Low-Noise Matched Dual Monolithic Transistor MAT02 #### 1.0 SCOPE This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein. The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure a http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf is to be considered a part of this specification. This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/MAT02 **2.0** Part Number. The complete part number(s) of this specification follow: Part Number MAT02-000C <u>Description</u> Low-Noise Matched Dual Monolithic Transistor #### 3.0 Die Information #### 3.1 <u>Die Dimensions</u> | Die Size | Die Thickness | Bond Pad Metalization | | | |-----------------|----------------|-----------------------|--|--| | 56 mil x 60 mil | 19 mil ± 2 mil | Al/Cu | | | #### 3.2 <u>Die Picture</u> - 1. C1 - 2. B1 - 3. E1 - 4. E2 - 5. B2 - 6. C2 Substrate can be connected to V- or floated. ### **MAT02** #### 3.3 <u>Absolute Maximum Ratings</u> | Collector to Base Voltage (BV _{CBO}) | 40V | |---|----------------| | Collector to Emitter Voltage (BV _{CEO}) | 40V | | Emitter to Emitter Voltage (BV _{EE}) | 40V | | Collector Current (I _C) | 20mA | | Emitter Current (I _E) | 20mA | | Storage Temperature Range | 65°C to +150°C | | Junction Temperature (T _J) | +150°C | | Operating Ambient Temperature Range | 55°C to +125°C | #### Absolute Maximum Ratings Notes: Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. #### 4.0 <u>Die Qualification</u> In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein. - (a) Qual Sample Size and Qual Acceptance Criteria 25/2 - (b) Qual Sample Package 6 Lead TO Package - (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification. | Table I - Dice Electrical Characteristics | | | | | | | | |---|---------------------------------------|---|-----------------------|--------------|-------|------|--| | Parameter | Symbol | | Limit
Min | Limit
Max | Units | | | | | | | I _C =1mA | 500 | | | | | Current Gain | h _{FE} | $V_{CB} = 0V, 40V$ | I _C =100μA | 500 | | | | | | | | I _C =10μA | 400 | | | | | Current Gain Match <u>2/</u> | Δh _{FE} | I _C =10μΑ, 100μΑ, 1mΑ;
V _{CB} = 0V | | | 2 | % | | | Offset Voltage | Vos | $V_{CB} = 0V$ | | | 50 | μV | | | Offset Voltage vs. V _{CB} | $\Delta V_{OS}/\Delta V_{CB}$ | V _{CB} = 0V, 40V | | | 25 | μV | | | Offset Voltage vs. Collector Current | ΔVos/Δ I c | V _{CB} =0V; I _C =10μA, 1mA | | | 25 | μV | | | Input Offset Current | los | V _{CB} = 0V, 40V | | | 0.6 | nA | | | Offset Current vs. V _{CB} | Δl _{OS}
/ΔV _{CB} | V _{CB} = 0V, 40V | | | 70 | pA/V | | | Bulk Emitter Resistance | r _{BE} | | | | 0.5 | Ω | | | Table I - Dice Electrical Characteristics (Continued) | | | | | | | | |---|---------------------|--|-----------|-----------|-------|--|--| | Parameter | Symbol | Conditions
<u>1/</u> | Limit Min | Limit Max | Units | | | | Bias Current | lΒ | $V_{CB} = 0V, 40V$ | | 25 | nA | | | | Collector Saturation Voltage | V _{CE} SAT | $I_C = 1 \text{ mA}, I_B = 100 \mu \text{A}$ | | 0.1 | V | | | | Breakdown Voltage | BV_CEO | I _C =100μA | | 40 | V | | | #### Table I Notes: $\underline{1}/~V_{CB}$ = 15V, I_{C} = ±10 $\mu A,$ and T_{A} = 25°C, unless otherwise specified. $$\underline{\text{2}}/\text{ Current gain match } (\Delta h_{\text{FE}}) \text{ is defined as } \Delta h_{\text{FE}} = \frac{100(\Delta I_B)h_{FE}min}{I_C}$$ ## **MAT02** | Table II - Electrical Characteristics for Qual Samples | | | | | | | | |--|---|--|----------------|--------------|--------------|-------|--| | Parameter | Symbol Conditions <u>1/</u> | | Sub-
groups | Limit
Min | Limit
