for Wonderful Cruising Safe Ocomfortable Cabin

EM6011 Hall Effect Latch

General Description 1.

The EM6011 is a Hall effect latch which detects magnetic field. The output is switched according to the magnetic field applied to the device.

	2. Features
Supply Voltage: Operation Temperature: Sensitivity: Output:	3.8 to 24V -40 to 150⁰C ±2.0mT(Typ.), ±3.0mT(Max.) N-MOS Open Drain Output
Reverse Battery Protection Package:	3-pin SOP Type (Small Package size, RoHS Compliant, Halogen free)

015001371-E-02

3. Table of Contents

4. Block Diagram and Functions

4.1. Block Diagram

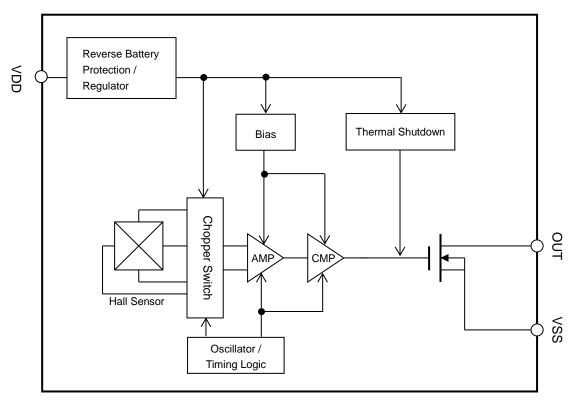


Figure 1. EM6011 Block Diagram

4.2. Functions

Table 1. Circuit configuration

Block Name	Function				
Hall Sensor	Hall element fabricated by CMOS process.				
Chopper Switch	Hall sensor drive switch.				
Chopper Switch	Perform chopping in order to cancel the offset of Hall sensor.				
Reverse Battery	To protect the IC from reverse-voltage (VDD pin)				
Protection					
Regulator Generate internal operating voltage.					
Bias	Generate bias current to internal circuits.				
AMP	Amplify Hall sensor output voltage with summation and subtraction circuit.				
CMP	Hysteresis comparator.				
Oscillator	Generate operational clock.				
Timing Logic	Generate timing signal for internal circuits.				
Thermal Shutdown	Turn the output off when a measured temperature is beyond the specific				
	value.				

5. Pin Configurations and Functions

5.1. Pin Configurations

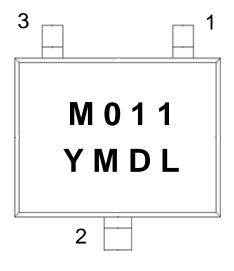


Figure 2. Pin Layout

5.2. Functions

Table 2. Description of pin name and function

Pin No.	Pin Name	I/O	Function	Description
1	VDD	-	Power Supply pin	
2	VSS	_	Ground pin (GND)	
3	OUT	0	Output pin	Open Drain

6. Absolute Maximum Ratings

Table 3. Absolute maximum ratings

Parameter	Symbol	Min.	Max.	Unit	Description
Supply voltage	V _{DD}	-30	30	V	VSS = 0V
Output voltage	V _{OUT}	-0.3	30	V	OUT pin (VSS= 0V)
Output current	I _{SINK}	-50	50	mA	OUT pin
Operating ambient temperature	Та	-40	150	٥C	
Storage temperature	T _{STG}	-65	170	°C	

Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

7. Recommended Operating Conditions

Table 4. Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Description
Supply voltage	V _{DD}	3.8	12	24	V	(*1)
Output Voltage	V _{OUT}	0		24	V	
Output current	I _{SINK}	0		35	mA	
Output Load carrying capacity	CL			100	pF	

*1. Supply voltage refers to the following.

