

Low-Noise Matched Dual Monolithic Transistor

MAT02

1.0 SCOPE

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure a http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/MAT02

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number MAT02-000C <u>Description</u>
Low-Noise Matched Dual Monolithic Transistor

3.0 Die Information

3.1 <u>Die Dimensions</u>

Die Size	Die Thickness	Bond Pad Metalization		
56 mil x 60 mil	19 mil ± 2 mil	Al/Cu		

3.2 <u>Die Picture</u>

- 1. C1
- 2. B1
- 3. E1
- 4. E2
- 5. B2
- 6. C2

Substrate can be connected to V- or floated.

MAT02

3.3 <u>Absolute Maximum Ratings</u>

Collector to Base Voltage (BV _{CBO})	40V
Collector to Emitter Voltage (BV _{CEO})	40V
Emitter to Emitter Voltage (BV _{EE})	40V
Collector Current (I _C)	20mA
Emitter Current (I _E)	20mA
Storage Temperature Range	65°C to +150°C
Junction Temperature (T _J)	+150°C
Operating Ambient Temperature Range	55°C to +125°C

Absolute Maximum Ratings Notes:

Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 25/2
- (b) Qual Sample Package 6 Lead TO Package
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics							
Parameter	Symbol		Limit Min	Limit Max	Units		
			I _C =1mA	500			
Current Gain	h _{FE}	$V_{CB} = 0V, 40V$	I _C =100μA	500			
			I _C =10μA	400			
Current Gain Match <u>2/</u>	Δh _{FE}	I _C =10μΑ, 100μΑ, 1mΑ; V _{CB} = 0V			2	%	
Offset Voltage	Vos	$V_{CB} = 0V$			50	μV	
Offset Voltage vs. V _{CB}	$\Delta V_{OS}/\Delta V_{CB}$	V _{CB} = 0V, 40V			25	μV	
Offset Voltage vs. Collector Current	ΔVos/Δ I c	V _{CB} =0V; I _C =10μA, 1mA			25	μV	
Input Offset Current	los	V _{CB} = 0V, 40V			0.6	nA	
Offset Current vs. V _{CB}	Δl _{OS} /ΔV _{CB}	V _{CB} = 0V, 40V			70	pA/V	
Bulk Emitter Resistance	r _{BE}				0.5	Ω	

Table I - Dice Electrical Characteristics (Continued)							
Parameter	Symbol	Conditions <u>1/</u>	Limit Min	Limit Max	Units		
Bias Current	lΒ	$V_{CB} = 0V, 40V$		25	nA		
Collector Saturation Voltage	V _{CE} SAT	$I_C = 1 \text{ mA}, I_B = 100 \mu \text{A}$		0.1	V		
Breakdown Voltage	BV_CEO	I _C =100μA		40	V		

Table I Notes:

 $\underline{1}/~V_{CB}$ = 15V, I_{C} = ±10 $\mu A,$ and T_{A} = 25°C, unless otherwise specified.

$$\underline{\text{2}}/\text{ Current gain match } (\Delta h_{\text{FE}}) \text{ is defined as } \Delta h_{\text{FE}} = \frac{100(\Delta I_B)h_{FE}min}{I_C}$$

