

RFSA4033

Programmable Temperature Compensating Attenuator 5MHz to 6000MHz

The RFSA4033 is a fully monolithic linear-in-dB analog temperature compensating attenuator (TCA) featuring exceptional linearity over its entire gain control range. It is designed to offset the gain reduction of an RF component over temperature without the need for closed loop feedback. Eight customer selectable scaled attenuation slopes and eight selectable nominal attenuation values at 25°C creates a total combination of 64 possible temperature coefficients which make it a flexible solution for RF lineups. It incorporates revolutionary new circuit architecture to solve a long standing industry problem with regards to attenuator architecture: high IP3, low DC current and broad bandwidth. Traditional approaches for solving this problem require expensive co-fired ceramics with temperature sensitive materials or current hungry PIN diodes with elaborate area consuming control circuits. This temperature compensating attenuator requires only a single supply voltage and 6 logic bits to set the temperature coefficient. The RFSA4033 is packaged in a small 3mm x 3mm QFN. This attenuator is matched to 50Ω over its rated control range and frequency with no external matching components required.

Functional Block Diagram

Ordering Information

RFSA4033SQ	Sample bag with 25 pieces
RFSA4033SR	7" Reel with 100 pieces
RFSA4033TR7	7" Reel with 2500 pieces
RFSA4033PCK-410	5MHz to 6GHz PCBA with 5-piece sample bag

Package: QFN, 16-pin, 3.0mm x 3.0mm x 0.85mm

Features

- Patent Pending Circuit Architecture
- Broadband 5MHz to 6000MHz
 Frequency Range
- 64 Selectable Attenuation versus Temperature Linear-in-dB Slopes
- +52dBm Input IP3 Typical
- +80dBm Input IP2 Typical
- High 1dB Compression Point >+30dBm
- Low Residual Phase Noise
 <-140dBc/Hz at 10kHz offset
- 3V to 5V Power Supply
- 3V Logic Compatible
- Class 2 ESD (2000V HBM)

Applications

- Cellular, 3G, LTE Infrastructure
- WiBro, LTE
- Microwave Radio
- High Linearity RF Power Control

DS150225

- Cable Modems
- CATV
- Test Equipment

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES® and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (V _{DD})	-0.5 to 6.0	V
Logic Control Voltage	-0.5 to V _{DD}	V
Maximum CW Input Power	30	dBm
Storage Temperature Range	-65 to +150	°C
ESD Rating - Human Body Model (HBM)	2000	V
Moisture Sensitivity Level	MSL2	

rfmd 🔊

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Recommended Operating Condition

Parameter	S	Unit		
	Min	Тур	Мах	
Operating Temperature Range	-40		+105	°C
Operating Junction Temperature			+125	°C
Supply Voltage (V _{DD})	3.0		5.5	V

Nominal Operating Parameters

Paramotor	Specification		Unit	Condition	
raiametei	Min	Тур	Max	Onit	Condition
Supply and Interface Requirements					
Supply Current (I _{DD})		7	10	mA	
Attenuation Bits (ATTN)		3			8 Nominal insertion loss states at 25°C
Slope Bits (SLP)		3			8 (Insertion loss versus temperature) slope states
Control Pins Logic Low			0.8	V	
Control Pins Logic High	2.0			V	
Thermal Resistance		45		°C/W	
RF Input Power			27	dBm	
General Performance					Typical Performance: V _{DD} = 5V, Temp = 25°C, RF Frequency = 2000MHz
Frequency Range	5		6000	MHz	
Nominal Attenuation	3		10	dB	At +25°C, selectable in 1dB steps
Nominal Attenuation Accuracy (See Table Below)	See Table		dB	At +25°C	
Temperature Coefficient	3		10	mdB/°C	Selectable in 1mdB/°C increments

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

DS150225

Parameter	Specification		Unit	Condition	
	Min	Тур	Max	Unit	Condition
General Performance - Continued					Typical Performance: V _{DD} = 5V, Temp = 25°C, RF Frequency = 2000MHz
Temperature Coefficient Accuracy		±1		mdB/°C	Per dB of nominal attenuation
Nominal Impedance		50		Ω	
Input Return Loss		18		dB	
Output Return Loss		18		dB	
Input P1dB		30		dBm	
Input IP2		80		dBm	F1 + F2 input intercept point, Pin + (P _{OUT} – IM2)
Input IP3	45	52		dBm	
Input IH2		86		dBm	2F input intercept point, Pin + (P _{OUT} – F2)
Input IH3		58		dBm	3F input intercept point, Pin + (P _{OUT} – F3) /2

Nominal Attenuation Accuracy Table

Nominal Attenuation Accuracy	Typical	Unit
3	2.7	dB
4	3.6	dB
5	4.6	dB
6	5.7	dB
7	6.8	dB
8	7.9	dB
9	9.0	dB
10	10.1	dB

