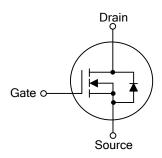
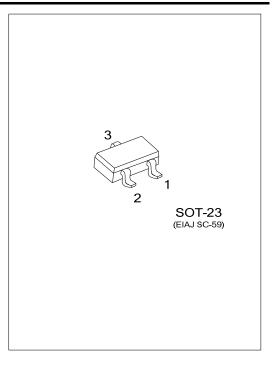


UNISONIC TECHNOLOGIES CO., LTD

UT3N10 Power MOSFET

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

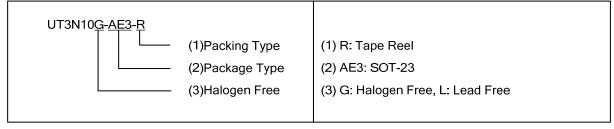

■ DESCRIPTION

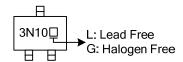

The UTC **UT3N10** is an N-channel power MOSFET providing very low on-resistance. It has high efficiency and perfect cost-effectiveness. It can be generally applied in the commercial and industrial fields.

■ FEATURES

* Simple drive requirement

■ SYMBOL




■ ORDERING INFORMATION

Ordering Number		Daakaaa	Pin Assignment			Dealine	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT3N10L-AE3-R	UT3N10G-AE3-R	SOT-23	S	G	D	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

UT3N10 Power MOSFET

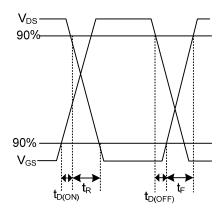
■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	100	V
Gate-Source Voltage	V_{GSS}	±20	V
Continuous Drain Current (V _{GS} =4.5V, T _A = 25°C) (Note 2)	I _D	3.0	Α
Pulsed Drain Current (Note 3, 4)	I _{DM}	10	Α
Power Dissipation (T _A = 25°C)	P_D	0.35	W
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

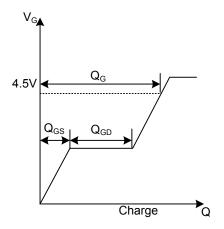
- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Surface mounted on 1 in² copper pad of FR4 board; 270°C/W when mounted on min. copper pad.
 - 3. Pulse width limited by $T_{J(MAX)}$
 - 4. Pulse width ≤300µs, duty cycle≤2%.

■ THERMAL DATA

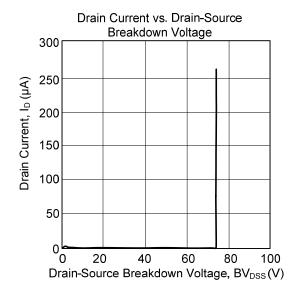

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	350	°C/W

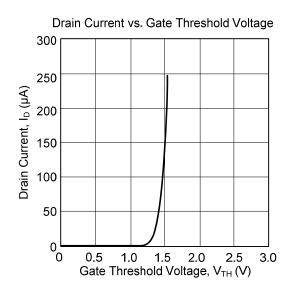
■ **ELECTRICAL CHARACTERISTICS** (T_J = 25°C, unless otherwise specified)

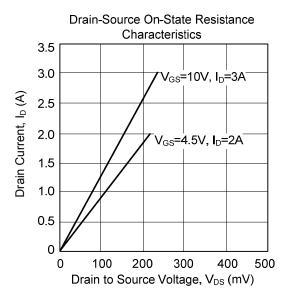

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	100			V
Breakdown Voltage Temperature Coefficient	$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Reference to 25°C, I _D =1mA		0.05		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V			10	μΑ
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±20V			±100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.0		3.0	V
Designate Courses On state Designates		V_{GS} =10V, I_D =3A			90	mΩ
Drain to Source On-state Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =2A			120	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			490	780	pF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V,f =1.0MHz		55		pF
Reverse Transfer Capacitance	C_{RSS}			40		pF
SWITCHING PARAMETERS						
Turn-ON Delay Time (Note)	t _{D(ON)}			6		ns
Turn-ON Rise Time	t_R	V _{GS} =10V, V _{DS} =30V, I _D =1A,		5	42	ns
Turn-OFF Delay Time	t _{D(OFF)}	$R_D = 30\Omega$, $R_G = 3.3\Omega$		16		ns
Turn-OFF Fall-Time	t _F			3	58	ns
Total Gate Charge (Note)	Q_G			6	10	nC
Gate Source Charge	Q_GS	V_{GS} =4.5V, V_{DS} =48V, I_{D} =3A		1.6		nC
Gate Drain Charge	Q_{GD}			3		nC
SOURCE- DRAIN DIODE RATINGS AND CHA	RACTERIS	STICS				
Drain-Source Diode Forward Voltage (Note)	V_{SD}	I _S =1.2A, V _{GS} =0V			1.2	V
Reverse Recovery Time	t _{rr}	1 = 2 A \ / = 0\ / d\/dt=100 A /us		25		ns
Reverse Recovery Charge	Q_{RR}	I_S =3A, V_{GS} =0V, dI/dt=100A/ μ s		26		nC

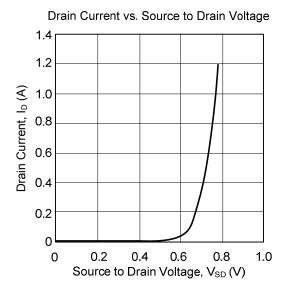
Note: Pulse width ≤300µs, duty cycle≤2%.

■ TEST WAVEFORMS


Switching Time Waveform




Gate Charge Waveform


UT3N10 Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.