TELEFUNKEN Semiconductors

Multi Standard Feature Phone Integrated Circuit

Description

The U3810BM multi-standard feature phone circuit is designed to be used with a microcontroller using a 2-wire serial bus. It performs all speech and line interface functions required in an electronic telephone set: the ringing function with switching regulator and melody generator, the DTMF dialling, the loudhearing with

antilarsen and antidistortion systems, a power supply, a clock and a reset for the microcontroller. Transmit, receive and loudhearing gains control / AGC range / DTMF frequencies, pre-emphasis and level / melody generator, and mutes are programmable through the serial bus.

Block diagramm

Figure 1

Applications

- Feature phones
- Answering machines
- Fax machines

Benefits

- Complete system integration of analog signal processing and digital control circuitry
- One IC for various PTT standards, e.g. programmable specification via µC
- Only three low-cost transducers needed (instead of four)

Rev. A1: 19.01.1996 1 (31)

Features

- Slope of DC characteristics adjustable by an external resistor
- Gain of transmit and receive amplifiers automatically adjusted by line length control
- Regulation range adjustable by the serial bus
- Possibility of fixed gain (PABX)
- Sidetone balancing system adjustable with line length or by the serial bus
- Dynamic impedance adjustable by external components
- Stabilized power supply for peripherals
- Confidence level during dialling
- +6 dB possibility on second stage transmit gain
- Transmit and receive gains adjustable by serial bus
- Extra transmit input for handsfree and answering machine purpose
- +6 dB possibility on receive gain
- Receive amplifier for dynamic or piezo-electric earpieces
- Extra receive output for handsfree purpose
- High impedance microphone inputs suitable for dynamic, magnetic, piezo-electric or electret microphone
- Distortion of line signal and sidetone prevented by dynamic range limitation in transmission (anti-clipping)
- Squelch system in transmission prevents "room noise" are being transmitted, and improves anti-larsen efficiency (can be inhibited).

- Loudhearing gain programmable in eight steps of 4 dB, using the serial bus, or linearly adjusted, using a potentiometer
- Anti-larsen system efficiency is increased when inhibiting squelch
- Loudhearing anti-distortion system by automatic gain control versus available current and voltage
- Switching regulator in ringing phase
- Input ringing detection, threshold and impedance adjustable with external resistors
- Ringing zero crossing information for external microprocessor
- Ringing programmable gain in eight steps of 4 dB using the serial bus
- Melody generator, with 30 frequencies in steps of semi tones, driven by serial bus
- Internal speed-up circuit permits a faster charge of VDD and VCC capacitor
- DTMF dialer driven by serial bus, in particular level and pre-emphasis adjustment
- Ability to transmit a confidence tone in speech mode using melody generator frequencies
- Five independent mutes driven by serial bus (two in transmission, two in reception, one for the transmit / receive loop)
- Standard low-cost ceramic 455 kHz / clock output for the microcontroller
- Extra loudhearing input for answering machines, handsfree and base station of phones cordless with loudhearing

Block diagram

Figure 2

Rev. A1: 19.01.1996 3 (31)

Figure 3 Digital adjustment of the analog parameters by the serial bus microprocessor-interface

Figure 4 Application for feature phone

U3810BM

Typical value of external components

Components	Min.	Тур.	Max.
RIN	0.3 MΩ	1.0 ΜΩ	1.5 ΜΩ
CSC		0.1 μF	
TSC		2N5401A	
LSC		1 mH	
DSC		SD103A	
RAD		100 kΩ	
CAD		470 nF	
CAL		470 nF	
RAL		68 kΩ	82 kΩ
CVDD		470 μF	
RSAI		20 kΩ	
CSAI		0.1 μF	
CVSA		220 μF	
CSO		47 μF	
CVCC		100 μF	
RAGA1		100 kΩ	
RAGA2		51 kΩ	
CEI		0.47 μF	
RDC		20 kΩ	
RTO		62 Ω	
(CTO		0.33 μF)	
CZAC1		0.47 μF	
RZAC		12 kΩ	

Min	Tun	Max.
WIIII.		Max.
	_	
	220 pF	
	0.47 μF	
	$6.8~\mathrm{M}\Omega$	
	4.7 μF	
	\sim 1 k Ω	
	\sim 100 Ω	
	6.2 kΩ	
	330 pF)	
	6.2 kΩ	
	330 pF)	
	43 kΩ	
	18 kΩ	
	100 kΩ	
	75 kΩ	
	10 nF	
	10 nF	
· · · · · ·	470 pF	
	1.2 nF	
	CSB455E (Murata)	
	Min.	470 pF) $240 \text{ k}\Omega$ $330 \text{ k}\Omega$ 4.7 nF 220 pF 0.47 μF $6.8 \text{ M}\Omega$ 4.7 μF $\sim 1 \text{ k}\Omega$ $\sim 100 \Omega$ $6.2 \text{ k}\Omega$ 330 pF) $6.2 \text{ k}\Omega$ 330 pF) $43 \text{ k}\Omega$ $18 \text{ k}\Omega$ $100 \text{ k}\Omega$ $75 \text{ k}\Omega$ 10 nF

TELEFUNKEN Semiconductors

Pin description

Pin desc	Symbol	Function
1	RPI	Ringing power information. The RC combination smooths the drive current of the
1		loudspeaker amplifier.
2	VRI	Tone-ringer supply voltage. The rectified ringing voltage is delivered to VRI and then converted into the lower supply voltage, VSA, by the converter.
3	IMPA	External adjustment of input ringing impedance. IMPA is adjusted with a resistance between pin 2 and 3. $ZIN = RIN/100$
4	COS	Control output switching supply. COS drives the base of the external switching transistor of the converter.
5	IOS	Current output of switching supply. This output provides a constant current, which supplies the external part of converter. The magnitude of the current depends on the VRI voltage and the value of resistance RIN.
6	TAD	Adjustment of antidistortion time constant in loudhearing with external RC combination.
7	TAL	Adjustment of antilarsen time constant in loudhearing with external RC combination.
8	VDD	External logic supply.
9	VCC	Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered with external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of the circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripherial modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other modes. The digital part of circuit and microprocessor must continue operating during line breaks, as they occur during pulse dialing or during flash-signal transmission. Since VDD in this time intervals is fed only from the buffer capacity, the power consumption from VDD must not cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode, can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission.
10	VL	Line voltage.
11	SAI	Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or REC02, is fed in here.
12	SAIX	Speaker amplifier input for special application i.e. answering machine. SAIX is selected via the serial bus. SAIX has to be selected for ringing. IF ringing, Antidistortion and Antilarsen are disabled.
13	VSA	Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing detector; aditional connection point for an external supply. In speech mode, VSA is supplied by the analog part of the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA= VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilization point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA=5.2V. In the case of an external supply, VSA serves as a point for a current from a power supply. The stabilization point of VSA and supply for the logic correspond to the operation conditions in ringing mode.
14	SO1	Loudspeaker output 1.
15	SO2	Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low line currents and loudspeakers with low impedance, while the differential connection method results in a higher power output and lower harmonic distortion with medium or high line currents and/or loudspeaker impedances