Typical Application Schematic

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS150225

Insertion Loss versus Temperature RF 2GHz, V_{DD} = 5V, Atten = 3dB

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS150225

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS150225

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Insertion Loss versus Frequency

Insertion Loss versus Slope Adjust RF 2GHz, V_{DD} = 5V, Atten Value = 6dB

Typical Performance: T = 25°C, V_{DD} = 5V unless otherwise noted

Input Return Loss versus Frequency V_{DD} = 5V, Slope Adjust = 7, Temp = +55°C 0 Atten=3dB Atten=4dB Atten=5dB -5 Atten=6dB Atten=7dB Atten=8dB ලි ⁻¹⁰ Atten=9dB Atten=10dB sso -15 Return L -20 Indu -25 -30 -35 0 1 2 4 5 6 Frequency (GHz)

Input Return Loss versus Frequency

Output Return Loss versus Frequency V_{DD} = 5V, Slope Adjust = 7, Temp = +5°C 0 Atten=3dB Atten=4dB Atten=5dB -5 Atten=6dB Atten=7dB Atten=8dB (qB) -10 Atten=9dB Atten=10dB Loss -15 Return I -20 Output -25 -30 -35 0 5 1 2 3 4 6 Frequency (GHz)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150225

Typical Performance: T = 25°C, V_{DD} = 5V unless otherwise noted

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS150225

Evaluation Board Schematic 5MHz to 6000MHz Application Circuit

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@fmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent of patent of patents of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Evaluation Board Bill of Materials (BOM) 5MHz to 6000MHz Application Circuit

Description	Reference Designator	Manufacturer	Manufacturer's P/N
RFSA4033-410		Dynamic Details (DDI) Toronto	RFSA4033-410(A)
DIGITAL STEP ATTENUATOR 50MHz to 6000MHz	U1	RFMD	RFSA4033SB
CAP, 1µF, 10%, 25V, X7R, 1206	C9	Taiyo Yuden (USA), Inc.	CE TMK316BJ105KL-T
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1-J4	Molex	SD-73251-4000
CONN, HDR, ST, 1x7, 0.100", T/H	P1	Samtec Inc.	TSW-107-07-G-S
CONN, HDR, ST, PLRZD, 2-PIN, 0.100"	P6	ITW Pancon	MPSS100-2-C
CONN, HDR, ST, 3X7, 0.100"	P3	Samtec Inc.	TSW-107-07-G-T
CONN, SKT, 24-PIN DIP, 0.600", T/H	P2	Aries Electronics Inc.	24-6518-10
MOD, USB TO SERIAL UART, SSOP-28	M1	Future Technology Devices Int'l	UM232R
DNP	C1-C8	NA	NA

Evaluation Board Assembly Drawing

DS150225

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice @ ffmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent sof patents of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pin Names and Descriptions

Pin	Name	Description			
1	GND	Connect to PCB ground			
2	GND	Connect to PCB ground			
3	RFIN	Input RF port; Do not apply DC voltage to this pin. Pin may be grounded externally.			
4	GND	Connect to PCB ground			
5	SLP2	Input logic bus to control the attenuation slope (MSB)			
6	SLP1	Input logic bus to control the attenuation slope			
7	SLP0	Input logic bus to control the attenuation slope (LSB)			
8	GND	Connect to PCB ground			
9	GND	Connect to PCB ground			
10	RFOUT	Output RF Port; Do not apply DC voltage to this pin. Pin may be grounded externally.			
11	GND	Connect to PCB ground			
12	GND	Connect to PCB ground			
13	VDD	Supply Voltage			
14	ATTN0	Input logic bus to control the 25°C nominal attenuation value (LSB)			
15	ATTN1	Input logic bus to control the 25°C nominal attenuation value			
16	ATTN2	Input logic bus to control the 25°C nominal attenuation value (MSB)			

Nominal Attenuation Truth Table

ATTN2	ATTN1	ATTN0	S ₂₁ ATTN Value at 25°C (dB)
0	0	0	3
0	0	1	4
0	1	0	5
0	1	1	6
1	0	0	7
1	0	1	8
1	1	0	9
1	1	1	10

Note: Refer to nominal attenuation accuracy table.

Attenuation Slope Truth Table

SLP2	SLP1	SLP0	S ₂₁ Temperature Coefficient (mdB/°C/Attn)
0	0	0	3
0	0	1	4
0	1	0	5
0	1	1	6
1	0	0	7
1	0	1	8
1	1	0	9
1	1	1	10

Package Outline (Dimensions in millimeters)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS150225

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@fmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent sor patent sor for RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Branding Diagram