MAT02

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol Conditions <u>1/</u>		Sub- groups	Limit Min	Limit Max	Units	
		1 1 200 (1.1) (1.1)	1	450			
		$I_C = 1 \text{ mA}; V_{CB} = 0 \text{ V}, 40 \text{ V}$	2, 3	225			
C1 Cata		$I_C = 100 \mu A$, $V_{CB} = 0 V$, $40 V$	1	450			
Current Gain	h _{FE}	$I_C = 100 \mu A$, $V_{CB} = 15 V$	2, 3	175			
		$I_C = 10\mu A; V_{CB} = 0V, 40V$	1	350			
		$I_C = 10 \mu A; V_{CB} = 15 V$	2, 3	125			
Current Gain Match <u>2/</u>	$\Delta h_{ extsf{FE}}$	$I_C = 10\mu A$, $100\mu A$, $1mA$; $V_{CB} = 0V$	1		3	%	
Offset Voltage	Vos	V 9/	1		60	μV	
Offset Voltage		$V_{CB} = 0V$	2, 3		90		
Offset Voltage vs. Temperature <u>4/</u>	TCVos	$V_{CB} = 0V$			0.4	μV/°C	
Offset Voltage vs. V _{CB}	$\Delta V_{OS}/\Delta V_{CB}$	V _{CB} = 0V, 40V	1		40	μV	
Offset Voltage vs. Collector Current	$\Delta V_{OS}/\Delta I_{C}$	V _{CB} =0V; I _C =10μA, 1mA	1		40	μV	
Input Offset Current	los	$V_{CB} = 0V, 40V$	1		1	nA	
input Onset Current	Ios	V _{CB} = 0V, 40V	2, 3		10	nA	
Offset Current vs. V _{CB}	ΔI _{OS} /ΔV _{CB}	V _{CB} = 0V, 40V	1		100	pA/V	
Bulk Emitter Resistance	r BE		1		0.75	Ω	
Collector Base Leakage Current	Ісво	$V_{CB} = 40V$	1		200	рА	
Collector Emitter Leakage Current <u>3/</u>	I CES	$V_{CE}=40V,V_{BE}=0V$	1		200	рΑ	
Collector-Collector Leakage Current <u>3/</u>	lcc	V _{CC} = 40V	1		200	рА	
Bias Current	l _Β	V _{CB} = 0V, 40V	1		30	nA	
Dias Current		VCB — UV, 40V	2, 3		70	IIA	
Collector Saturation Voltage	$V_{CE}SAT$	$I_C = 1 \text{ mA}, I_B = 100 \mu \text{A}$	1		0.1	V	
Breakdown Voltage	Breakdown Voltage BV_{CEO} $I_C = 100\mu A$		1	40		, v	

Table II Notes:

 $\underline{1/}~V_{CB}$ = 15V, I_{C} = ±10µA, and T_{A} = 25°C, unless otherwise specified.

 $\underline{\textit{2}\!\!/} \; \text{Current gain match } (\Delta h_{\text{FE}}) \text{ is defined as: } \Delta h_{\text{FE}} = \frac{100 (\Delta I_B) h_{FE} min}{I_C}$

 $\underline{4/}$ Guaranteed by V_{OS} test (TCV_{OS}≅ $\underline{V_{OS}}$ for V_{OS}<<V_{BE}) T=298°K for TA=+25°C.

 $[\]underline{3/}\ I_{CC}$ and I_{CES} are verified by measurement of $I_{CBO}.$

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)

Parameter	Symbol	Sub- groups	Post Burn In Limit		Post Life Test Limit		Life Test	Units
			Min	Max	Min	Max	Delta	Oilles
Current Gain @ 1mA	h _{FE}	1	370		290		±80	
		2, 3			145			
Current Gain @ 100μA	h _{FE}	1	360		270		±90	
		2, 3			135			
Comment Cair of 10 at	h _{FE}	1	250		150		±100	
Current Gain @ 10μΑ		2, 3			75			
In a set Officet Course	los	1		1.5		2	±0.5	A
Input Offset Current		2, 3			_	11.5		nA

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition A, B, or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

MAT02

Rev	Description of Change	Date
Α	Initiate	Feb. 28, 2002
В	Update web address	Aug. 5, 2003
С	Change Pin 4 from C2 to E2 and Pin 6 from E2 to C2	Oct. 15, 2004
D	Update 1.0 Scope description.	Aug. 2, 2007
Е	Update header/footer & add to 1.0 Scope description	Feb. 19, 2008
F	Add Junction Temperature(T _J)150°C to 3.3 Absolute Max Ratings	March 31, 2008
G	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	6-JUN-2009
Н	Updated fonts and sizes to ADI standards	7-Oct-2011