Rev. A1: 19.01.1996 7 (31)

Pin description

Pin	Symbol	Function
16	GND	Ground.
17	RREF	External reference resistor. Connection for external reference resistor to generate the reference current. All basic currents of the circuit which must satisfy certain absolute accuracy requirements depend on this current.
18	CEI	Capacitor for electronic inductance. Connection for capacitor of the electronic coil. The circuit contains a first order RC-active low-pass filter. The capacitor is connected externally between CEI and VL.
19	RDC	DC characteristic slope adjustment. A voltage across resistor RDC is proportional to the dc line voltage. This means the current flow through RDC is also proportional to the line voltage. This current drives the supply currents drawn from VL by the most important loads, and therefore defines the total current consumption of the circuit. Adjustment to the slope characteristic is realized by modification of RDC resistance.
20	AGA	Line length adjustment. Reference voltage level for AGA. The potential at this point defines the start threshold for the AGA and the automatic balancing in the receive part (both can be switched off by the serial bus). The potential is normally formed between VCC and ground using a voltage divider. When the line voltage exceeds the threshold level, the AGA or balancing becomes effective.
21	MICX	Asymmetrical microphone input for special applications. The input of the first stage of the transmit amplifier, selected by the serial bus. Anticlipping is not effective at this input.
22	MIC1	Inverting input of microphone amplifier.
23	MIC2	Noninverting input of microphone amplifier.
24	ZAC	AC impedance adjustment. Adjustment of the ac circuit impedance to the line by changing of RZAC.
25	ТО	Transmit amplifier output. Transmit amplifier output modulates the current flowing into this output (typically 4.8 mA).
26	MICO	Microphone amplifier output. Output MICO; open-circuit potential = 2*Vbe
27	TIN	Transmit and DTMF input. Input of the second transmit stage.
28	TACL	Adjustment of anticlipping time constant with external RC combination. Anticlipping controls the transmitter input level to prevent clipping with high signal levels. The dynamic range of the transmit peak limiter is controlled by an internal circuit.
29	RECO2	Symmetrical output of receive amplifier.
30	RECO1	Symmetrical output of receive amplifier.
31	RECOX	Receive amplifier output for handsfree and answering machine applications.
32	STL	Long line sidetone network.
33	RECI	Receive amplifier input. It is driven by a signal from VL.
34	STS	Short line sidetone network.
35	MF	Multifrequency output. Output DTMF signal and confidence tone in pulse—density modulated form. DTMF signal and confidence tone are generated by special generators in the digital part of the circuit. The DTMF signal consists of two weighted and superimposed pulse-density modulated signals, while in the case of confidence tone, a pulse—density modulated signal is superimposed on a high frequency rectangular—pulse signal with pulse duty factor 0.5. The superimposed signals are sent out to MF for further processing.
36	D	Data input of serial bus (see Pin 37). Serial data input from microprocessor for programming the circuit.

TELEFUNKEN Semiconductors

Pin description

Pin	Symbol	Function
37	С	Clock line: 2-wire serial bus. This pin is used together with the data input (pin 36) to transfer data from the microprocessor to the circuit. The last 8 bits, consisting of 5 data bits and 3 address bits, are accepted by the circuit if, during the high phase at pin 37, a positive edge on pin 36 takes place.
38	LVIO	Line voltage information output. State indicator of the line voltage, VL, and the supply voltage, VDD. Indicates to microprocessor whether line voltage VL is present across the circuit and the supply voltage VDD is sufficiently high. If both conditions are fulfilled, LVIO is on high level.
39	СО	Clock output. Output 455 kHz clock pulse for the microprocessor. The 455 kHz clock signal generated in the circuit is amplified and sent to CO. This signal is delivered to the microprocessor as a clock signal. Various internal signals can be output to CO in test mode.
40	RESET	Reset signal for periphery. A reset signal (active low) is generated to clear all registers of the circuit. This can be tapped by peripheral modules, particularly by the microprocessor. This pin enables synchronous resetting of the circuit and peripheral modules.
41	XCK	Clock signal generator. Connector for ceramic resonator (455 kHz). The clock for the digital part of the circuit is generated by a one-pin oscillator, the frequency of which is determined by the ceramic resonator.
42	ESI	Input for external supply information. Input to indicate the operating state external supply. In the case of VSA supplied by a power supply unit, the supply source is connected directly to ESI. ESI is connected to VSA by an external diode in forward mode. The ESI voltage will be one forward voltage higher than the voltage on VSA. This voltage causes the circuit to be in external supply mode.
43	ZCO	Zero crossing output in ringing phase. ZCO operates when the ringer voltage, VRI, and the supply voltage, VSA, are sufficiently high. The output voltage ZCO changes state each time the rectified AC signal of THA crosses the ringing detect turn—on and turn—off thresholds, thus providing information on the frequency of the ring signal. Further analysis of the ring frequency is be done by the microprocessor. Secondly, this pin is used as an input for switching on the test mode. Therefore, a negative voltage of approximately 1 V must be applied to pin 43.
44	THA	Ringing detection threshold adjustment. Input amplitude and frequency identification. The rectified ringing voltage is present at this pin. The circuit evaluates the amplitude of the rectified voltage at THA and the supply voltage VSA (pin 13). If both voltages exceed certain thresholds, the signal present at THA is converted to a rectangular—pulse signal and is sent via pin 43 to the microprocessor. If the frequency is in the required range, the microprocessor initiates transmission of the ringing signal. The start threshold can be raised with a resistor connected in series to pin 44.

