A $13.3 \mathrm{~m} \Omega$, 5 A, Integrated Power Switch with 12V/24V Input Lockout Select and MOSFET Current Monitor Output

General Description

The SLG59H1010V is a high-performance $13.3 \mathrm{~m} \Omega$ NMOS power switch designed to control 12 V or 24 V power rails up to 5 A. Using a proprietary MOSFET design, the SLG59H1010V achieves a stable $13.3 \mathrm{~m} \Omega$ RDS $_{\text {ON }}$ across a wide input voltage range. In combining novel FET design and copper pillar interconnects, the SLG59H1010V package also exhibits a low thermal resistance for high-current operation.

Designed to operate over a $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range, the SLG59H1010V is available in a low thermal resistance, RoHS-compliant, $1.6 \times 3.0 \mathrm{~mm}$ STQFN package.

Features

- Wide Operating Input Voltage: 12 V or 24 V
- Maximum Continuous Switch Current: 5 A
- Automatic nFET SOA Protection
- High-performance MOSFET Switch Low RDS $_{\mathrm{ON}}$: $13.3 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$ Low Δ RDS $_{\mathrm{ON}} / \Delta \mathrm{V}_{\mathrm{IN}}:<0.05 \mathrm{~m} \Omega / \mathrm{V}$ Low $\Delta \mathrm{RDS}_{\mathrm{ON}} / \Delta \mathrm{T}:<0.06 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$
- Pin-selectable 12V/24V Input Overvoltage and Undervoltage Lockout
- Capacitor-adjustable Inrush Current Control
- Two stage Current Limit Protection:

Resistor-adjustable Active Current Limit Internal Short-circuit Current limit

- Open Drain FAULT Signaling
- MOSFET Current Analog Output Monitor: $10 \mu \mathrm{~A} / \mathrm{A}$
- Fast $4 \mathrm{k} \Omega$ Output Discharge
- Pb-Free / Halogen-Free / RoHS Compliant Packaging

Pin Configuration

Applications

- Power-Rail Switching
- Multifunction Printers
- Large-format Copiers
- Telecommunications Equipment
- High-performance Computing

12 V and 24 V Point-of-Load Power Distribution

- Motor Drives

Block Diagram and 3 A Typical Application Circuit

Pin Description

| Pin \# | Pin Name | Type | Pin Description |
| :---: | :---: | :---: | :--- | :--- |
| 1 | ON | Input | A low-to-high transition on this pin initiates the operation of the SLG59H1010V's state machine.
 ON is an asserted HIGH, level-sensitive CMOS input with $V_{I L}<0.3 \mathrm{~V}$ and $\mathrm{V}_{\text {IH }}>0.9 \mathrm{~V}$. As the
 ON pin input circuit does not have an internal pull-down resistor, connect this pin to a
 general-purpose output (GPO) of a microcontroller, an application processor, or a system
 controller - do not allow this pin to be open-circuited. |
| 2 | GND | GND | Pin 2 is a low-current GND terminal for the SLG59H1010V. Connect directly to Pin 3 |

Ordering Information

Part Number	Type	Production Flow
SLG59H1010V	STQFN 18L FC	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59H1010VTR	STQFN 18L FC (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

SILEGO

SLG59H1010V

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$ to GND	Power Switch Input Voltage to GND	Continuous	-0.3	--	30	V
		Maximum pulsed VIN, pulse width <0.1s	--	--	32	V
$V_{\text {OUT }}$ to GND	Power Switch Output Voltage to GND		-0.3	--	V_{IN}	V
ON, SEL, CAP, RSET, IOUT, and FAULT to GND	ON, SEL, CAP, RSET, IOUT, and FAULT Pin Voltages to GND		-0.3	--	7	V
T_{S}	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
ESD ${ }_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
ESD ${ }_{\text {CDM }}$	ESD Protection	Charged Device Model	500	--	--	V
MSL	Moisture Sensitivity Level			1		
$\theta_{\text {JA }}$	Thermal Resistance	$1.6 \times 3.0 \mathrm{~mm}$ 18L STQFN; Determined with the device mounted onto a $1 \mathrm{in}^{2}$, 1 oz . copper pad of FR-4 material	--	40	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MOSFET IDS ${ }_{\text {CONT }}$	Continuous Current from VIN to VOUT	$\mathrm{T}_{J}<150^{\circ} \mathrm{C}$	--	--	5	A
MOSFET IDS ${ }_{\text {PEAK }}$	Peak Current from VIN to VOUT	Maximum pulsed switch current, pulse width < 1 ms	--	--	6	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$12 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Operating Input Voltage		10.8	--	25.2	V
$\mathrm{V}_{\text {IN(OVLO }}$	$\mathrm{V}_{\text {IN }}$ Overvoltage Lockout Threshold	$\mathrm{V}_{\text {IN }} \uparrow$; SEL $=$ HIGH	25.3	27	28.5	V
		$\mathrm{V}_{\text {IN }} \uparrow$; SEL = LOW	13.3	13.7	14.5	V
$\mathrm{V}_{\text {IN(UVLO) }}$	$V_{\text {IN }}$ Undervoltage Lockout Threshold	$\mathrm{V}_{\text {IN }} \downarrow$; SEL $=$ HIGH	19.5	20.5	21.5	V
		$\mathrm{V}_{\text {IN }} \downarrow$; SEL $=$ LOW	9.7	10.2	10.7	V
I_{Q}	Quiescent Supply Current	$\mathrm{ON}=\mathrm{HIGH} ; \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~A}$	--	0.5	0.6	mA
$\mathrm{I}_{\text {SHDN }}$	OFF Mode Supply Current	ON = LOW; $\mathrm{I}_{\text {DS }}=0 \mathrm{~A}$	--	1	3	$\mu \mathrm{A}$
$\mathrm{RDS}^{\text {ON }}$	ON Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	13.3	14.5	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	17.2	18	$\mathrm{m} \Omega$
MOSFET IDS	Current from VIN to VOUT	Continuous	--	--	5	A
$\mathrm{I}_{\text {LIMIT }}$	Active Current Limit, $\mathrm{I}_{\text {ACL }}$	$\mathrm{V}_{\text {OUT }}>0.5 \mathrm{~V} ; \mathrm{R}_{\text {SET }}=30.1 \mathrm{k} \Omega$	3.0	3.19	3.5	A
	Short-circuit Current Limit, ISCL	$\mathrm{V}_{\text {OUT }}<0.5 \mathrm{~V}$	--	0.5	-	A
$\mathrm{T}_{\text {ACL }}$	Active Current Limit Response Time	$\mathrm{R}_{\text {SET }}=51.6 \mathrm{k} \Omega$	--	120	--	$\mu \mathrm{s}$
R ${ }_{\text {DSCHRG }}$	Output Discharge Resistance		3.5	4.4	5.3	$\mathrm{k} \Omega$
Iout	MOSFET Current Analog Monitor Output	$\mathrm{l}_{\mathrm{DS}}=1 \mathrm{~A}$	9.3	10	10.9	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{DS}}=3 \mathrm{~A}$	28.5	30	31.7	$\mu \mathrm{A}$

