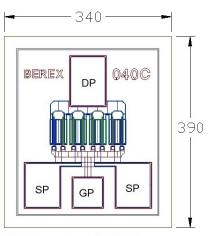


# BCP040C

## HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25µm x 400µm)


The BeRex BCP040C is a GaAs Power pHEMT with a nominal 0.25-micron by 400-micron gate making this product ideally suited for applications where high-gain and medium power in the DC to 26.5 GHz frequency range are required. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP040C is produced using state of the art metallization with SI<sub>3</sub>N<sub>4</sub> passivation and is screened to assure reliability.

#### **PRODUCT FEATURES**

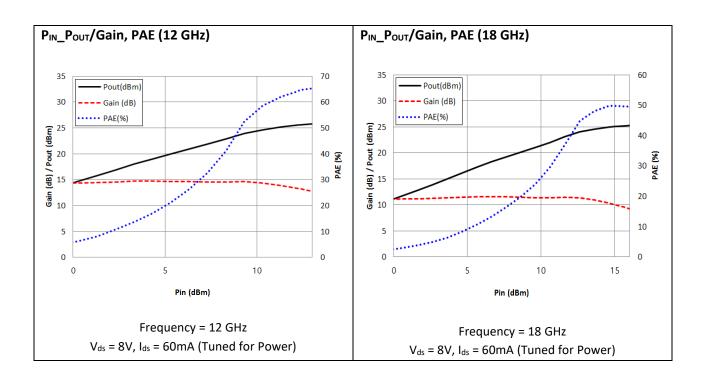
- 25.5 dBm Typical Output Power
- 13.5 dB Typical Gain @ 12 GHz
- 0.25 X 400 Micron Recessed Gate

### **APPLICATIONS**

- Commercial
- Military / Hi-Rel.
- Test & Measurement



Chip dimensions : 340 X 390 microns Gate pad(GP) : 60 X 60 microns Drain pad(DP) : 70 X 100 microns Source pad(SP) : 70 X 95 microns Chip thickness : 75 microns

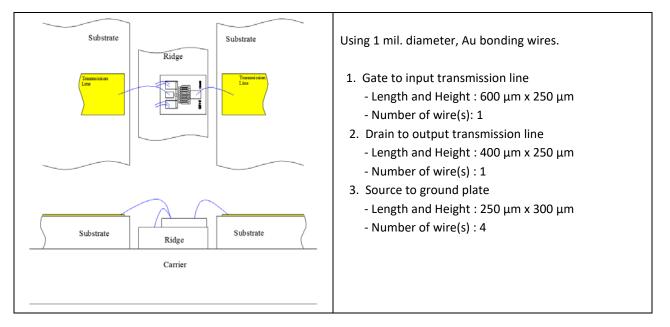

## ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) $T_a = 25^{\circ} C$

|                  | PARAMETER/TEST CONDITIONS                                             | TEST<br>FREQ. | MIN. | TYPICAL | MAX. | UNIT |
|------------------|-----------------------------------------------------------------------|---------------|------|---------|------|------|
| P <sub>1dB</sub> | Output Power @ $P_{1dB}$ ( $V_{ds} = 8V$ , $I_{ds} = 60mA$ )          | 12 GHZ        | 24.0 | 25.5    |      | dBm  |
| 108              |                                                                       | 18 GHz        | 23.5 | 25.0    |      |      |
| G <sub>1dB</sub> | Gain @ P <sub>1dB</sub> (V <sub>ds</sub> = 8V, I <sub>d</sub> = 60mA) | 12 GHZ        | 12.0 | 13.5    |      | dB   |
| G1dB             |                                                                       | 18 GHz        | 8.5  | 10      |      |      |
| PAE              | PAE @ P <sub>1dB</sub> (V <sub>ds</sub> = 8V, I <sub>d</sub> = 60mA)  | 12 GHZ        |      | 60      |      | %    |
| PAE              |                                                                       | 18 GHz        |      | 50      |      |      |
| NF               | Noise figure (Vds = 2V, I <sub>d</sub> = 20 mA)                       | 12 GHz        |      | 1.05    |      | dB   |
| I <sub>dss</sub> | Saturated Drain Current ( $V_{gs} = 0V, V_{ds} = 2.0V$ )              | 70            | 110  | 150     | mA   |      |
| Gm               | Transconductance ( $V_{ds} = 2V$ , $I_d = 60mA$ )                     |               | 155  |         | mS   |      |
| Vp               | Pinch-off Voltage ( $I_{ds} = 0.4 \text{mA}$ , $V_{ds} = 2V$ )        | -2.5          | -1.2 |         | V    |      |
| BV <sub>gd</sub> | Drain Breakdown Voltage (Ig = -0.4mA, source                          |               | -15  | -12     | V    |      |
| BVgs             | Source Breakdown Voltage (Ig = -0.4mA, drain                          |               | -13  |         | V    |      |
| Rth              | Thermal Resistance (Au-Sn Eutectic Attach)                            |               | 104  |         | °C/W |      |