Rev. A1: 19.01.1996 9 (31)

Absolute maximum ratings

Parameters	Symbol	Value	Unit
DC calling voltage (pin 2)	VRI	35	V
DC calling current (pin 2)	IR	30	mA
Conversation line voltage (pin 10)	$V_{\rm L}$	15	V
		17	V pulse 20 ms
Conversation line current	$I_{ m L}$	150	mA
Total power dissipation *)	P _{tot}	1	W
Operating temperature range	T _{amb}	-25 to +55	°C
Storage temperature range	T_{stg}	-55 to +150	°C
Junction temperature	T_{j}	125	°C

Thermal resistance

Parameters	Symbol	Value	Unit
Junction ambient *)	R _{thJA}	70	K/W

Electrical characteristics

 $I_L = 28$ mA, $T_{amb} = 25$ °C, f = 1 kHz, $R_{DC} = 20$ k Ω , all internal registers cleared, unless otherwise specified

- 455 kHz ceramic resonator: MURATA or equivalent
- Refer to the tests circuits

Figure 5

Resonance factor Q_m = 3100, L1 = 6.1 mH, C1 = 21 pF, CO = 268.5 pF, R1 = 5.5 Ω (Schematic above)

All resistances are specified at 1%, all capacitances at 2%.

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Line voltage	$I_L = 15 \text{ mA}$ $I_L = 28 \text{ mA}$ $I_L = 60 \text{ mA}$	4.2 6.7 12.8	4.75 7.2 13.45	5.2 7.5 14.1	V	6
VDD, VCC stabilized power supply	$I_L = 8 \text{ mA}, -\text{Idd (ICC)} = 0.6 \text{ mA}$ $I_L = 28 \text{ mA}, -\text{Idd (ICC)} = 2.3 \text{ mA}$	2.5	2.65 3.45	3.6	V	6
IDD at VDD = 3.5 V Internal operating supply current	S4 on 3		180	210	μΑ	9
Leakage current				100	nA	
Speed up off threshold VSOFF	See fig. 11 $I_{Lmax} = 80 \text{ mA}$ $V_L = 4 \text{ V}$	2.45	2.65	2.8	V	7
Speed up on line-current ISON	See fig. 14 I_L decreasing $VDD = 2.8 \text{ V}$	5.0	5.9	7.5	mA	
Speed up current	$V_L = 4 V$	40	70		mA	7

^{*)} Note: Assembly on PC board $\geq 24 \text{ cm}^2$ assumed

TELEFUNKEN Semiconductors

U3810BM

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Transmission				1		
Transmit gain (note 1) on MIC1 / MIC2	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	47.0 39.8	48.0 41.0	49.0 42.2	dB dB	
on MICX	$V_{MICX} = 5 \ mV_{rms}$ $MIS TX2 TX1 TX0$ $max.gain 1 1 1 1$ $min. gain 1 0 0 0$	43.0 35.8	44.0 37.0	45.0 38.2	dB dB	6
Gain adjustment of microphone amplifier	Gain change between two steps (both on MIC1/MIC2 and on MICX)	0.8	1.0	1.2	dB	6
Transmit gain without AGC G_T at 28 mA ΔG_T at I_L = 20 to 28 mA ΔG_T at I_L = 28 to 60 mA	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	42.6 -0.5 -0.5	44.0 0.0 0.0	45.5 0.5 0.5	dB	6
Gain change between 28 and 60 mA on MIC1 / MIC2 on MICX		3.6 4.9 6.3 7.7	4.1 5.35 6.9 8.2	4.6 5.9 7.4 8.7	dB	6
+6 dB delta transmit gain	$I_L = 28$ mA and 60 mA $V_{MIC} = 1.5$ m V_{rms} , Bit TX6 = 1	5.4	6.0	6.6	dB	6
Noise at line psophometrically weighted	$\begin{aligned} > = max. \ gain \\ &V_{MIC} = 0 \ (MIS = 0) \ ISQ = 0 \\ &V_{MIC} = 0 \ (MIS = 0) \ ISQ = 1 \\ &V_{MICX} = 0 \ (MIS = 1) \ ISQ = 1 \end{aligned}$		-79 -73	-75 -70 -64	dBmp	6
*Max. gain is without +6 dB	function which is especially devoted for DT	MF	1			ı
Muted gain on MIC1 / MIC2 on MICX	$\begin{split} V_{MIC} &= 3 \text{ mV}_{rms} \text{ (MIS} = 0) \text{ or} \\ V_{MIC} &= 5 \text{ mV}_{rms} \text{ (MIS} = 1) \\ \text{(at max. and min. gain)} \\ &\qquad \qquad \text{Bit IM} = 1 \\ \text{Bit IT} &= 1 \\ V_{MIC} &= 3 \text{ mV}_{rms} \text{ (MIS} = 1) \text{ or} \\ V_{MIC} &= 5 \text{ mV}_{rms} \text{ (MIS} = 0) \end{split}$	65 65 60 60			dB dB dB dB	6
Microphone input impedance on MIC1/MIC 2 on MICX	$V_{MIC} = 3 \text{ mV}_{rms} \text{ (MIS} = 0)$ $V_{MICX} = 5 \text{ mV}_{rms} \text{ (MIS} = 1)$	70 35	110 55		kΩ kΩ	6
CMRR common mode rejection ratio	G_T = at maximum gain		65		dB	6
Voltage step on pin 26 when going from transmission to mute mode Bit IM from 0 to 1	$\begin{split} I_L = &28 \text{ mA and } 60 \text{ mA} \\ V_{MIC} = &0 \text{ (MIS} = 0) \text{ or} \\ V_{MICX} = &0 \text{ (MIS} = 1) \\ \text{At maximum gain} \end{split}$	-75		+75	mV	6
Dynamic limiter (anti-clippin	eg) CACL = 470 nF, RACL = $6.8 \text{ M}\Omega$ opera	tional only	on MIC1	/MIC2		
Output voltage swing (peak to peak value)		3.3		4.4	V _{pp}	6
Delta output voltage swing		-200	0	200	mV _{pp}	6

