

SN65LBC175A-EP

SLLSEU5 - DECEMBER 2016

SN65LBC175A-EP Quadruple RS-485 Differential Line Receiver

1 Features

- Designed for TIA/EIA-485, TIA/EIA-422 and ISO 8482 Applications
- Signaling Rates (1) Exceeding 50 Mbps
- Fail-Safe in Bus Short-Circuit, Open-Circuit, and Idle-Bus Conditions
- · ESD Protection on Bus Inputs Exceeds 6 kV
- Common-Mode Bus Input Range –7 V to 12 V
- Propagation Delay Times < 18 ns
- Low Standby Power Consumption < 32 μA
- Pin-Compatible Upgrade for MC3486, DS96F175, LTC489, and SN75175

2 Applications

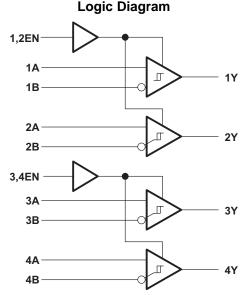
- Supports Defense, Aerospace, and Medical Applications
 - Controlled Baseline
 - One Assembly and Test Site
 - One Fabrication Site
 - Extended Product Life Cycle
 - Extended Product-Change Notification
 - Product Traceability

3 Description The SN65LBC175

The SN65LBC175A-EP is a quadruple differential line receiver with 3-state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 (Euro RS-485) applications.

This device is optimized for balanced multipoint bus communication at data rates up to and exceeding 50 million bits per second. The transmission media may be twisted-pair cables, printed-circuit board traces, or backplanes. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The receiver operates over a wide range of positive and negative common-mode input voltages, and features ESD protection to 6 kV, making it suitable for high-speed multipoint data transmission applications in harsh environments. These devices are designed using LinBiCMOS[®], facilitating low power consumption and robustness.


Two EN inputs provide pair-wise enable control, or these can be tied together externally to enable all four drivers with the same signal.

Device Information(1)

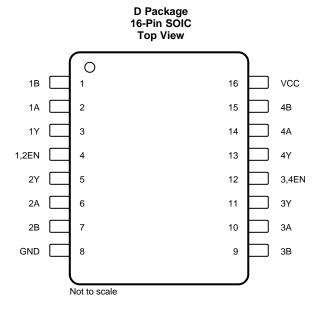
PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN65LBC175A-EP	SOIC (16)	9.90 mm × 3.90 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

Copyright © 2016, Texas Instruments Incorporated

SLLSEU5 – DECEMBER 2016 www.ti.com


Table of Contents

1	Features 1		8.3 Feature Description	10
2	Applications 1		8.4 Device Functional Modes	10
3	Description 1	9	Application and Implementation	12
4	Revision History2		9.1 Application Information	12
5	Pin Configuration and Functions		9.2 Typical Application	12
6	Specifications4	10	Power Supply Recommendations	14
•	6.1 Absolute Maximum Ratings 4	11	Layout	14
	6.2 ESD Ratings		11.1 Layout Guidelines	
	6.3 Recommended Operating Conditions		11.2 Layout Example	14
	6.4 Thermal Information	12	Device and Documentation Support	15
	6.5 Electrical Characteristics5		12.1 Receiving Notification of Documentation Updates	15
	6.6 Switching Characteristics5		12.2 Community Resources	15
	6.7 Typical Characteristics		12.3 Trademarks	15
7	Parameter Measurement Information 8		12.4 Electrostatic Discharge Caution	
8	Detailed Description 10		12.5 Glossary	15
	8.1 Overview	13	Mechanical, Packaging, and Orderable	
	8.2 Functional Block Diagram 10		Information	16

4 Revision History

DATE	REVISION	NOTES
December 2016	*	Initial release.

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
1A	2	I	RS-485 differential input (noninverting).
1B	1	I	RS-485 differential input (inverting).
1Y	3	0	Logic level output.
2A	6	I	RS-485 differential input (noninverting).
2B	7	I	RS-485 differential input (inverting).
2Y	5	0	Logic level output.
3A	10	I	RS-485 differential input (noninverting).
3B	9	I	RS-485 differential input (inverting).
3Y	11	0	Logic level output.
4A	14	I	RS-485 differential input (noninverting).
4B	15	I	RS-485 differential input (inverting).
4Y	13	0	Logic level output.
1,2EN	4	I	Active-low and active-high select.
3,4EN	12	I	Active-low and active-high select.
GND	8	_	Ground.
V _{CC}	16	_	Power supply.

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, V _{CC} ⁽²⁾	-0.3	6	V
Voltage at any bus input (steady state), A and B	-10	15	V
Voltage at any bus (transient pulse through 100 Ω , see Figure 10)	-30	30	V
Input voltage at 1,2EN and 3,4EN, V _I	-0.5	$V_{CC} + 0.5$	V
Receiver output current, I _O	-10	10	mA
Storage temperature, T _{stq}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
V _(ESD)		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	A and B to GND	±6000	
	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC 35-001	All pins	±5000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	All pins	±2000	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

				MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage				5	5.25	V
	Voltage at any bus terminal	A, B		-7		12	V
V _{IH}	High-level input voltage	ENI.		2		V_{CC}	V
V_{IL}	Low-level input voltage	EN		0		0.8	V
	Output current	Υ		-8		8	mA
T_{J}	Junction temperature					125	°C

6.4 Thermal Information

		SN65LBC175A-EP	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNITS
		16 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	78	°C/W
θ_{JCtop}	Junction-to-case (top) thermal resistance	39.5	°C/W
θ_{JB}	Junction-to-board thermal resistance	35.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	8.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	35.1	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: SN65LBC175A-EP

²⁾ All voltage values, except differential I/O bus voltages, are with respect to GND and are steady-state (unless otherwise specified).

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

over recommended operating conditions

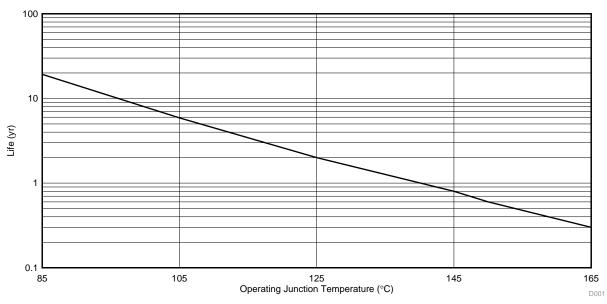
0,01,1	econfinenced operating con	4110110						
	PARAMETER		TEST C	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
$V_{\text{IT+}}$	Positive-going differential inpu	71/21/ 2401//	() () () ()		-80	-10	mV	
$V_{\text{IT-}}$	Negative-going differential inpe	ut voltage threshold	$-7 \text{ V} \le \text{V}_{\text{CM}} \le 12 \text{ V} \text{ (}$	$v_{CM} = (v_A + v_B)/2)$	-200	-120		mV
V_{HYS}	Hysteresis voltage (V _{IT+} – V _{IT-}	.)				-40		mV
V_{IK}	Input clamp voltage		$I_1 = -18 \text{ mA}$		-1.5	-0.8		V
V _{OH}	High-level output voltage		$V_{ID} = 200 \text{ mV},$ $I_{OH} = -8 \text{ mA}$	Coo Figure 6	2.7	4.8		V
V _{OL}	Low-level output voltage		$V_{ID} = -200 \text{ mV},$ $I_{OL} = 8 \text{ mA}$	See Figure 6		0.2	0.4	V
I_{OZ}	High-impedance-state output current		$V_O = 0 V \text{ to } V_{CC}$		-1		1	μΑ
	Line input ourrent		Other input at 0 V,	V _I = 12 V	·		0.9	A
l _l	Line input current		$V_{CC} = 0 V \text{ or } 5 V$	$V_I = -7 V$	-0.7			mA
I_{IH}	High-level input current	Enable innute			·		110	μA
I_{IL}	Low-level input current	ut current Enable inputs			-100			μΑ
R _I	Input resistance	A, B inputs			12			kