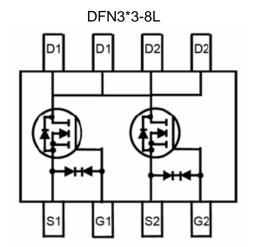


Description

The ACE8628B uses advanced trench technology to provide excellent RDS(ON) and low gate charge. They offer operation over a wide gate drive range from 1.8V to 12V. It is ESD protected. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.


Features

- V_{DS} 20V
- I_D=8A (V_{GS}=4.5V)
- $R_{DS(ON)}$ <14m Ω (V_{GS} =4.5V)
- $R_{DS(ON)}$ <15m Ω (V_{GS} =4V)
- $R_{DS(ON)} < 17.5 \text{m}\Omega \text{ (V}_{GS} = 3.1 \text{V)}$
- $R_{DS(ON)}$ <21m Ω (V_{GS} =2.5V)
- ESD Protected: 2000V

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Voltage	V_{DSS}	20	٧		
Gate-Source Voltage			±12	V	
Drain Current (Continuous) * AC	T _A =25°C	I _D	8	A	
	T _A =70 °C	ID.	6.4		
Drain Current (Pulse) * B			30	Α	
Power Dissipation	T _A =25 °C T _A =70 °C	P_{D}	2.5	W	
Fower Dissipation	T _A =70 °C	ΓD	1.6		
Operating and Storage Junction Temperature Range T _J /T _{STG} -5					

Packaging Type

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Static								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I_D =250 uA	20			V		
Gate Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 12V$		2.5	10	uA		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =20V, V_{GS} =0V			1	uA		
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_{DS} =250uA	0.4	0.51	1	V		
Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_D =5A		12.1	14	mΩ		
		V_{GS} =4V, I_D =5A		12.6	15			
		V_{GS} =3.1V, I_D =5A		13.5	17.5			
		V_{GS} =2.5V, I_{D} =2.5A		14.6	21			
Forward Transconductance	g _{FS}	V _{DS} =5V, I _D =8A		36		S		
Diode Forward Voltage	V_{SD}	I _{SD} =1A, V _{GS} =0V		0.63	1	V		
Maximum Body-Dode Continuous Current	I _S				2.4	Α		
Switching								
Total Gate Charge	Qg	V_{GS} =4.5V, V_{DS} =10V, I_{D} =8A		17.9		nC		
Gate-Source Charge	Qgs			4.1				
Gate-Drain Charge	Qgd			5.6				
Turn-On Time	td(on)	V_{GS} =5V, R_L =1.5 Ω , V_{DS} =10V, R_{GEN} =3 Ω		6.2	12.4	nS		
	tr			12.7	25.4			
Turn-Off Time	td(off)			51.7	103.4			
	tf			16	32			
Dynamic								
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =10V, f=1MHz		1810		pF		
Output Capacitance	Coss			232				
REVERSE Transfer Capacitance	Crss			200				

Note:

- A. The value of R θ JA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- B. Repetitive rating, pulse width limited by junction temperature.
- C. The R θ JA is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient .
- D. The static characteristics are obtained using <300 μs pulses, duty cycle 0.5% max.
- E. These tests are performed with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}\text{C}$. The SOA curve provides a single pulse rating.