Rev. A1: 19.01.1996

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Delta output voltage swing		-200	0	200	mV _{pp}	6
Line distortion (on 600 Ω)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2 3 2 3.5	% % % %	6
Squelch function CA	$AL = 470 \text{ nF}, RAL = 68 \text{ k}\Omega$					
Dynamic range attenuation	(note 2) $I_L = 28 \text{ mA} \text{ and } 60 \text{ mA}$	8.3	9.3	10.3	dB	6
Squelch inhibition (tested on GT)	$\begin{split} \Delta G_T &= G_{T1}(ISQ=1) - G_{T2}(ISQ=0) \\ G_{T1}\left(V_{MIC} = 160~\mu V_{rms}\right), \\ G_{T2}\left(V_{MIC} = 3~m V_{rms}\right) \\ At~maximum~gain \end{split}$	-0.3	0	0.3	dB	6

Figure 6 Test circuit

U3810BM

TELEFUNKEN Semiconductors

- Note 1: transmit gain: $G_T = V_L/V_{MIC}$ on MIC1/MIC2 $G_T = V_L/V_{MIC}$ on MICX with the above values of RAG1 and RAG2
- $\begin{array}{l} \bullet \quad \text{Note 2: Squelch dynamic range: } \Delta G_T = G_{T0} G_{T1} \\ G_{T0} \text{ measured at } V_{MIC} = 1 \text{ mV}_{rms} \\ G_{T1} \text{ measured at } V_{MIC} = 160 \text{ } \mu V_{rms} \\ \end{array}$

				30	50 1117		
Parameters	Test conditions		Min.	Тур.	Max.	Unit	Fig.
Receive							
G_R receiving gain $G_R = {V_R}^*/{V_L}$ (for normal output)	$V_{GEN} = 0.3 \ V_{rms}$ $RX2 RX1$ $maximum \ gain \qquad 1 1$ $minimum \ gain \qquad 0 0$	RX0 1 0	3.5 -3.7	4.5 -2.5	5.5 -1.3	dB dB	7
$\Delta G_R = V_R / V_{RECOX}$	$V_{GEN} = 0.3 V_{rms}$		14.0	15.0	16.0	dB	7
Gain adjustment at earphone	$I_L = 28 \text{ mA}$ and 60 mA Attenuation between two steps (both on REC01/REC02 and on RECOX)		0.8	1.0	1.3	dB	7
Receiving gain without AGC $G_R = V_R/V_L$	$\begin{aligned} V_{GEN} &= 0.3 \ V_{rms} & \text{Bit: AGC} \\ IBAL &= 1 & \text{Bits } RX2 & RX1 \end{aligned}$	=1 RX0					
G_R at 28 mA $$\Delta G_R$$ at 20 mA $<$ I_L $<$ 28 mA $$\Delta G_R$$ at 28 mA $<$ I_L $<$ 60 mA	1 1 1 1 1 1	1 1 1	$ \begin{array}{r} -3 \\ -0.5 \\ -0.5 \end{array} $	$ \begin{array}{c} -1.5 \\ 0 \\ 0 \end{array} $	0 0.5 0.5	dB dB dB	7
ΔG _R receiving gain betw. 28 and 60 mA on RECO1/RECO2 and on RECOX	$V_{GEN} = 0.3 \ V_{rms} \qquad \begin{array}{c} Bits & AR1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{array}$	AR0 0 1 0 1	3.6 4.9 6.3 7.5	4.1 5.5 6.9 8.3	4.6 5.9 7.4 8.7	dB dB dB dB	7
+6 dB delta receiving gain on RECO1/RECO2 and on RECOX	$V_{GEN} = 0.3 \ V_{rms}, I_L = 28 mA \ and \ 60 \ (At maximum and minimum gain)$ Bit RX6		5.6	6.1	6.7	dB	7
Muted gain	$\begin{aligned} V_{GEN} &= 0.3 \ V_{rms} \\ Mute \ on \ REC01/REC02 \qquad Bit \\ Bit \ IE1 &= II \\ RECOX \qquad Bit IR=1 \end{aligned}$	IR=1 E2 = 1	65 60 36			dB dB dB	7
Noise at earpiece psophometric weighted	At maximum gain V _{GEN} = 0 V			150	220	μVp	7
Receiving distortion	$ \begin{aligned} I_L &= 28 \text{ mA and } 60 \text{ mA} \\ \text{max gain, } RX6 &= 1 VR = 5 \text{ V}_{pp} \\ \text{min. gain, } RX6 &= 0 VR = 2 \text{ V}_{pp} \end{aligned} $			1	3	%	7
Receiver output impedance on RECO1/RECO2 (pins 29–30)	$V_R = 50 \text{ mV}_{rms},$		40	65	85	Ω	7
Receiver output impedance on RECOX (pin 31) * VR = VRECO1 – VRECO2	$V_{RECOX} = 50 \text{ mV}_{rms}$		800	950	1100	Ω	7

Rev. A1: 19.01.1996

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Receiver output offset (pin 29 – 30)	I _L = 28 mA and 60 mA Maximum gain RX6 = 1	-800		+600	mV	7
Automatic sidetone balancing (V _R */V _{MIC})			24 16		dB dB	6
Digital balanced sidetone tested on receiving gain V_R/V_L	$\begin{array}{c} V_{GEN} = 0.3 \ V_{rms} & maximum \ gain \\ close \ switch \ S1 & Bit \ IBAL = 1 \\ & Bits \ BAL2 & BAL1BAL0 \\ & 0 & 0 & 0 \\ & 0 & 0 & 1 \\ & 0 & 1 & 0 \\ & 0 & 1 & 1 \\ & 1 & 0 & 1 \\ & 1 & 1 & 0 \\ & 1 & 1 & 1 \end{array}$	18.0 16.9 15.5	19.0 17.9 16.5 14.5 12.3 9.2 5.7	20.0 18.9 17.5	dB dB dB dB dB dB	7
Confidence level attenuation	$V_{\text{MIC}} = 2 \text{ mV}_{\text{rms}} \text{ Bit } I_{\text{R}} = 1$	60			dB	6
Confidence level gain V _R /V _{MIC}	$V_{\text{MIC}} = 2 \text{ mV}_{\text{rms}} \text{ I}_{\text{R}} = 1 \text{EC} = 1$	19.5	22.0	23.5	dB	6
Z line match. impedance	$V_{GEN} = 0.3 V_{rms} I_L = 28 \text{ and } 60 \text{ mA}$	520	570	620	Ω	7

Figure 7 Test circuit

U3810BM

Speaker amplifier without signal $EA = 1$		Тур.			Fig.
EA = 1					
IL = 28 mA $IL = 60 mA$	4.0 7.85	4.3 8.3	4.6 8.7	V V	8
$GSA1 = \frac{VSO1 - VSO2}{VSAI} \qquad EA = 1$ $GSA2 = \frac{VSO1 - VSO2}{VSAIX}$ Bits $NEA2 NEA1 NEA0 VSAI = VSAIX$ $1 1 VSAI = 3.5 \text{ mV}_{rms}$ $0 0 VSAI = 88 \text{ mV}_{rms}$	33 5	34	35 7	dB dB	8
EA = 1	-0.5	0	0.5	dB	8
EA = 1 gain change between two steps	3.8	4.0	4.2	dB	8
$ \begin{aligned} EA &= 1 \\ Bits \\ NEA2 & NEA1 & NEA0 & VSAI \\ 1 & 1 & 1 & VSAI = 12 \text{ mV}_{rms} \\ & & VSAI = 30 \text{ mV}_{rms} \\ 0 & 0 & VSAI = 250 \text{ mV}_{rms} \end{aligned} $			2.0 4.0 1.5	% % %	8
			2.0 2.0	% %	
EA = 1	4 4	7 7	10 10	kΩ	8
$V_{MIC} = 4 \text{ mV}$ $VSO = EA = 1$ $V_{MIC} = EC = 1, \text{ ITAL} = 1$	36		40	dB	8
$\begin{tabular}{llll} NEA &= 7 & EA = 1 \\ VSAI &= 12 \ mV_{rms} & LIS = 1 \\ VSAIX &= 12 \ mV_{rms} & LIS = 0 \\ \end{tabular}$	60 60			dB dB	8
$EA = 1 \qquad \begin{array}{c} & 50 \; \Omega \; load asym. \\ I_L = 20 \; mA & 100 \; \Omega \; load sym. \\ I_L = 28 \; mA & 50 \; \Omega \; load asym. \\ 100 \; \Omega \; load sym. \\ I_L = 60 \; mA & 50 \; \Omega \; load asym. \\ 100 \; \Omega \; load sym. \\ 100 \; \Omega \; load sym. \end{array}$	9.0 19.0 140	12,5 11,5 24 30 120 170		mW mW mW mW	8
LIS = 0, 1 EA = 1 max. and min. gain	-200		+200	mV	8
EA = 1			140	nA	8
$\begin{array}{ll} RAL = 68 \text{ k}\Omega & I_L = 28 \text{ mA and } 60 \text{ mA} \\ EA = 1 & \end{array}$			140	mV	6
$CAL = 470 \text{ nF}, RAL = 68 \text{ k}\Omega$					ı
(note 5) $IL = 28 \text{ mA and } 60 \text{ mA}$ $EA = 1 \text{ VSAI} = 6 \text{ mV}_{rms}$ $Bit \text{ ISQ} = 0$ $BIT \text{ ISO} = 1$	11 23	12 26	13	dB dB	8
	$GSA2 = \frac{VSO1 - VSO2}{VSAIX}$ Bits $NEA2 \ NEA1 \ NEA0 \ VSAI = VSAIX$ $1 \ 1 \ VSAI = 3.5 mV_{rms}$ $0 \ 0 \ VSAI = 88 mV_{rms}$ $EA = 1$ $EA = 1$ $EA = 1$ $Bits$ $NEA2 \ NEA1 \ NEA0 \ VSAI$ $1 \ 1 \ VSAI = 12 mV_{rms}$ $0 \ 0 \ VSAI = 250 mV_{rms}$ $EA = 1$ $VMIC = 4 mV \ VSO \ EA = 1$ $VMIC = 4 mV \ VSO \ EA = 1$ $VSAI = 12 mV_{rms} \ UIS = 1$ $VSAIX = 12 mV_{rms} \ UIS = 0$ $EA = 1 \ I_L = 20 mA \ 100 \Omega \ load \ sym.$ $I_L = 28 mA \ 50 \Omega \ load \ asym.$ $IOO \Omega \ l$	$GSA2 = \frac{VSO1 - VSO2}{VSAIX}$ Bits $NEA2 \ NEA1 \ NEA0 \ VSAI = VSAIX$ $1 \ 1 \ 1 \ VSAI = 3.5 mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 88 mV_{rms}$ 5 $EA = 1$ $EA = 1$ $gain \ change \ between \ two \ steps$ $EA = 1$ Bits $NEA2 \ NEA1 \ NEA0 \ VSAI$ $1 \ 1 \ 1 \ VSAI = 12 mV_{rms}$ $VSAI = 30 \ mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $EA = 1 \ 1 \ 1 \ VSAI = 80 \ mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $EA = 1 \ 1 \ 1 \ VSAI = 80 \ mV_{rms}$ $0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ 0 \ VSAI = 250 \ mV_{rms}$ $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$ \begin{array}{c} \text{GSA2} = \frac{\text{VSO1} - \text{VSO2}}{\text{VSAIX}} \\ \text{Bits} \\ \text{NEA2 NEA1 NEA0 VSAI} = \text{VSAIX} \\ 1 & 1 & 1 & \text{VSAI} = 3.5 \text{mV}_{\text{rms}} \\ 0 & 0 & 0 & \text{VSAI} = 88 \text{mV}_{\text{rms}} \\ 5 & 6 \\ \hline \\ \text{EA} = 1 \\ \text{gain change between two steps} \\ \text{EA} = 1 \\ \text{gain change between two steps} \\ \text{EA} = 1 \\ \text{Bits} \\ \text{NEA2 NEA1 NEA0 VSAI} \\ 1 & 1 & 1 & \text{VSAI} = 12 \text{mV}_{\text{rms}} \\ \text{VSAI} = 30 \text{mV}_{\text{rms}} \\ 0 & 0 & 0 & \text{VSAI} = 250 \text{mV}_{\text{rms}} \\ 0 & 0 & 0 & \text{VSAI} = 250 \text{mV}_{\text{rms}} \\ \hline \\ \text{Bits} & \text{EA} = 1 & \text{I}_{L} = 60 \text{mA} \\ \text{NEA2 NEA1 NEA0} \\ 1 & 1 & 1 & \text{VSAI} = 80 \text{mV}_{\text{rms}} \\ 0 & 0 & 0 & \text{VSAI} = 250 \text{mV}_{\text{rms}} \\ \hline \\ \text{EA} = 1 & 4 & 7 \\ \hline \\ \text{VMIC} = 4 \text{mV} & \frac{\text{VSO}}{\text{VMIC}} & \text{EA} = 1 \\ \text{VSAI} & = 12 \text{mV}_{\text{rms}} & \text{LIS} = 1 \\ \hline \text{VSAI} & = 12 \text{mV}_{\text{rms}} & \text{LIS} = 1 \\ \hline \text{VSAI} & = 12 \text{mV}_{\text{rms}} & \text{LIS} = 0 \\ \hline \text{O0 Q load asym.} & 12.5 \\ \hline \text{IL} & = 20 \text{mA} & 100 \Omega \text{load sym.} \\ \hline \text{IL} & = 20 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load asym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 50 \Omega \text{load sym.} \\ \hline \text{IL} & = 60 \text{mA} & 60 \text{mA} \\ \hline \text{EA} & = 1 \\ \hline \text{CAL} & = 470 \text{nF}, \text{RAL} & = 68 \text{k}\Omega \\ \hline \text{IND} & \text{IND} & \text{IND} &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Rev. A1: 19.01.1996

