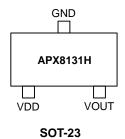


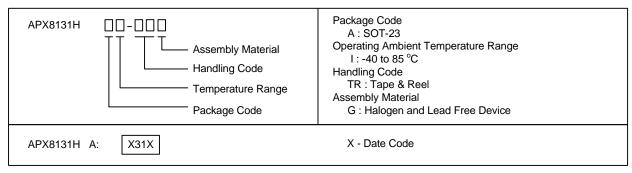
Hall Effect Micro Switch IC

Features

- Micro Power Operation for Battery Applications
- Chopper Stabilized Amplifier
- Independent of North or South Pole Magnet,
 Easy for Manufacture
- Small Size Package
- Lead Free and Green Devices Available (RoHS Compliant)


Applications

- Micro Switch
- Handheld Wireless Application Wake Up Switch
- Clamp Shell Type Application Switch
- Magnet Switch in Low Duty Cycle Applications


General Description

The APX8131H, integrated circuit, is an ultra-sensitive, pole independent Hall-effect switch with a latched digital output. A 2.5 volt to 3.5 volt operation and an unique clocking scheme reduce the average operating power requirements, either a north or south pole of sufficient flux will turn the output on; in the absence of a magnetic field, the output is off. The polarity independence and minimal power requirement allow this device to be easily replaced reed switch for superior for signal conditioning. Advanced CMOS processing is used to take advantage of low-voltage and low-power requirements, SOT-23 package provided a optimized package for most applications.

Pin Configuration

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Absolute Maximum Ratings $(T_A = 25^{\circ}C \text{ unless otherwise noted})^{(Note1)}$

Symbol	Parameter	Rating	Unit
V_{DD}	Supply Voltage	5	٧
V _{OUT}	Output Voltage	5	V
TJ	Junction Temperature Range	150	°C
T _{STG}	Storage Temperature Range	-65 to +150	C

Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter		Typical Value	Unit
θ_{JA}	Junction-to-Ambient Resistance in Free Air (Note 2)	SOT-23	260	°C/W
θЈС	Junction-to-Case Resistance in Free Air (Note 2)	SOT-23	145	°C/W
P _D	Power Dissipation, T _A =25°C	SOT-23	0.385	W

Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.

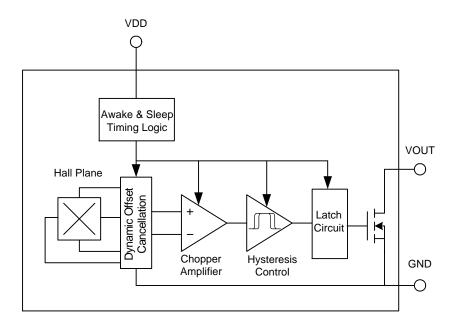
Electrical Characteristics ($T_A = 25$ °C, $V_{DD} = 3V$ unless otherwise noted)

Cumbal	Characteristic Test Conditions			APX8131H		
Symbol	Characteristic	rest Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage Range	Operating	2.5	-	3.5	V
		Average	-	5	10	μΑ
I _{DD}	I _{DD} Supply Current	Awake	-	1.2	2	mA
		Sleep	Sleep	-	2	8
I _{OFF}	Output Leakage Current	$V_{OUT} = 3.5V$, $B_{RPN} < B < B_{RPS}$	-	-	1.0	μΑ
V _{OL}	Output Low Voltage	I _{SINK} = 1mA	-	20	40	mV
t _{awake}	Wake Up Time		-	180	-	μs
t _{period}	Period		-	60	120	ms
d.c.	Duty Cycle		-	0.3	-	%
f _c	Chopping Frequency		-	11	-	kHz

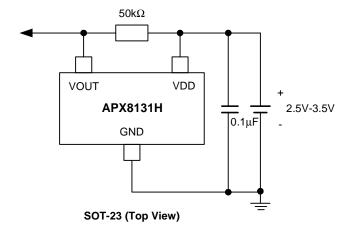
APX8131H

Magnetic Characteristics ($T_A = 25$ °C, $V_{DD} = 3$ V unless otherwise noted)