Electrical Characteristics (continued)
$12 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
TIOUT	Iout Response Time to Change in Main MOSFET Current	$\begin{aligned} & \mathrm{C}_{\text {IOUT }}=180 \mathrm{pF} ; \\ & \text { Step load } 0 \text { to } 2.4 \mathrm{~A} ; 0 \% \text { to } 90 \% \mathrm{I}_{\mathrm{OUT}} \end{aligned}$	--	45	--	$\mu \mathrm{s}$
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from $\mathrm{V}_{\text {OUT }}$ to GND	--	47	--	$\mu \mathrm{F}$
Ton_Delay	ON Delay Time	$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	480	600	720	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=24 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	0.8	1.0	1.2	ms
$\mathrm{T}_{\text {Total_ON }}$	Total Turn-on Time	50% ON to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	2.9	3.6	4.3	ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=24 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	5.7	7.1	8.5	ms
		$10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			V/ms
$\mathrm{V}_{\text {OUT(SR) }}$	$\mathrm{V}_{\text {Out }}$ Slew rate	$10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$; $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ or 24 V ; $\mathrm{C}_{\text {SLEW }}=10 \mathrm{nF}$; $R_{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=10 \mu \mathrm{~F}$	2.7	3.2	3.9	V/ms
TOFF_Delay	OFF Delay Time	50% ON to $V_{\text {OUT }} \downarrow$; $R_{\text {LOAD }}=100 \Omega$, No C COAD	--	15	--	$\mu \mathrm{s}$
$\mathrm{T}_{\text {FALL }}$	$\mathrm{V}_{\text {OUt }}$ Fall Time	$\begin{aligned} & 90 \% \mathrm{~V}_{\text {OUT }} \text { to } 10 \% \mathrm{~V}_{\text {OUT; }} \\ & \text { ON = HIGH-to-LOW; } \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \text { or } 24 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \text { No } \mathrm{C}_{\text {LOAD }} \end{aligned}$	10.4	12.7	15	$\mu \mathrm{s}$
T $\overline{\text { FAULT }}_{\text {Low }}$	$\overline{\text { FAULT }}$ Assertion Time	Abnormal Step Load Current event to FAULT \downarrow; $\mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V} ; \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$; switch in 20Ω load	--	80	--	$\mu \mathrm{s}$
$\mathrm{TFAULT}_{\text {HIGH }}$	$\overline{\text { FAULT }}$ De-assertion Time	Delay to FAULT \uparrow after fault condition is removed; $\mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$; $R_{\text {SET }}=91 \mathrm{k} \Omega$; switch out 20Ω load	--	180	--	$\mu \mathrm{s}$
$\overline{\text { FAULT }}_{\text {VOL }}$	$\overline{\text { FAULT Output Low Voltage }}$	$\mathrm{I}_{\overline{\text { FAULT }}}=1 \mathrm{~mA}$	--	0.2	--	V
ON_V ${ }_{\mathrm{IH}}$	ON Pin Input High Voltage		0.9	--	5	V
ON_V ${ }_{\text {IL }}$	ON Pin Input Low Voltage		-0.3	0	0.3	V
SEL_V ${ }_{\text {IH }}$	SEL pin Input High Voltage		1.65	--	4.5	V
SEL_V ${ }_{\text {IL }}$	SEL pin Input Low Voltage		-0.3	--	0.3	V
ION(Leakage)	ON Pin Leakage Current	$1 \mathrm{~V} \leq \mathrm{ON} \leq 5 \mathrm{~V}$ or $\mathrm{ON}=\mathrm{GND}$	--	--	1	$\mu \mathrm{A}$
THERM ${ }_{\text {ON }}$	Thermal Protection Shutdown Threshold		--	125	--	${ }^{\circ} \mathrm{C}$
THERM $_{\text {OFF }}$	Thermal Protection Restart Threshold		--	100	--	${ }^{\circ} \mathrm{C}$
Notes: 1. Refer to typical Timing Parameter vs. CSLEW performance charts for additional information.						

* Rise and Fall times of the ON signal are 100 ns

SLG59H1010V

Typical Performance Characteristics

RDS $_{\mathrm{ON}}$ vs. Temperature and V_{IN}

$\mathrm{I}_{\text {ACL }}$ vs. Temperature and $\mathrm{R}_{\text {SET }}$

$\mathrm{I}_{\text {OUT }}$ vs. MOSFET IDS and $\mathrm{V}_{\text {IN }}$

Iout vs. Temperature and MOSFET IDS
60
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ or 24 V

50 \qquad

40 \qquad

20 \qquad

10 \qquad

0

SLG59H1010V

$\mathrm{V}_{\text {OUT }}$ Slew Rate vs. Temperature, V_{IN}, and $\mathrm{C}_{\text {SLEW }}$

$\mathrm{T}_{\text {Total_ON }}$ vs. $\mathrm{C}_{\text {SLEW }}, \mathrm{V}_{\mathrm{IN}}$, and Temperature

SILEGO

SLG59H1010V

Timing Diagram - Basic Operation including Active Current Limit Protection

SLG59H1010V

Timing Diagram - Active Current Limit \& Thermal Protection Operation

SILEGO

SLG59H1010V

Timing Diagram - Basic Operation including Active Current + Internal FET SOA Protection

Applications Information

HFET1 Safe Operating Area Explained

Silego's HFET1 integrated power controllers incorporate a number of internal protection features that prevents them from damaging themselves or any other circuit or subcircuit downstream of them. One particular protection feature is their Safe Operation Area (SOA) protection. SOA protection is automatically activated under overpower and, in some cases, under overcurrent conditions. Overpower SOA is activated if package power dissipation exceeds an internal 5 W threshold longer than 2.5 ms . HFET1 devices will quickly switch off (open circuit) upon overpower detection and automatically resume (close) nominal operation once overpower condition no longer exists.