Typical Performance Characteristics

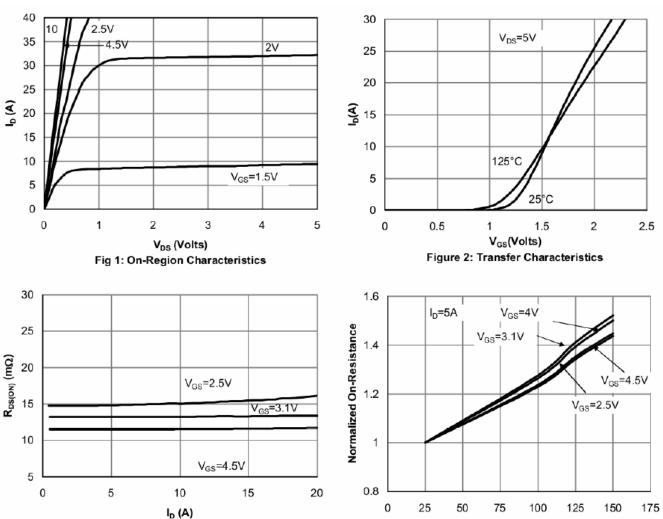


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature

1.0E+01

Typical Performance Characteristics

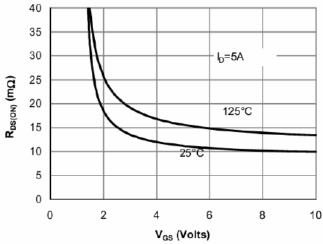


Figure 5: On-Resistance vs. Gate-Source Voltage

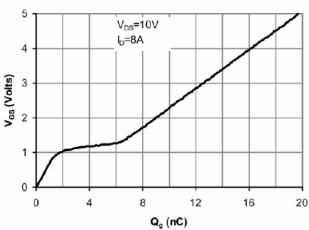
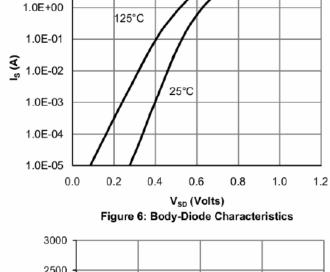



Figure 7: Gate-Charge Characteristics

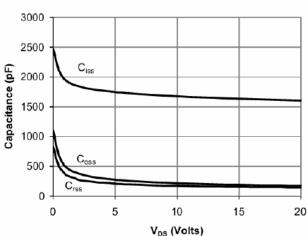


Figure 8: Capacitance Characteristics

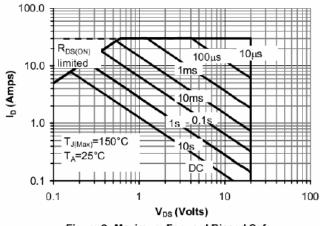


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

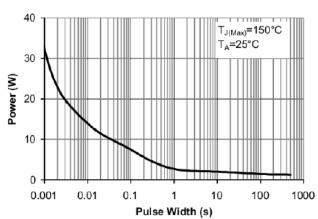
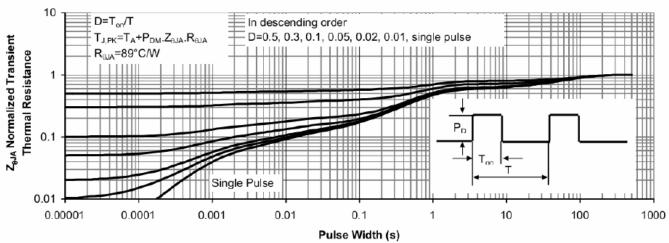
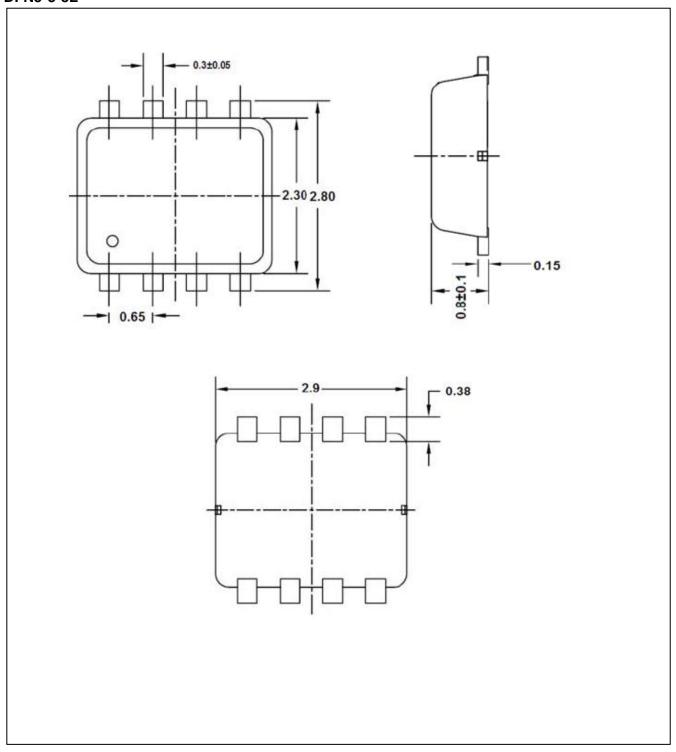


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Typical Performance Characteristics




Figure 11: Normalized Maximum Transient Thermal Impedance

Packing Information

DFN3*3-8L

ACE8628B

Dual N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/