Symbol	Characteristic Test Conditions		Unit			
Symbol	Characteristic	rest conditions	Min.	Тур.	Max.	Unit
B _{OPS}	Operate Points		30	-	40	G
B _{OPN}	Operate Folitis		-40	-	-30	G
B _{RPS}	Release Points		10	-	30	G
B _{RPN}	Therease Forms		-30	-	-10	G
B _{hys}	Hysteresis		-	15	-	G

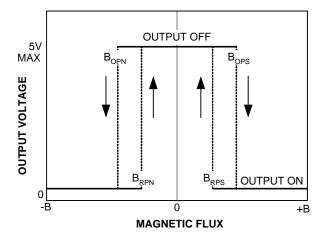


Pin Description


PIN		FUNCTION
NO.	NAME	FONCTION
1	VDD	Power Input
2	VOUT	When a magnetic field enters the hall element and exceeds the operate point BOPS (or less than BOPN), the output turns on (output is low). When the magnetic field is below the release point BRPS (or above BRPN), the output turns off (output is high). It is designed with open drain configuration and connecting a pull up resistor from VOUT to VDD is necessary. It cannot be floating.
3	GND	Ground Connection.

Block Diagram

Typical Application Circuit



Function Description

Operation

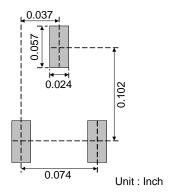
The output of APX8131H switches low (turns on) when in presence of strong flux density facing the marked side of package exceeds the operate point B_{OPS} (or is less than B_{OPN}). After turn-on, the output is capable of sinking up to 1mA and the output voltage is low (turns on). In absence of flux density below the release point B_{RPS} (or increased above B_{RPN}), the APX8131A output switches high (turns off). The difference in the magnetic operated and released point is the hysteresis (B_{hys}) of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical bouncing vibration and electrical noise.

Application Information

It is strongly recommended that an external bypass capacitor be connected (in close to the Hall sensor) between the supply and the ground of the device to reduce both external noise and noise generated by the chopper-stabilization technique. This is especially true due to the relatively high impedance of battery supplies. The output is an open drain output, it must be connected a pull-up resistor to a supply voltage which is lower than 5V, connect a $50 \mathrm{k}\Omega$ resistor to VDD in common use.

Pole-Independent

The pole-independent sensing technique allows for operation with either a north or south pole magnet orientation, enhancing the manufacturability of the device. The state-of-the-art technology provides the same output polarity for either pole in presence.

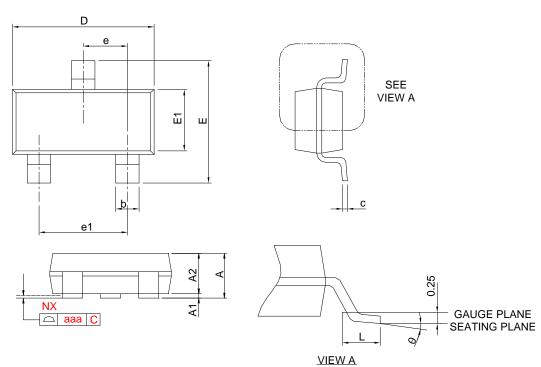

Awake & Sleep

Internal awake & sleep timing block circuit activates the sensor for 180µs and deactivates it for the remainder of the period (60ms). A short "awake" time allows for stabilization prior to the sensor sampling and data latching on the falling edge of the timing pulse. While in sleep cycle, the output is latched in its previous state.

Chopper Stabilized Technique

The chopper stabilized technique cancels the mismatching of the hall element, the amplifier offset voltage and temperature sensitive drift by the dynamic offset cancellation and switched capacitor technique. This technique produces devices have an extremely stable Hall output voltage, therefore, the magnetic switch points are stable.

Recommended Minimum Footprint



SOT-23-3

Package Information

SOT-23

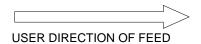
Ş	SOT-23			
SYMBO	MILLI	MILLIMETERS		CHES
2	MIN.	MAX.	MIN.	MAX.
Α		1.45		0.057
A1	0.00	0.15	0.000	0.006
A2	0.90	1.30	0.035	0.051
b	0.30	0.50	0.012	0.020
С	0.08	0.22	0.003	0.009
D	2.70	3.10	0.106	0.122
Е	2.60	3.00	0.102	0.118
E1	1.40	1.80	0.055	0.071
е	0.95	5 BSC	0.03	37 BSC
e1	1.90 BSC		0.07	75 BSC
L	0.30	0.60	0.012	0.024
θ	0°	8°	0°	8°
aaa	0.	.10	0.	004

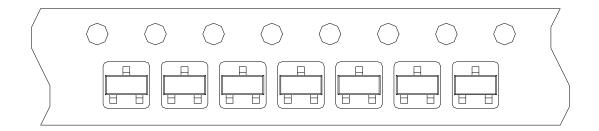
Note: Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

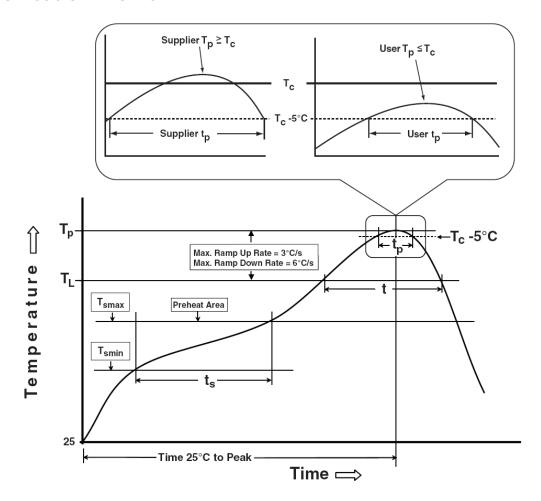
Carrier Tape & Reel Dimensions

Application	Α	Н	T1	С	d	D	W	E1	F
	178.0 ₤.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0 ± 0.30	1.75 ± 0.10	3.5 ± 0.05
SOT-23	P0	P1	P2	D0	D1	Т	A0	В0	K0
	4.0 ± 0.10	4.0 ± 0.10	2.0 ±0.05	1.5+0.10 -0.00	1.0 MIN.	0.6+0.00 -0.40	3.20 ± 0.20	3.10 ±0.20	1.50 ±0.20

(mm)


Devices Per Unit


Package Type	Unit	Quantity
SOT-23	Tape & Reel	3000


Taping Direction Information

SOT-23

Classification Profile

Classification Reflow Profiles

Sn-Pb Eutectic Assembly	Pb-Free Assembly
100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds
3 °C/second max.	3°C/second max.
183 °C 60-150 seconds	217 °C 60-150 seconds
See Classification Temp in table 1	See Classification Temp in table 2
20** seconds	30** seconds
6 °C/second max.	6 °C/second max.
6 minutes max.	8 minutes max.
	150 °C 60-120 seconds 3 °C/second max. 183 °C 60-150 seconds See Classification Temp in table 1 20** seconds 6 °C/second max.

^{*} Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm³ ³350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HOLT	JESD-22, A108	1000 Hrs, Bias @ Tj=125°C
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C
ТСТ	JESD-22, A104	500 Cycles, -65°C~150°C
ESD	MIL-STD-883-3015.7	VHBM 2KV, VMM 200V
Latch-Up	JESD 78	10ms, 1 _{tr} 100mA

Copyright © ANPEC Electronics Corp. Rev. A.1- Aug., 2014

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Customer Service

Anpec Electronics Corp.

Head Office:

No.6, Dusing 1st Road, SBIP,

Hsin-Chu, Taiwan Tel: 886-3-5642000 Fax: 886-3-5642050

Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838