

MR750-MR760 6.0A Axial Leaded Silicon Rectifier

Features

- Diffused Junction
- Low Forward Voltage Drop
- High Current Capability
- High Reliability
- High Surge Current Capability

Mechanical Data

Case: R-6, Molded Plastic

• Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208
• Polarity: Cathode Band

• Weight: 2.1 grams (approx.)

• Mounting Position: Any

• Marking: Type Number

Lead Free: For RoHS / Lead Free Version, Add "-LF" Suffix to Part Number, See Page 4

R-6							
Dim	Min	Max					
Α	25.4	_					
В	8.60	9.10					
С	1.20	1.30					
D	8.60	9.10					
All Dimensions in mm							

Maximum Ratings and Electrical Characteristics @ TA = 25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	MR750	MR751	MR752	MR754	MR756	MR758	MR760	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	50	100	200	400	600	800	1000	٧
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current (Note 1) @T _A = 60°C	lo	6.0							Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	 FSM	400							Α
Forward Voltage @I _F = 6.0A	VFM	1.0							V
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	lгм	5.0 1.0							μA mA
Typical Junction Capacitance (Note 2)	Cj	150							pF
Typical Thermal Resistance Junction to Ambient (Note 1)	$R_{ heta}$ JA	20						°C/W	
Operating Temperature Range	Tj	-50 to +150						°C	
Storage Temperature Range	Тѕтс	-50 to +150						°C	

Note: 1. Leads maintained at ambient temperature at a distance of 9.5mm from the case

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.

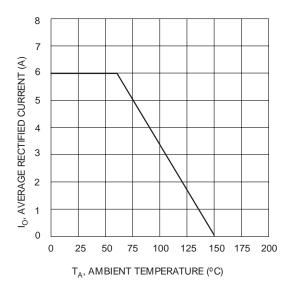


Fig. 1 Forward Current Derating Curve

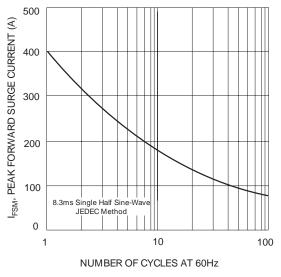


Fig. 3 Maximum Non-Repetitive Peak Forward Surge Current

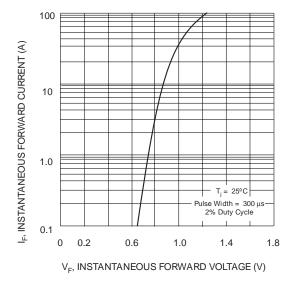


Fig. 2, Typical Forward Characteristics

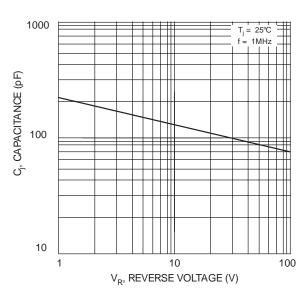


Fig. 4 Typical Junction Capacitance