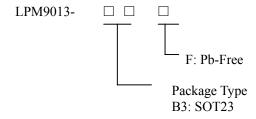


LPM9013


P-Channel Enhancement Mode Field Effect Transistor

General Description

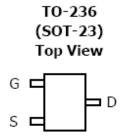
The LPM9013 is the P-channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application, notebook computer power management and other battery powered circuits where high-side switching.

Ordering Information

Features

- -20V/-2.6A,RDC(ON)= $125m\Omega(typ.)$ @VGS=-2.5V
- -20V/-3.0A, RDC(ON)= $98m\Omega(typ.)$ @VGS=-4.5V
- Super high density cell design for extremely low RDC(ON)
- SOT23 Package


Applications

- ♦ Portable Media Players
- ♦ Cellular and Smart mobile phone
- ♦ LCD
- ♦ DSC Sensor
- ♦ Wireless Card

Marking Information

Please see website.

Pin Configurations

SOT23L(Top View)

Functional Pin Description

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V_{DS}	-20	V		
Gate-Source Voltage		V_{GS}	±8	V		
Continuous Drain	T _A =25°C		-3			
Current ^A	T _A =70°C	I_D	-2.4	Α		
Pulsed Drain Current ^B		I _{DM}	-15			
	T _A =25°C	D-	1.4	W		
Power Dissipation ^A	T _A =70°C	P _D	0.9	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	70	90	°C/W		
Maximum Junction-to-Ambient A	Steady-State	IN _θ JΑ	100	125	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	63	80	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-16V, V _{GS} =0V			-1	μА
	Zero Cate Voltage Drain Carrent	T _J =	=55°C		-5	μΛ
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±8V			±100	nΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=-250 \mu A$	-0.3	-0.55	-1	V
$I_{D(ON)}$	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V	-15			Α
		V _{GS} =-4.5V, I _D =-3A		81	97	mΩ
D	Static Drain-Source On-Resistance	T _J =1	125°C	111	135	11152
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-2.5V, I _D =-2.6A		108	130	mΩ
		V _{GS} =-1.8V, I _D =-1A		146	190	mΩ
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-3A	4	7		S
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.78	-1	V
Is	Maximum Body-Diode Continuous Cur	rent			-2	Α
DYNAMIC	PARAMETERS		•			
C _{iss}	Input Capacitance			540		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-10V, f=1MHz	:	72		pF
C _{rss}	Reverse Transfer Capacitance			49		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		12		Ω
SWITCHI	NG PARAMETERS		•			
Qg	Total Gate Charge			6.1		nC
Q _{gs}	Gate Source Charge	V _{GS} =-4.5V, V _{DS} =-10V, I _D =-3	SA	0.6		nC
Q_{gd}	Gate Drain Charge			1.6		nC
t _{D(on)}	Turn-On DelayTime			10		ns
t _r	Turn-On Rise Time	V _{GS} =-4.5V, V _{DS} =-10V, R _L =3	.3Ω,	12		ns
t _{D(off)}	Turn-Off DelayTime	R _{GEN} =3Ω		44		ns
t _f	Turn-Off Fall Time			22		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-3A, dI/dt=100A/μs		21		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-3A, dI/dt=100A/μs		7.5		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the $t \le 10$ s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

Rev 5: June 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

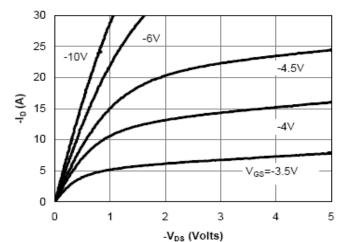


Fig 1: On-Region Characteristics (Note E)

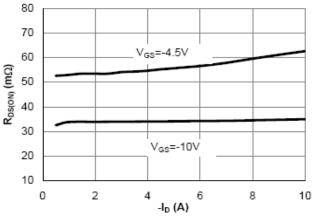


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

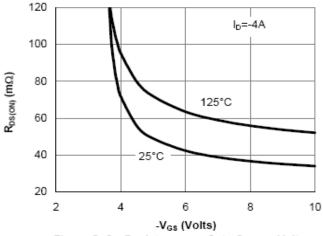


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

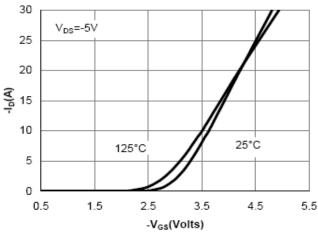


Figure 2: Transfer Characteristics (Note E)

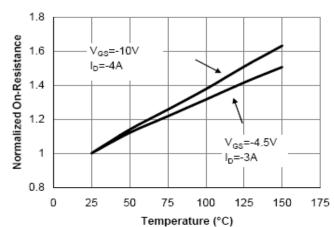


Figure 4: On-Resistance vs. Junction Temperature (Note E)