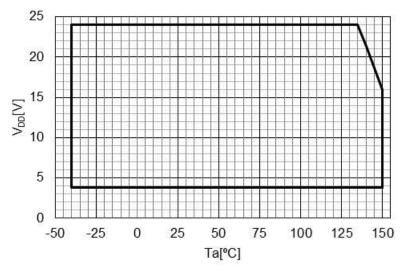


Figure 3. Supply Voltage

8. **Electrical Characteristics**

Table 5. Electrical characteristics at V_{DD} = 3.8 to 24V, Ta = -40 to 150°C (Typ. Ta = 25°C, V_{DD} = 12V)							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition, Note	Description
Supply current	I _{DD}		3	5	mA	Output "off", "on"	
Output leakage current	I _{LEAK}		0	10	μΑ	Output "off"	
Output saturation voltage	V _{SAT}			0.4	V	Output "on" I _{SINK} = 20mA	
Output rise time	Tr			1	μs	$V_{DD} = 12V$ $R_L = 820\Omega, C_L = 20pF$ $V_{OUT} = 10\%V_{DD} \sim 90\%V_{DD}$	
Output fall time	Tf			1	μs	$V_{DD} = 12V$ $R_L = 820\Omega, C_L = 20pF$ $V_{OUT} = 90\%V_{DD} \sim 10\%V_{DD}$	
Revers supply current	IR_DD			-0.1	mA	$V_{DD} = -30V$	
Output Refresh Period	То		8.3		μs		
Output Hi-Z releasing voltage	V_{RE}		2.9		V	When power is on, output is released Hi-Z.	(*2)
Thermal-shutdown operating temp.	TSD _{ON}	185	205	225	°C	Tj of Internal temp. sensor	(*3)
Thermal-shutdown releasing temp.	TSD _{OFF}	175	195	215	°C	Tj of Internal temp. sensor	(*3)

*2. Output waveform in power on

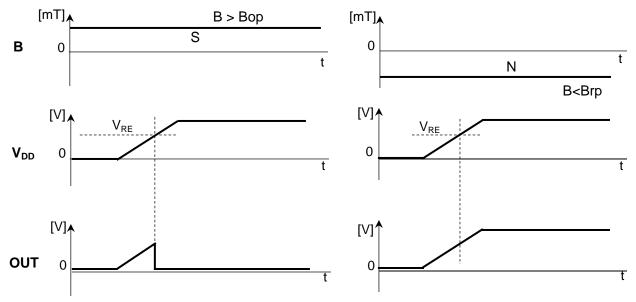


Figure 4. Output waveform in power on

*3. When Tj is beyond TSD_{ON}, the output turns off. And the output current is shut off. When Tj is below TSD_{OFF}, the output operates by magnetic field again.

Table 6. Magnetic characteristics at V_{DD} = 3.8 to 24V, Ta = -40 to 150°C (Typ. Ta = 25°C, V_{DD} = 12V)						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Description
Operate point	Вор	1.0	2.0	3.0	mT	
Release point	Brp	-3.0	-2.0	-1.0	mT	
Hysteresis	Bh	2.3	4.0	5.7	mT	Bh = Bop – Brp
Magnetic offset	Boff	-0.6	0.0	+0.6	mT	Boff = (Bop + Brp) / 2

Magnetic Characteristics

9.

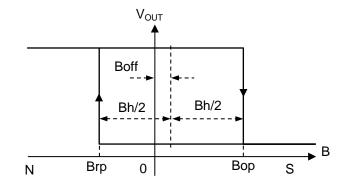


Figure 5. Magnetic Characteristics

10. Operating Characteristics

10.1. Definition of Magnetic Field

The OUT signal switches 'L' (ON) when the magnetic field perpendicular to the marking side of the package exceeds Bop. When the magnetic field is reduced below Brp, the OUT goes 'H' (OFF). In case of the magnetic field strength is greater than Brp, and smaller than Bop, OUT keeps its status.

