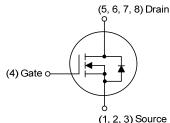


UNISONIC TECHNOLOGIES CO., LTD

UT4410

N-CHANNEL 30-V (D-S) MOSFET

DESCRIPTION

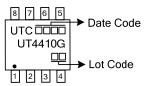

As advanced N-channel logic level enhancement MOSFET, the **UT4410** is produced using UTC's high cell density, DMOS trench technology. which has been specially tailored to minimize the on-resistance and maintain low gate charge for superior switching performance.

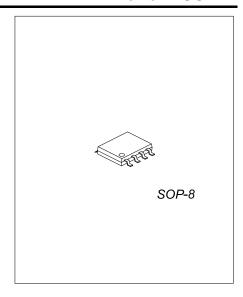
These devices can be particularly suited for such low voltage applications: cellular phone and notebook computer power management and other battery powered circuits where high-side switching and low in-line power loss are needed in a very small outline surface mount package.

FEATURES

- * $R_{DS(ON)}$ < 18 m Ω @ V_{GS}=10V, I_D=10A
- * $R_{DS(ON)}$ < 20 m Ω @ V_{GS} =4.5V, I_{D} =8A
- * Ultra low gate charge (typical 11 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 35 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL




ORDERING INFORMATION

	Daakaga	Pin Assignment								Deaking	
Ordering Number	Package	1	2	3	4	5	6	7	8	Packing	
UT4410G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	
Note: Pin Assignment: G: Gate D: Dra	in S: Source										

UT4410<u>G-S08-R</u> (1) Packing Type (2) Package Type (3) Green Package (3) Green Package (3) G: Halogen Free and Lead Free

MARKING

Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V _{DSS}	30	V
Gate-Source Voltage	V _{GSS}	±20	V
Continuous Drain Current	I _D	11.6	А
Pulsed Drain Current	I _{DM}	46.4	А
Power Dissipation	PD	3.6	W
Junction Temperature	TJ	-55 ~ +150	°C

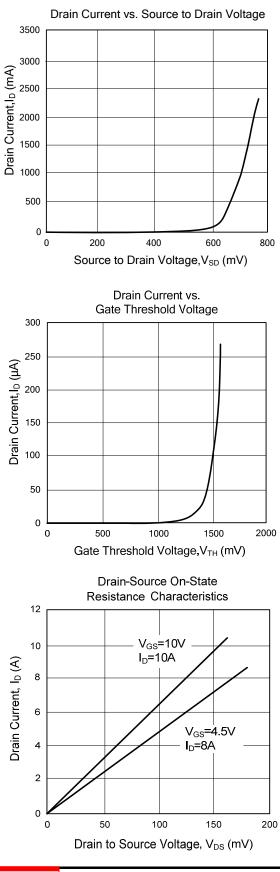
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

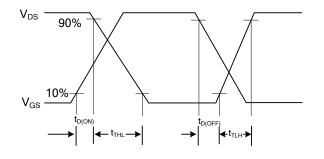
PARAMETER S	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	60	°C/W

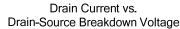
Note: The device mounted on 1in² FR4 board with 2 oz copper

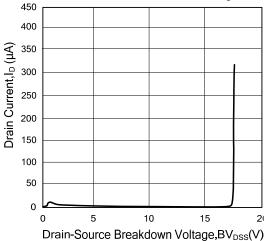
■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					- -	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V	1			μA
Gate-Source Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V			±100	nA
ON CHARACTERISTICS						
Gate-Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	1.3	1.6	3.0	V
Static Drain–Source On–Resistance(Note)	R _{DS(ON)}	V _{GS} =10V, I _D =10A		12	18	mΩ
		V _{GS} =4.5V, I _D =8A		17	20	mΩ
On-State Drain Current(Note)	I _{D(ON)}	V _{DS} = 5V, V _{GS} =10V	20			Α
DYNAMIC PARAMETERS						
Input Capacitance	CISS			700	800	рF
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V, f=1.0MHz		120		pF
Reverse Transfer Capacitance	C _{RSS}			35		pF
Gate Resistance	R _G	V _{DS} =0V, V _{GS} =0V, f=1.0MHz		0.9		Ω
SWITCHING PARAMETERS			•		i	
Turn-ON Delay Time	t _{D(ON)}			14	32	ns
Turn-ON Rise Time	t _R	V_{DD} =25V, I_D =1A, R_L =25 Ω		12	64	ns
Turn-OFF Delay Time	t _{D(OFF)}	V_{GEN} =10V, R_G =6 Ω		43	280	ns
Turn-OFF Fall-Time	t _F			4	192	ns
Total Gate Charge	Q _G	V _{DS} =15V, V _{GS} =4.5V, I _D =10A		11	15	nC
Total Gate Charge	Q _{GT}			20	26	nC
Gate Source Charge	Q_{GS}	V _{DS} =15V, V _{GS} =10V, I _D =10A		5		nC
Gate Drain Charge	Q_{GD}			4.9		nC
SOURCE- DRAIN DIODE RATINGS AND C	HARACTER	ISTICS		-		
Drain-Source Diode Forward Voltage	V _{SD}	I _S =2.3 A,V _{GS} =0V		0.7	1.1	V

Note: Pulse test; pulse width \leq 300us, duty cycle \leq 2%




UT4410


TYPICAL CHARACTERISTICS

Switching Time Waveforms

V UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