## MAXIMUM RATING (T<sub>a</sub> = 25° C)

|                  | PARAMETERS              | ABSOLUTE         | CONTINUOUS         |  |
|------------------|-------------------------|------------------|--------------------|--|
| V <sub>ds</sub>  | Drain-Source Voltage    | 12V              | 8 V                |  |
| Vgs              | Gate-Source Voltage     | -6V              | -3 V               |  |
| ld               | Drain Current           | l <sub>dss</sub> | I <sub>dss</sub>   |  |
| l <sub>gsf</sub> | Forward Gate Current    | 20 mA            | 4 mA               |  |
| Pin              | Input Power             | 21 dBm           | @ 3 dB compression |  |
| $T_{ch}$         | Channel Temperature     | 175°C            | 150°C              |  |
| T <sub>stg</sub> | Storage Temperature     | -60°C – 150°C    | -60°C – 150°C      |  |
| Pt               | Total Power Dissipation | 1.4 W            | 1.2 W              |  |

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.




## S-PARAMETERS (V<sub>ds</sub> = 8V, I<sub>ds</sub> = 60mA)

| FREQ. | S11   | S11     | S21   | S21    | S12   | S12    | S22   | S22     |
|-------|-------|---------|-------|--------|-------|--------|-------|---------|
| [GHZ] | [MAG] | [ANG.]  | [MAG] | [ANG.] | [MAG] | [ANG.] | [MAG] | [ANG.]  |
| 1.0   | 0.96  | -32.77  | 9.22  | 157.08 | 0.019 | 74.39  | 0.75  | -10.91  |
| 2.0   | 0.91  | -62.35  | 8.30  | 137.43 | 0.033 | 58.12  | 0.70  | -20.57  |
| 3.0   | 0.85  | -89.11  | 7.32  | 120.10 | 0.044 | 46.81  | 0.65  | -28.37  |
| 4.0   | 0.80  | -113.74 | 6.38  | 105.13 | 0.050 | 37.96  | 0.60  | -33.06  |
| 5.0   | 0.77  | -135.76 | 5.56  | 91.69  | 0.054 | 29.52  | 0.56  | -37.20  |
| 6.0   | 0.75  | -155.44 | 4.86  | 79.41  | 0.056 | 23.50  | 0.52  | -41.51  |
| 7.0   | 0.75  | -173.01 | 4.28  | 68.68  | 0.056 | 18.04  | 0.49  | -45.00  |
| 8.0   | 0.76  | 172.05  | 3.76  | 58.61  | 0.055 | 15.33  | 0.47  | -47.88  |
| 9.0   | 0.77  | 158.74  | 3.32  | 48.98  | 0.051 | 10.95  | 0.46  | -52.71  |
| 10.0  | 0.79  | 147.46  | 2.94  | 40.38  | 0.050 | 8.65   | 0.44  | -56.78  |
| 11.0  | 0.81  | 138.51  | 2.61  | 32.53  | 0.049 | 8.67   | 0.42  | -62.62  |
| 12.0  | 0.83  | 130.46  | 2.34  | 24.50  | 0.047 | 8.83   | 0.40  | -68.79  |
| 13.0  | 0.85  | 123.26  | 2.12  | 17.44  | 0.045 | 4.84   | 0.39  | -75.41  |
| 14.0  | 0.86  | 117.71  | 1.91  | 10.71  | 0.047 | 8.38   | 0.37  | -83.12  |
| 15.0  | 0.88  | 111.89  | 1.73  | 3.69   | 0.047 | 6.82   | 0.36  | -91.10  |
| 16.0  | 0.89  | 107.81  | 1.57  | -2.51  | 0.048 | 5.16   | 0.36  | -100.53 |
| 17.0  | 0.91  | 104.38  | 1.45  | -8.61  | 0.050 | 5.99   | 0.36  | -112.60 |
| 18.0  | 0.91  | 99.79   | 1.33  | -15.34 | 0.050 | 5.85   | 0.37  | -122.80 |
| 19.0  | 0.91  | 97.32   | 1.19  | -21.75 | 0.053 | 5.47   | 0.39  | -133.49 |
| 20.0  | 0.92  | 94.84   | 1.09  | -27.79 | 0.052 | 3.02   | 0.42  | -145.15 |
| 21.0  | 0.92  | 93.48   | 0.98  | -33.30 | 0.055 | 3.69   | 0.45  | -154.23 |
| 22.0  | 0.91  | 92.03   | 0.90  | -38.62 | 0.055 | 3.83   | 0.49  | -162.65 |
| 23.0  | 0.90  | 90.59   | 0.81  | -44.51 | 0.058 | 2.69   | 0.53  | -171.11 |
| 24.0  | 0.90  | 89.92   | 0.73  | -49.47 | 0.061 | 0.24   | 0.56  | -178.63 |
| 25.0  | 0.90  | 89.62   | 0.66  | -53.64 | 0.057 | -0.17  | 0.59  | 174.88  |
| 26.0  | 0.93  | 87.29   | 0.59  | -58.58 | 0.062 | 6.04   | 0.62  | 168.70  |

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

#### WIRE BONDING INFORMATION





#### DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

#### LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.