Figure 8 Test circuit

- Note 3: GSA1 measured with S2 on 11
 GSA2 measured with S2 on 12 and Bit LIS = 1
- Note 4: Antilarsen dynamic range: $\Delta GLS = GLSA GLSB$ $GLSA \ measured \ at \ V_{MIC} = 160 \ \mu V_{rms}$ $GLSB \ measured \ at \ V_{MIC} = 1 \ mV_{rms}$
- Note 5: The available output current of the speaker amplifier can be increased by reduction of the quiescent current of the receiver output stage (bits IE1, IE2, see "contents of internal registers").

DTMF dialing

The output pin MF provides the multifrequency signal to be transmitted on line. This signal is the result of the sum of two frequency pulse modulations and requires an external filter to compose a dual sine wave. The frequencies are chosen in a low group and a high group.

The circuit conforms to the T/CS 46-02 CEPT recommendation concerning DTMF option 1 (-9/-11 dBm) and option 2 (-6/-8 dBm) transmit level 5 (example: in fig. 6, option 2 can be fulfilled with 3.5 dB pre–emphasis and 1.5 Vpp low frequency level pin 35).

Two different low levels (with 3 dB difference) and two different pre-emphasis (2.5 and 3.5 dB) can be chosen through the serial bus.

Melody - confidence tone

Melody/confidence tone frequencies are given in table 2.

In the state SIN1 = 1, SIN0 = 0, the IC delivers a single pulse density modulated frequency at pin MF (the same behavior as DTMF), denoted as a confidence tone. The confidence tone is sent either to the line or on the earpiece. In the state SIN1 = 0, SIN0 = 1, a square wave is sent to the loudhearing input for ringing melodies.

TELEFUNKEN Semiconductors

Table 1: Frequency tolerance of the output tones for DTMF signalling tone output frequency when using 455 kHz

Standard frequency	Tone output	Frequency	deviation
Hz	frequency Hz	%	Hz
Low Group			
697	697.85	0.12	+0.85
770	771.18	0.15	+1.18
852	852.06	0.01	+0.06
941	940.08	-0.10	-0.92
High Group			
1209	1210.1	0.09	+1.1
1336	1338.2	0.17	+2.2
1477	1477.3	0.02	+0.3
1633	1636.7	0.22	+3.7

Note: Frequency can be directly measured on CO when S3 is closed (figure 9)

AMF	SIN0	SIN1	CO
1	1	1	DTMF : HF
0	1	1	DTMF : LF
0	1	0	MELODY
0	0	1	CONFIDENCE TONE

	1209	1336	1477	1633
697	1	2	3	A
770	4	5	6	В
852	7	8	9	С
941	*	0	#	D

Rev. A1: 19.01.1996 17 (31)

Standard	Tone output	Frequency
frequency	frequency	deviation
Hz	Hz	0/00
440	440.04	0.09
466.16	466.19	0.06
493.88	493.49	-0.78
523.25	522.99	-0.50
554.36	554.88	0.92
587.33	587.86	0.89
622.25	621.58	-1.07
659.25	659.42	0.26
698.46	697.85	-0.87
740	741.04	1.41
784	784.48	0.62
830	830.29	-0.37
880	878.38	-1.84
932.3	932.38	0.08
987.77	989.13	1.38
1046.5	1048.39	1.80
1108.73	1109.76	0.93
1174.66	1172.68	-1.69
1244.5	1243.17	-1.07
1318.5	1315.03	-2.63
1396.9	1395.71	-0.86
1480	1477.27	-1.84
1568	1568.97	0.62
1661.2	1660.58	-0.37
1760	1763.57	2.03
1864.65	1864.75	0.06
1975.5	1978.26	1.40
2093	2087.16	-2.79
2217.46	2208.74	-3.93
2349.3	2345.36	-1.68

Table 2: Frequency tolerance of the output tone
Tone output frequency when using 455 kHz

Parameters		Min.	Typ.	Max.	Unit	Fig.		
DTMF generation (specified pin MF)								
Tone frequency accuracy	See table 1							
Low group tone level without attenuation	Note 7 S3 closed	BFOA (pre-emphasis A) BFOB (pre-emphasis B)	1.35 1.25	1.50 1.40	1.65 1.55	V V	9	
High group tone level without attenuation	Note 7 S3 closed	HFOA (pre-emphasis A) HFOB (pre-emphasis B)	1.80 1.90	2.00 2.10	2.20 2.35	V V	9	
Pre-emphasis A without attenuation	Note 7 S3 closed	PROA	2.04	2.54	3.04	dB	9	
Pre-emphasis B without attenuation	Note 7 S3 closed	PROB	3.02	3.52	4.02	dB	9	
Low group tone level with attenuation	Note 7 S3 closed	BF1A (pre-emphasis A) BF1B (pre-emphasis B)	0.95 0.90	1.05 1.00	1.15 1.10	V V	9	
High group tone level with attenuation	Note 7 S3 closed	HF1A (pre-emphasis A) HF1B (pre-emphasis B)	1.25 1.35	1.40 1.50	1.55 1.65	V V	9	

