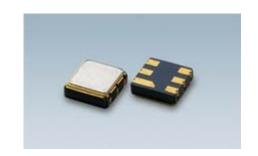


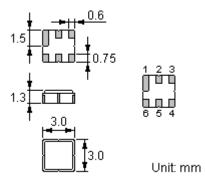
Tel: 0044 (0) 118 979 1238 Fax: 0044 (0) 118 979 1283 email: info@actcrystals.com

SURFACE-MOUNT SAW RESONATOR

PART NO.: ACTR8027_868MHz_DCC6C


Product Type:	Customer:
	Customer Part NO.:
SAW Resonator	
	Issued Date:

PREPARED BY	CHECKED BY	APPROVED BY


Features

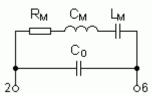
- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- Surface Mounted Technology (SMT)
- Lead-free production and RoHS compliance

Package Dimensions

Ceramic Package: DCC6C

Pin Configuration

2	Terminal
5	Terminal
1, 3, 4, 6	Ground


Marking

ACTR 8027 Top View, Laser Marking

"ACT": Manufacturer's mark

"R": SAW resonator "8027": Part number

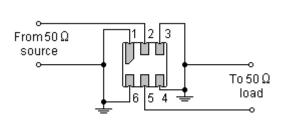
Equivalent LC Model

Maximum Ratings

Rating		Value	Unit
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	$V_{ m DC}$	±30	V
Operating temperature range	T_{A}	-40 ~ +85	°C
Storage temperature range	\mathcal{T}_{stg}	-40 ~ +85	°C
Soldering Temperature (10 seconds)	T _S	260	°C

Electrical Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	867.850		868.150	MHz
(+25 °C)	Tolerance from 868.000 MHz				±150	kHz
Insertion Loss		ΙL		1.3	1.8	dB
Ovelity Factor	Unloaded Q	Q _U		11,600		
Quality Factor	50 Ω Loaded Q	QL		1,600		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
,	Frequency Temperature Coefficient	FTC		0.032		ppm/ ² C
Frequency Aging Absolute Value during the First Year		Fa		≤10		ppm/yr
DC Insulation Resis	C Insulation Resistance Between Any Two Terminals		1.0			ΜΩ
	Motional Resistance	R _M		16	23	Ω
RF Equivalent	Motional Inductance	L _M		34.0485		μН
RLC Model	Motional Capacitance	См		0.9884		fF
	Shunt Static Capacitance	C ₀	2.20	2.45	3.70	pF

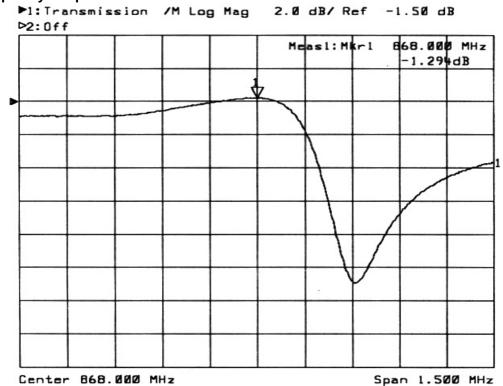

® RoHS Compliant

Electrostatic Sensitive Device

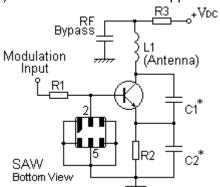
NOTE:

- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

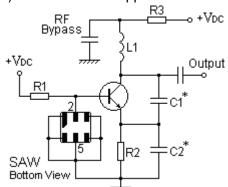
Test Circuit



Temperature Characteristics



Typical Frequency Response

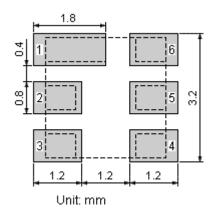


Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

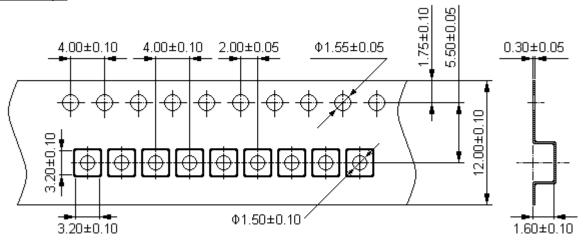
Stability Characteristics

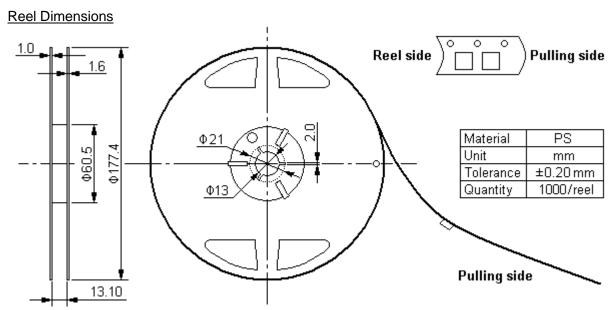

	Test item	Condition of test		
1	Mechanical shock	(a) Drops: 3 times on concrete floor (b) Height: 1.0 m		
2	Vibration resistance	(a) Frequency of vibration: 10~55Hz (c) Directions: X,Y and Z	(b) Amplitude: 1.5 mm (d) Duration: 2 hours	
3	Moisture resistance	(a) Condition: 40°C, 90~95% R.H. (c) Wait 4 hours before measurement	(b) Duration: 96 hours	
4	Climatic sequence	1, ,	for 24 hours, 90~95% R.H. for 24 hours, 90~95% R.H.	
5	High temperature exposure	(a) Temperature: 70°C (c) Wait 4 hours before measurement	(b) Duration: 250 hours	
6	Thermal impact	(a) +70°C for 30 minutes ⇒ -25°C for 30 mi (b) Wait 4 hours before measurement	nutes repeated 3 times	

Requirements: The SAW resonator shall remain within the electrical specifications after tests.

Remarks

- SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- Be certain not to apply voltage exceeding the rated voltage of components.
- Do not operate outside the recommended operating temperature range of components.
- Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- Be careful of soldering temperature and duration of components when soldering.
- Do not place soldering iron on the body of components.
- Be careful not to subject the terminals or leads of components to excessive force.
- SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.


Recommended Land Pattern



Packing Information

Carrier Tape

Dimensions in mm

Outer Packing

Туре	Quantity	Dimension	Description	Weight
Carton Box I	5000	190×190×95	anti-static plastic bag & carton box 1 reel / bag	0.85
Carton Box II	10000	190×190×190	5 bags / box (5000 pcs) 10 bags / box (10000 pcs)	1.80
		Unit: mm		Unit: kg

© ACT2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.