11A, 802.11N, 802.11AC
Operating Frequency	5.180		5.925	GHz	
Extended Operating Frequency	4.9		5.925	GHz	
Power Supply Vcc	4.75	5	5.25	V	
PA Enable Voltage-High	1.7	3	3.3	V	PA_EN
PA Enable Voltage-Low	0		0.5	V	PA_EN

TRANSMIT PERFORMANCE					V _{CC} =3.3V, T=+25°C, V _{PAEN} =3V, PA_EN=High; Unless otherwise noted
11ac VHT160 Output Power		22		dBm	
Dynamic EVM		1.4	1.8	%	MCS9
		-37	-35	dB	
11ac VHT80 Output Power	22	23		dBm	
Dynamic EVM		1.4	1.8	%	MCS9
		-37	-35	dB	
11n HT20/40 Output Power	23.5	25		dBm	
5 . 5.44		2.5	3.2	%	MCS7
Dynamic EVM		-32	-30	dB	
Margin to 802.11ac 160MHz Spectral Mask		5	0	dBc	P _{OUT} = +23dBm, MCS0


Wi-Fi Front End Module 4900MHz to 5925MHz

Margin to 802.11ac 80MHz Spectral Mask		5	0	dBc	P _{OUT} = +25dBm, MCS0
Margin to 802.11n 20MHz Spectral Mask		5	0	dBc	P _{OUT} = +27dBm, MCS0
Gain	31	33		dB	
Gain Variation	-2.5		+2.5	dB	$T = -40 \text{ to } +85^{\circ}\text{C}$
Out of Bond Coin		-15	-5	dB	f = 3300-3800MHz
Out of Band Gain			12	dB	f > 7000MHz
Quiescent Current		150	165	mA	RF=Off
0 0		295	335	mA	$P_{OUT} = +23dBm$
Operating Current		415	475	mA	Р _{ОИТ} = +27dВm
PA Enable Control Current		1	5	μΑ	
RFIN Port Return Loss		12		dB	
RFOUT Port Return Loss		9		dB	
2 nd Harmonics		-40	-35	dBm/MHz	Р _{ОUТ} = +27dBm 802.11a 6MBps
3 rd Harmonics		-40	-35	dBm/MHz	P _{OUT} = +27dBm 802.11a 6MBps
Power Detector Voltage		0.25		mV	RF Off
		0.28		mV	P _{OUT} = 0dBm
		0.88		mV	Роит = +27dBm
Power Detector Slope		22		mV/dB	

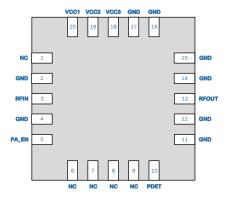
GENERAL SPECIFICATIONS					
Leakage Current		0.2	10	μΑ	RF Off; V _{PAEN} =0V
Stability					
Output VSWR			6:1		CW signal. No spurious above -41.25dBm/MHz for non-harmonic related signals.
Output Power Range	0		27	dBm	
Output P ^{1dB}		33		dBm	
Ramp ON/OFF Time		200		nS	10%<->90%; Referencing from control voltage to RF power
Thermal Resistance		27		°C/W	


Wi-Fi Front End Module 4900MHz to 5925MHz

Evaluation Board Schematic

Transmit Timing Diagram

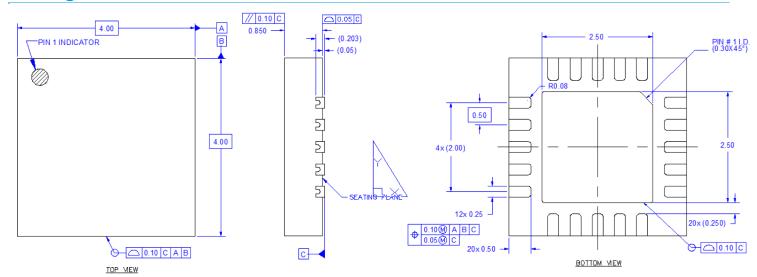
RF/DC Power On/Off Sequence


Note: Observe the timing sequence shown in the diagram above and described below. DC and RF signal levels per data sheet specification

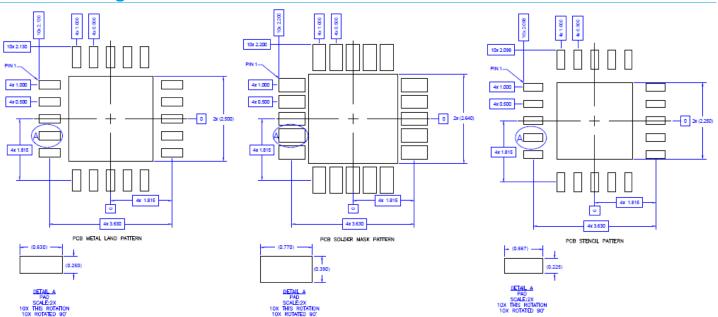
- Apply V_{CC} prior to turning on or pulsing PA enable. Turn off PA enable prior to turning off V_{CC} .
- Turn on PA enable prior to applying RF signal.
- Turn off RF signal prior to turning off PA enable

Wi-Fi Front End Module 4900MHz to 5925MHz

Pin Out


Pin Names and Descriptions

PIN	NAME	DESCRIPTION						
1	NC	Not connected internally. It may be left floating or connected to ground.						
2	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
3	RFIN	RF input, internally matched to 50Ω and DC shorted. External DC blocking capacitor required.						
4	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
5	PAEN	Input enable bias voltage (regulated internally).						
6	NC	Not connected internally. It may be left floating or connected to ground.						
7	NC	Not connected internally. It may be left floating or connected to ground.						
8	NC	Not connected internally. It may be left floating or connected to ground.						
9	NC	Not connected internally. It may be left floating or connected to ground.						
10	PDET	Power detector. Provides an output voltage proportional to the RF output power level.						
11	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
12	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
13	RFOUT	RF output, internally matched to 50Ω and DC shorted. External DC blocking capacitor required.						
14	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
15	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
16	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
17	GND	Ground connection. Not connected internally and can be left floating or connected to ground.						
18	VCC3	Third stage supply voltage						
19	VCC2	Second stage supply voltage.						
20	VCC1	First stage supply voltage.						
Pkg Base	GND	Ground connection. The back side of the package should be connected to the ground plan though as short of a connection as possible. PCB vias under the device are recommended.						



Wi-Fi Front End Module 4900MHz to 5925MHz

Package Outline (Dimensions in millimeters)

PCB Mounting Pattern (Dimensions in millimeters)

RFPA5562 Wi-Fi Front End Module 4900MHz to 5925MHz

Product Compliance Information

Caution! ESD-Sensitive Device

ESD Sensitivity Ratings

ESD Rating: Class 1C Voltage: Passes ≥1500V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class C2 Voltage: Passes ≥500V

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating

MSL Rating: Level 2

Test: 260°C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo:

Web: www.qorvo.com **Tel:** +1-844-890-8163

Email: customer.support@gorvo.com

For information about Qorvo:

Web: www.gorvo.com