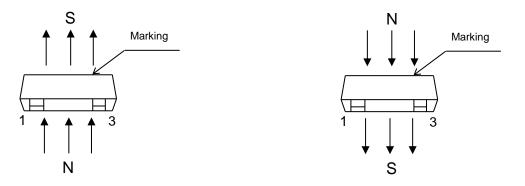


Figure 6. Definition of magnetic field

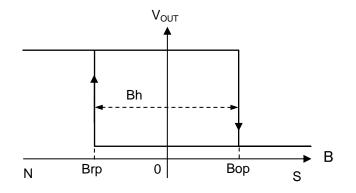


Figure 7. Switching behavior of OUT signal when magnetic field is applied

11. Recommended External Circuit

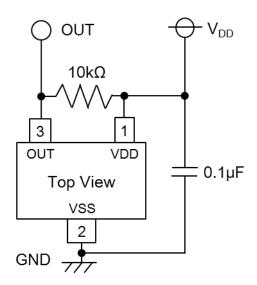


Figure 8. Recommended External Circuit

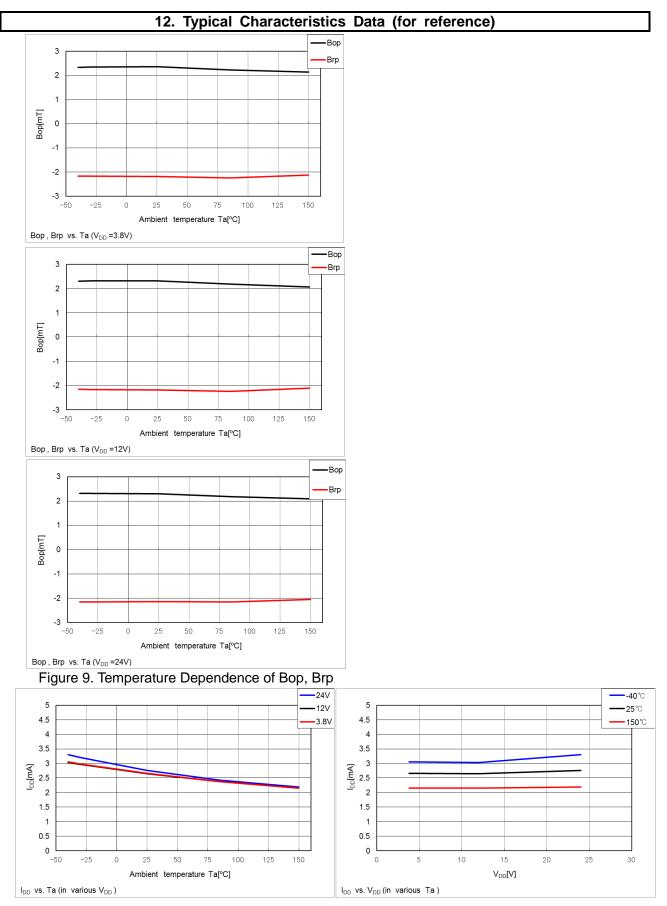
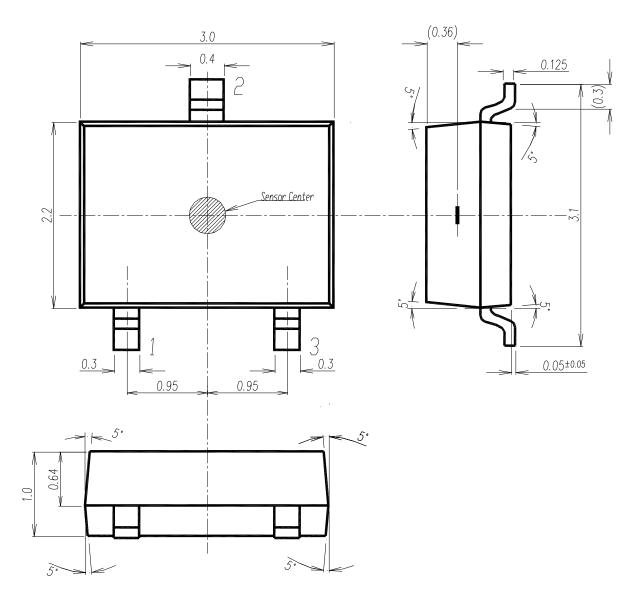


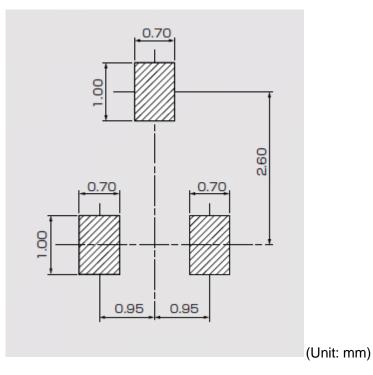
Figure 10. Temperature Dependence of Current Consumption

13. Package

13.1.Outline Dimensions

3-pin SOP (Unit: mm)




Figure 11. Outline Dimensions

- * The center of the sensitive are is located within a φ 0.3mm circle.
- * The tolerances of dimensions with no mentions is ± 0.1 mm.
- * Lead flatness: The standoff differences among terminals are Max. 0.1mm.
- * The sensor part is located at 0.36mm (Typ.) deep from the marked surface.

13.2.Material of Terminals

Material:	Cu alloy
Plating:	Sn-2.0Bi
Thickness:	10µm (Typ.)

13.3.Land Pattern

Figure 13. Marking

IMPORTANT NOTICE

- 0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

Rev.1