One possible way to have an overpower condition trigger SOA protection is when HFET1 products are enabled into heavy output resistive loads and/or into large load capacitors. It is under these conditions to follow carefully the "Safe Start-up Loading" guidance in the Applications section of the datasheet. During an overcurrent condition, HFET1 devices will try to limit the output current to the level set by the external $\mathrm{R}_{\mathrm{SET}}$ resistor. Limiting the output current, however, causes an increased voltage drop across the FET's channel because the FET's RDS $_{\mathrm{ON}}$ increased as well. Since the FET's RDS ${ }_{O N}$ is larger, package power dissipation also increases. If the resultant increase in package power dissipation is higher/equal than 5 W for longer than 2.5 ms , internal SOA protection will be triggered and the FET will open circuit (switch off). Every time SOA protection is triggered, all HFET1 devices will automatically attempt to resume nominal operation after 160 ms .

Safe Start-up Condition

SLG59H1010V has built-in protection to prevent over-heating during start-up into a heavy load. Overloading the VOUT pin with a capacitor and a resistor may result in non-monotonic $\mathrm{V}_{\text {OUT }}$ ramping. In general, under light loading on VOUT, $\mathrm{V}_{\text {OUT }}$ ramping can be controlled with $\mathrm{C}_{\text {SLEW }}$ value. The following equation serves as a guide:

$$
\mathrm{C}_{\mathrm{SLEW}}=\frac{\mathrm{T}_{\mathrm{RISE}}}{\mathrm{~V}_{\mathrm{IN}}} \times 4.9 \mu \mathrm{~A} \times \frac{20}{3}
$$

where
$\mathrm{T}_{\text {RISE }}=$ Rise time from $10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }}$
$\mathrm{V}_{\mathrm{IN}}=$ Input Voltage
$\mathrm{C}_{\text {SLEW }}=$ Capacitor value for CAP pin
When capacitor and resistor loading on VOUT during start up, the following tables will ensure $\mathrm{V}_{\text {OUT }}$ ramping is monotonic without triggering internal protection:

Safe Start-up Loading for $\mathbf{V}_{\mathbf{I N}}=\mathbf{2 4} \mathbf{V}$ (Monotonic Ramp)			
Slew Rate (V/ms)	$\mathbf{C}_{\mathbf{S L E W}}(\mathbf{n F})^{\mathbf{2}}$	$\mathbf{C}_{\text {LOAD }}(\mu \mathrm{F})$	$\mathbf{R}_{\text {LOAD }}(\Omega)$
0.5	66.7	500	80
1.0	33.3	250	80
1.5	22.2	160	80
2.0	16.7	120	80
2.5	13.3	100	80

SILEGO

SLG59H1010V

Safe Start-up Loading for $\mathbf{V}_{\mathbf{I N}}=\mathbf{1 2} \mathbf{V}$ (Monotonic Ramp)			
Slew Rate (V/ms)	$\mathbf{C}_{\mathbf{S L E W}}(\mathbf{n F})^{\mathbf{2}}$	$\mathbf{C}_{\text {LOAD }}(\mu \mathrm{F})$	$\mathbf{R}_{\text {LOAD }}(\Omega)$
1	33.3	500	20
2	16.7	250	20
3	11.1	160	20
4	8.3	120	20
5	6.7	100	20

Note 2: Select the closest-value tolerance capacitor.

Setting the SLG59H1010V's Active Current Limit

$\mathbf{R}_{\mathbf{S E T}} \mathbf{(k \Omega} \mathbf{\Omega}$	Active Current Limit $\mathbf{(A)}^{\mathbf{3}}$
91	1
45	2
30	3
18	5

Note 3: Active Current Limit accuracy is $\pm 15 \%$ over voltage range and over temperature range.