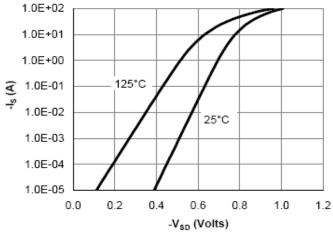


Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

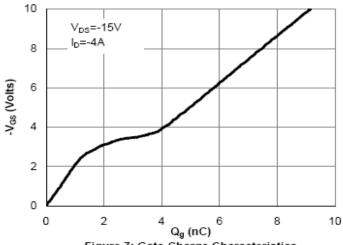


Figure 7: Gate-Charge Characteristics

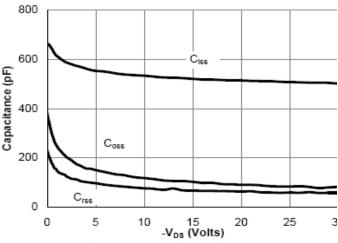


Figure 8: Capacitance Characteristics

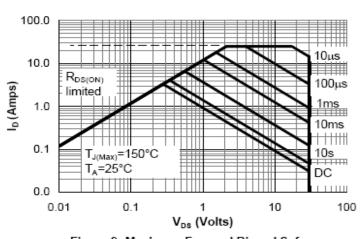


Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

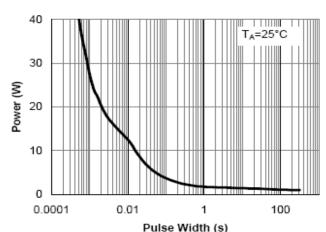


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

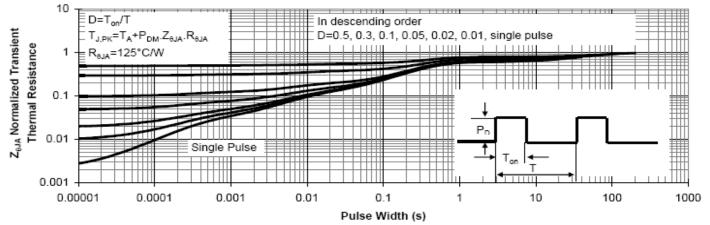
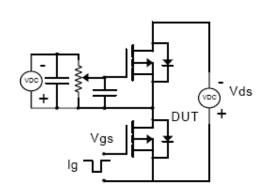
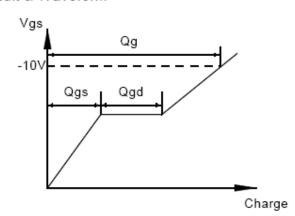
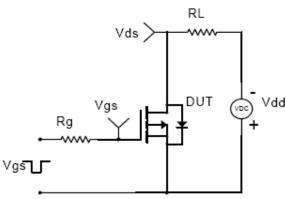
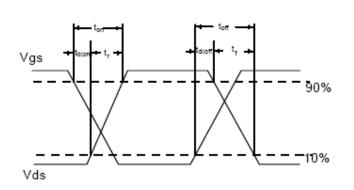
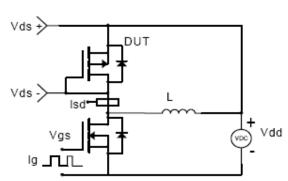
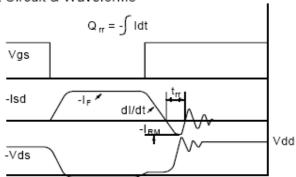




Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

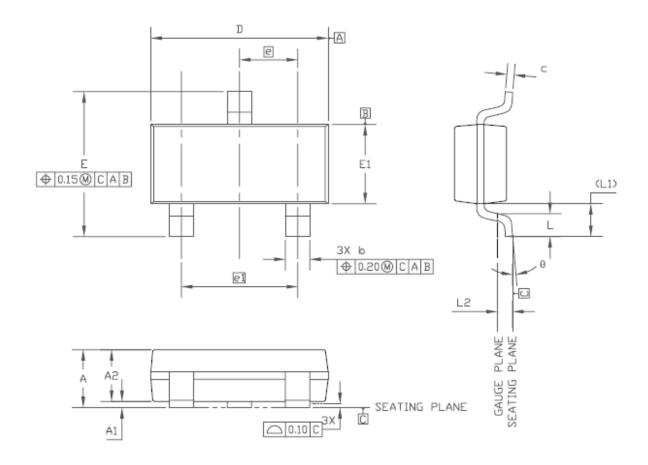


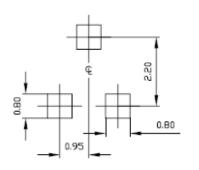

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms





Packaging Information

SOT-23 STANDARD PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

UNIT: mm

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
31 MBOL3	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.75		1.17	0.030		0.046	
A1	0.05	_	0.15	0.002	_	0.006	
A2	0.70	0.85	1.02	0.028	0.033	0.040	
b	0.30		0.50	0.012		0.020	
С	0.08		0.20	0.003		0.008	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	2.10	_	2.64	0.083	_	0.104	
E1	1.20	1.30	1.40	0.047	0.051	0.055	
e	0.95 BSC			0.037 BSC			
e1	1.90 BSC			0.075 BSC			
L	0.40	0.50	0.60	0.016	0.020	0.024	
L1	0.54 REF			0.021REF			
L2	0.25			0.010			
θ1	00		80	00		80	

www.lowpowersemi.com