

DMG2301U

P-CHANNEL ENHANCEMENT MODE MOSFET

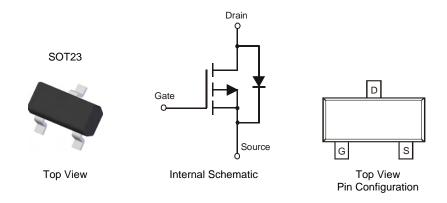
Product Summary

V _{(BR)DSS}	R _{DS(ON)} max	I _D max T _A = +25°C
-20V	$80m\Omega @ V_{GS} = 4.5V$	-2.7A
	110mΩ @ V _{GS} = 2.5V	-2.1A

Description

This MOSFET has been designed to minimize the on-state resistance $(R_{DS(on)})$ and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

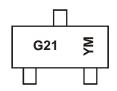

- Backlighting
- Power Management Functions
- DC-DC Converters
- Motor control

Features

- Low On-Resistance
- Low Input Capacitance
- · Fast Switching Speed
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 standards for High Reliability

Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin annealed over Copper leadframe.
 Solderable per MIL-STD-202, Method 208 63
- Terminals Connections: See Diagram Below
- Weight: 0.008 grams (approximate)


Ordering Information (Note 4)

Part Number	Case	Packaging
DMG2301U-7	SOT23	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information

G21 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: W = 2009) M = Month (ex: 9 = September)

Date Code Key

Year	2009	2010	20	11	2012	2013	2014	2015	5 20	16	2017	2018
Code	W	X)	1	Z	Α	В	С]	D	Е	F
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

DMG2301U

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Units	
Drain-Source Voltage		V_{DSS}	-20	V	
Gate-Source Voltage		V_{GSS}	±8	V	
Continuous Drain Current (Note 5) V _{GS} = -4.5V	Steady State	$T_A = +25$ °C $T_A = +70$ °C	l _D	-2.7 -2.1	А
Continuous Drain Current (Note 5) V _{GS} = -2.5V	I _D	-2.1 -1.7	А		
Pulsed Drain Current (Note 6)		I _{DM}	-27	А	

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P_{D}	0.8	W
Thermal Resistance, Junction to Ambient @T _A = +25°C (Note 5)	R _{0JA}	157	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 7)	Symbol	IVIIII	тур	IVIAA	Oilit	rest condition
Drain-Source Breakdown Voltage	BV _{DSS}	-20	_	_	V	$V_{GS} = 0V, I_D = -250\mu A$
Zero Gate Voltage Drain Current T _J = +25°C	I _{DSS}	_	_	-1.0	μА	V _{DS} = -16V, V _{GS} = 0V
Gate-Source Leakage	I _{GSS}	_	_	±100	nA	$V_{GS} = \pm 8V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 7)				•	•	•
Gate Threshold Voltage	V _{GS(th)}	-0.45	_	-1.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
Static Drain-Source On-Resistance				80	mΩ	$V_{GS} = -4.5V$, $I_D = -2.8A$
Static Drain-Source On-Resistance	R _{DS (ON)}	_	_	110	11122	$V_{GS} = -2.5V$, $I_D = -2.0A$
Forward Transfer Admittance	Y _{fs}	_	10	_	S	$V_{DS} = -5V, I_{D} = -2.8A$
Diode Forward Voltage	V_{SD}	_	-0.75	-1.0	V	$V_{GS} = 0V, I_{S} = -1A$
DYNAMIC CHARACTERISTICS (Note 8)				<u>.</u>		
Input Capacitance	C _{iss}		608	_	pF	V 6V V 0V
Output Capacitance	Coss		82	_	pF	$V_{DS} = -6V, V_{GS} = 0V$ -f = 1.0MHz
Reverse Transfer Capacitance	C_{rss}	_	72	_	pF	7 - 1.0WH12
Gate Resistance	R_{G}		44.9	_	Ω	$V_{GS} = 0V, V_{DS} = 0V, f = 1.0MHz$
Total Gate Charge	Qg	_	6.5	_	nC	
Gate-Source Charge	Q_{gs}	_	0.9	_	nC	$V_{GS} = -4.5V$, $V_{DS} = -10V$, $I_{D} = -3A$
Gate-Drain Charge	Q_{gd}	_	1.5	_	nC	
Turn-On Delay Time	t _{D(on)}	_	12.5	40	ns	
Turn-On Rise Time	t _r	_	10.3	30	ns	$V_{DS} = -10V, V_{GS} = -4.5V,$
Turn-Off Delay Time	t _{D(off)}		46.5	140	ns	$R_L = 10\Omega, R_G = 1.0\Omega, I_D = -1A$
Turn-Off Fall Time	t _f	_	22.2	66	ns	

Notes:

- 3. Device mounted on FR-4 PCB with minimum recommended pad layout.
- 4. Repetitive rating, pulse width limited by junction temperature..
- 5. Short duration pulse test used to minimize self-heating effect.
- 6. Guaranteed by design. Not subject to production testing.