Configuring the SLG59H1010V for 12 V VIN Lockout Applications

To configure the SLG59H1010V for conditioned $12 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{IN}}$ applications is simply a matter of connecting the SEL pin to GND as shown in Figure A. For other V_{IN} lockout window applications, please consult Silego for additional information.

Figure \mathbf{A}.

SILEGO

$24 \mathrm{~V}_{\mathrm{IN}}$ and $12 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ Lockout Window Thresholds

Shown in Figure B and Figure C are the two sets of $V_{I N}$ overvoltage/undervoltage lockout windows - one for conditioned $24 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\text {IN }}$ systems and the second for conditioned $12 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{IN}}$ systems. To avoid lockout threshold collision with nominal operation, the SLG59H1010V's $\mathrm{V}_{\mathrm{IN}(O V L O)}$ min and $\mathrm{V}_{\mathrm{IN}(U V L O)}$ max thresholds were set 0.1 V correspondingly higher than the system's nominal V_{IN} max or lower than the system's V_{IN} min range.

Power Dissipation

The junction temperature of the SLG59H1010V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59H1010V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}^{2}
$$

where:
PD = Power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
T_{J}=P D \times \theta_{J A}+T_{A}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)

SILEGO

SLG59H1010V

Power Dissipation (continued)

In current-limit mode, the SLG59H1010V's power dissipation can be calculated by taking into account the voltage drop across the power switch $\left(\mathrm{V}_{\mathbb{N}}-\mathrm{V}_{\mathrm{OUT}}\right)$ and the magnitude of the output current in current-limit mode $\left(\mathrm{I}_{\mathrm{ACL}}\right)$:

$$
\begin{gathered}
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{I}_{\mathrm{ACL}} \text { or } \\
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{R}_{\mathrm{LOAD}} \times \mathrm{I}_{\mathrm{ACL}}\right)\right) \times \mathrm{I}_{\mathrm{ACL}}
\end{gathered}
$$

where:
$\mathrm{PD}=$ Power dissipation, in Watts (W)
$\mathrm{V}_{\mathrm{IN}}=$ Input Voltage, in Volts (V)
$R_{\text {LOAD }}=$ Load Resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{ACL}}=$ Output limited current, in Amps (A)
$\mathrm{V}_{\text {OUT }}=\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\text {ACL }}$

Package Top Marking System Definition

1010V - Part ID Field
WW - Date Code Field ${ }^{1}$
NNN - Lot Traceability Code Field ${ }^{1}$
A - Assembly Site Code Field ${ }^{2}$
RR - Part Revision Code Field ${ }^{2}$

Note 1: Each character in code field can be alphanumeric A-Z and 0-9
Note 2: Character in code field can be alphabetic A-Z

SLG59H1010V

Package Drawing and Dimensions

18 Lead TQFN Package $1.6 \times 3 \mathrm{~mm}$ (Fused Lead) JEDEC MO-220, Variation WCEE

Top View

Side View

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.05	E	1.55	1.60	1.65
A2	0.10	0.15	0.20	L	0.25	0.30	0.35
b	0.13	0.18	0.23	L1	0.64	0.69	0.74
e	0.40 BSC				L2	0.15	0.20
L3	2.34	2.39	2.44	L4	0.13	0.18	0.23

SLG59H1010V

SLG59H1010V 18-pin STQFN PCB Landing Pattern

Exposed Pad
(PKG face down)

18

\square Recommended Land Pattern (PKG face down)

Note: All dimensions shown in micrometers ($\mu \mathrm{m}$)

SILEGO

SLG59H1010V

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		 Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
STQFN 18L 0.4P FC Green	18	$1.6 \times 3 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTMPocketBTM Length Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width	
	A0	B0	K0	P0	P1	D0	E	F	W
STQFN 18L 0.4P FC Green	1.78	3.18	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $2.64 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
$11 / 2 / 2017$	1.01	Updated $\mathrm{V}_{\text {IN }}$ Max and $\mathrm{V}_{\text {IN(OVLO) }}$ Min Updated Charts Fixed typos and formatting
$2 / 24 / 2017$	1.00	Production Release