Max | Units | | | | | 1 1 200 (1.1) (1.1) | 1 | 450 | | | | | | | $I_C = 1 \text{ mA}; V_{CB} = 0 \text{ V}, 40 \text{ V}$ | 2, 3 | 225 | | | | | C1 Cata | | $I_C = 100 \mu A$, $V_{CB} = 0 V$, $40 V$ | 1 | 450 | | | | | Current Gain | h _{FE} | $I_C = 100 \mu A$, $V_{CB} = 15 V$ | 2, 3 | 175 | | | | | | | $I_C = 10\mu A; V_{CB} = 0V, 40V$ | 1 | 350 | | | | | | | $I_C = 10 \mu A; V_{CB} = 15 V$ | 2, 3 | 125 | | | | | Current Gain Match <u>2/</u> | $\Delta h_{ extsf{FE}}$ | $I_C = 10\mu A$, $100\mu A$, $1mA$; $V_{CB} = 0V$ | 1 | | 3 | % | | | Offset Voltage | Vos | V 9/ | 1 | | 60 | μV | | | Offset Voltage | | $V_{CB} = 0V$ | 2, 3 | | 90 | | | | Offset Voltage vs. Temperature <u>4/</u> | TCVos | $V_{CB} = 0V$ | | | 0.4 | μV/°C | | | Offset Voltage vs. V _{CB} | $\Delta V_{OS}/\Delta V_{CB}$ | V _{CB} = 0V, 40V | 1 | | 40 | μV | | | Offset Voltage vs. Collector Current | $\Delta V_{OS}/\Delta I_{C}$ | V _{CB} =0V; I _C =10μA, 1mA | 1 | | 40 | μV | | | Input Offset Current | los | $V_{CB} = 0V, 40V$ | 1 | | 1 | nA | | | input Onset Current | Ios | V _{CB} = 0V, 40V | 2, 3 | | 10 | nA | | | Offset Current vs. V _{CB} | ΔI _{OS}
/ΔV _{CB} | V _{CB} = 0V, 40V | 1 | | 100 | pA/V | | | Bulk Emitter Resistance | r BE | | 1 | | 0.75 | Ω | | | Collector Base Leakage Current | Ісво | $V_{CB} = 40V$ | 1 | | 200 | рА | | | Collector Emitter Leakage Current <u>3/</u> | I CES | $V_{CE}=40V,V_{BE}=0V$ | 1 | | 200 | рΑ | | | Collector-Collector Leakage
Current <u>3/</u> | lcc | V _{CC} = 40V | 1 | | 200 | рА | | | Bias Current | l _Β | V _{CB} = 0V, 40V | 1 | | 30 | nA | | | Dias Current | | VCB — UV, 40V | 2, 3 | | 70 | IIA | | | Collector Saturation Voltage | $V_{CE}SAT$ | $I_C = 1 \text{ mA}, I_B = 100 \mu \text{A}$ | 1 | | 0.1 | V | | | Breakdown Voltage | Breakdown Voltage BV_{CEO} $I_C = 100\mu A$ | | 1 | 40 | | , v | | #### Table II Notes: $\underline{1/}~V_{CB}$ = 15V, I_{C} = ±10µA, and T_{A} = 25°C, unless otherwise specified. $\underline{\textit{2}\!\!/} \; \text{Current gain match } (\Delta h_{\text{FE}}) \text{ is defined as: } \Delta h_{\text{FE}} = \frac{100 (\Delta I_B) h_{FE} min}{I_C}$ $\underline{4/}$ Guaranteed by V_{OS} test (TCV_{OS}≅ $\underline{V_{OS}}$ for V_{OS}<<V_{BE}) T=298°K for TA=+25°C. $[\]underline{3/}\ I_{CC}$ and I_{CES} are verified by measurement of $I_{CBO}.$ # Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions) | Parameter | Symbol | Sub-
groups | Post Burn In Limit | | Post Life Test Limit | | Life Test | Units | |-------------------------|-----------------|----------------|--------------------|-----|----------------------|------|-----------|--------| | | | | Min | Max | Min | Max | Delta | Oilles | | Current Gain @ 1mA | h _{FE} | 1 | 370 | | 290 | | ±80 | | | | | 2, 3 | | | 145 | | | | | Current Gain @ 100μA | h _{FE} | 1 | 360 | | 270 | | ±90 | | | | | 2, 3 | | | 135 | | | | | Comment Cair of 10 at | h _{FE} | 1 | 250 | | 150 | | ±100 | | | Current Gain @ 10μΑ | | 2, 3 | | | 75 | | | | | In a set Officet Course | los | 1 | | 1.5 | | 2 | ±0.5 | A | | Input Offset Current | | 2, 3 | | | _ | 11.5 | | nA | #### 5.0 <u>Life Test/Burn-In Information</u> - 5.1 HTRB is not applicable for this drawing. - 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition A, B, or C. - 5.3 Steady state life test is per MIL-STD-883 Method 1005. ## **MAT02** | Rev | Description of Change | Date | |-----|--|----------------| | Α | Initiate | Feb. 28, 2002 | | В | Update web address | Aug. 5, 2003 | | С | Change Pin 4 from C2 to E2 and Pin 6 from E2 to C2 | Oct. 15, 2004 | | D | Update 1.0 Scope description. | Aug. 2, 2007 | | Е | Update header/footer & add to 1.0 Scope description | Feb. 19, 2008 | | F | Add Junction Temperature(T _J)150°C to 3.3 Absolute Max Ratings | March 31, 2008 | | G | Updated Section 4.0c note to indicate pre-screen temp testing being performed. | 6-JUN-2009 | | Н | Updated fonts and sizes to ADI standards | 7-Oct-2011 | | | | | | | | |