U3810BM

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Pre-emphasis A with attenuation	Note 7 PR1A S3 closed	2.04	2.54	3.04	dB	9
Pre-emphasis B with attenuation	Note 7 PR1B S3 closed	3.02	3.52	4.02	dB	9
Leakage		-100		100	nA	9
Distortion at line	IL = 28 mA M = 8 Key = «3» TX6 = 1 IM = 1		1	3	%	6
Low group tone level at line	IL = 28 mA and 60 mA M = 8 Key = «3» TX6 = 1 IM = 1	-10	-8	-6	dBm	6
Melody generation						
Tone frequency accuracy	see table 2					
Confidence tone level	Note: 7 CTL	2.10	2.33	2.60	V	9

Figure 9 Test circuit

Rev. A1: 19.01.1996

U3810BM

TELEFUNKEN Semiconductors

		Internal set by se			Internal signal set by clock count			
S4 (Fig. 9)	AMF	SIN1	SIN0	M4	FB	FH	F227	I measured
0	0	1	1	0	1	0	X	I1
0	0	1	1	0	0	1	X	I2
0	0	1	1	1	0	1	X	I3
0	0	1	0	0	0	X	1	I4
0	1	1	1	X	0	0	1	15
1	0	1	1	1	0	1	X	I6
1	0	1	1	0	1	0	X	I7
1	0	1	1	1	1	0	X	18
1	0	1	0	X	1	X	0	I9
1	1	1	1	X	1	1	0	I10

X: either 1 or 0

Note 7: DTMF calculations

Note 7: DTWIF Calculations	
BF level without attenuation with pre-emphasis A:	BFOA = $\left(\frac{I1}{I1 + I7} + \frac{I6}{I6 + I2}\right) \frac{VDD}{2}$
BF level without attenuation with pre-emphasis B:	BFOB = $\left(\frac{I1}{I1 + I8} + \frac{I6}{I6 + I3}\right) \frac{\text{VDD}}{2}$
HF level without attenuation with pre-emphasis A:	HFOA = $\left(\frac{I2}{I2 + I6} + \frac{I7}{I7 + I1}\right) \frac{VDD}{2}$
HF level without attenuation with pre-emphasis B:	HFOB = $\left(\frac{I3}{I3 + I6} + \frac{I8}{I8 + I1}\right) \frac{\text{VDD}}{2}$
Pre-emphasis A without attenuation:	$PROA = 20 \log \left(\frac{HFOA}{BFOA} \right)$

Pre-emphasis B without attenuation:
$$PROB = 20 \log \left(\frac{\text{HFOB}}{\text{BFOB}} \right)$$
Pre-emphasis B without attenuation:
$$PROB = 20 \log \left(\frac{\text{HFOB}}{\text{BFOB}} \right)$$

BF level with attenuation with pre-emphasis A:
$$BF1A = \left(\frac{I1}{I1 + I7 + I10} + \frac{I6}{I6 + I2 + I5}\right) \frac{VDD}{2}$$

BF level with attenuation with pre-emphasis B:
$$BF1B = \left(\frac{I1}{I1 + I8 + I10} + \frac{I6}{I6 + I3 + I5}\right) \frac{VDD}{2}$$

HF level with attenuation with pre-emphasis A:
$$HF1A = \left(\frac{I2}{I2 + I6 + I10} + \frac{I7}{I7 + I1 + I5}\right) \frac{VDD}{2}$$

HF level with attenuation with pre-emphasis B:
$$HF1B = \left(\frac{I3}{I3 + I6 + I10} + \frac{I8}{I8 + I1 + I5}\right) \frac{VDD}{2}$$

Pre-emphasis A without attenuation:
$$PR1A = 20 \log \left(\frac{HF1A}{BF1A}\right)$$

Pre-emphasis B without attenuation: PR1B =
$$20 \log \left(\frac{\text{HF1B}}{\text{BF1B}}\right)$$

Confidence tone level:
$$CTL = \left(\frac{I1}{I1 + I9} + \frac{I6}{I6 + I4}\right) \frac{VDD}{2}$$

TELEFUNKEN Semiconductors

U3810BM

Parameters	Test conditions	Min.	Тур.	Max.	Unit	Fig.
Ringer						
THA threshold voltage THTV	$V_S = 5 \text{ V}$ S5 on 1	8.30	8.75	9.20	V	10
THA hysteresis ΔTH	$V_S = 5 V$ S5 on 1	435	465	495	mV	10
VSA threshold voltage VSAON (ring detector en- abled)	VTHA = 12 V S5 on 1	3.0	3.2	3.4	V	10
VSA threshold voltage VSAOFF (ring detector disabled)	VTHA = 12 V S5 on 1	2.45	2.5	2.65	V	10
Switching supply output current	VS = 5 V $VIN = 30 VS7 on 1 S5 on 1 RIN = 300 kΩ$	33	37		mA	10
Input impedance VIN/IIN	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	50.0 2.78 13.4	2.90 14.1	3.05 15.0	kΩ kΩ kΩ	10
RPI ringing power information		1.48 1.57	1.55 1.61	1.64 1.64	V V	10
VSA/VDD switch off VSA- OFF1 (measured on VSA)	S8 closed S5 on 1 IVDD = -1 mA	5.55	5.8	6.0	V	10
VSA shunt regulator VSAL VSAH	S5 on 3 $ISA = 2 \text{ mA}$ $ISA = 45 \text{ mA}$	4.75 5.0	5.0 5.3	5.15 5.7	V V	10
Difference between max. VSA voltage and cut off voltage	VSADIFF = VSAOFF1 – VSAH	250	500		mV	10
ZCO Zero crossing information	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.4		0.5	V V	10
Ringer output power (on 100Ω load)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	105	130	mW	10
Extra ringing attenuation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-12.8	-12.2	-11.6	dB	10

Rev. A1: 19.01.1996 21 (31)

Figure 10 Test circuit

TELEFUNKEN Semiconductors

Electrical characteristics of logical part

 $f_{xck} = 455 \text{ kHz}$ VDD = 3.5 V

Parameter	Min.	Тур.	Max.	Unit
INPUTS : C, D Low-voltage input Vil High-voltage input Vih	2.8		0.7	V V
Input leakage current Ii (0 < VI < VDD)	-1		1	μΑ
Output: RESET, CO, LVIO Low-voltage output (Iol = $100 \mu A$) Vol High-voltage output (Ioh = $-100 \mu A$) Voh	3.1		0.35	V V
CLOCK: CO (fig. 15) Using reference ceramic resonator period: t _{cyc} High pulse width: t _{wch}	2.19 1.10	2.20	2.21 1.45	μs μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 0 2 2 0.1 0.2 0.2			μs μs μs μs μs μs
RESET TIMING (figure 11, 12 and 13) Clock start-up time t_{on} Clock inhibition time t_{off} Reset time (without t_{on}) t_{r}	70 30	3 31.6	5 150 32	ms μs ms

Rev. A1: 19.01.1996 23 (31)

Power-on-reset and reset pin

The system (U3810BM + microcontroller) is woken up by an initial condition:

- line voltage (VL)- ringer (THA)- external supply (ESI)

To avoid undefined states of the system when it is powered on, an internal reset clears the internal registers, and maintains pin RESET low during trt.

1.) Power on in speed-up condition (VDD < VSON)

Figure 11

2.) Power on without speed-up (VDD > VSON)

Figure 12
24 (31) Rev. A1: 19.01.1996

TELEFUNKEN Semiconductors

3.) Line break

When the microprocessor detects LIVO low during $t > t\mu P$ (internal microprocessor timing special for line breaks), it forces high the shutdown bit through the serial bus, thus leading the IC, after t_{off} , to go into standby mode (oscillator stop). Pin RESET remains high.

When the line break is shorter than $t\mu P$, nothing appears.

Rev. A1: 19.01.1996 25 (31)

Figure 15

Serisl bus

The circuit is remoted by an external microcontroller through the serial bus:

The data is an 8-bit word:

B7 - B6 - B5: address of the destination register (0 to 7)

B4 – B0: contents of register

The data line must be stable when the clock is high and data must be serially shifted.

After 8 clock periods, the transfer to the destination register is (internally) generated by a low to high transition of the data line when the clock is high.

Figure 17

Serial Bus Interface 8 bits register

Figure 18

Content of internal registers

0: Transmission mode

MIS	TX6	TX2	TX1	TX0	MIS: TX6: TX:	Microphone input switching +6dB Transmission gain adjustment
1: Reception r	node					
LIS	RX6	RX2	RX1	RX0	LIS: RX6: RX:	Loudhearing input switching +6dB Reception gain adjustment

Rev. A1: 19.01.1996 27 (31)

U3810BM

TELEFUNKEN Semiconductors

2: Loudhearing mode

IAL	EA	NEA2	NEA1	NEA0	IAL: EA: NEA:	Antilarsen inhibition Loudhearing enable Loudhearing gain adjustment		
3: AGC mode	: AGC mode							
IAGC	AR1	AR0	AT1	AT0	IAGC: AT: AR:	AGC inhibition Transmission AGC adjustment Reception AGC adjustment		
4: Sidetone me	ode	•	•		•			

IE2	IBAL	BAL2	BAL1	BAL0	IE2: IBAL:	Reception output amplifier current adjustment Inhibition of automatic sidetone balance
-----	------	------	------	------	---------------	---

BAL	Z
0	1 STS
1	5/6 STS + 1/6 STL
2	2/3 STS + 1/3 STL
3	1/2 STS + 1/2 STL
4	1/2 STS + 1/2 STL
5	1/3 STS + 2/3 STL
6	1/6 STS + $5/6$ STL
7	1 STL

5: Internal inhibitions

IR	EC	IT	IM	IE1	IR: EC: IT: IM: IE1:	Reception inhibition Confidence enable Transmit inhibition Microphone inhibition Reception output amplifier current adjustment
----	----	----	----	-----	----------------------------------	--

IE1	IE2	IREC	
0	0	3 mA	
0	1	2 mA	
1	0	1 mA	
1	1	0 mA	Earpiece inhibition

6: Melody / DTMF choice

|--|

U3810BM

24	3.6.1.1		DTMF mode		
M	Melody or confi		Key	HF/LF	
00	A3	440.0	«1»	2.5 dB	
01	A#3	466.2	«4»	,,	
02	В3	493.5	«7»	,,	
03	C4	523.0	** *	,,	
04	C#4	554.9	«2»	,,	
05	D4	587.8	«5»	,,	
06	D#4	621.6	«8»	,,	
07	E4	659.4	«0»	,,	
08	F4	697.8	«3»	,,	
09	F#4	741.0	«6»	,,	
0A	G4	784.5	«9»	,,	
ОВ	G#4	830.3	«#»	,,	
0C	A4	878.4	«A»	,,	
0D	A#4	932.4	«B»	,,	
0E	B4	989.1	«C»	,,	
0F	C5	1048.4	«D»	,,	
10	C#	1109.7	«1»	3.5 dB	
11	D5	1172.7	«4»	,,	
12	D#5	1243.2	«7»	,,	
13	E5	1315.0	«*»	,,	
14	F5	1395.7	«2»	,,	
15	F#5	1477.3	«5»	,,	
16	G5	1569.0	«8»	,,	
17	G#5	1660.6	«O»	,,	
18	A5	1763.6	«3»	,,	
19	A#5	1864.7	«6»	,,	
1A	B5	1978.3	«9»	,,	
1B	C6	2087.2	«#»	,,	
1C	C#6	2208.7	«A»	,,	
1D	D6	2345.4	«B»	,,	
1E			«C»	,,	
1F			«D»	,,	

Table 3

7: Control register

					AMF:	MF output attenuation –3 dB
AMF	ISQ	SD	SIN1	SIN0	ISQ: SD: SIN:	extra ringing attenuation (12 dB) Squelch inhibition Shutdown Generator mode 0: OFF 1: Melody (Ringer) 2: Confidence tone 3: DTMF

Order Information

Package	Type
PLCC 44	U3810BM-CP
SSO 44	U3810BM-FN

Electrostatic sensitive device. Observe precautions for handling.

Rev. A1: 19.01.1996 29 (31)

Dimensions in mm

Package: PLCC 44

Package: SSO 44

TELEFUNKEN Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of these substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents that all refer to the same substances:

- (1) Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- (2) Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- (3) Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423

Rev. A1: 19.01.1996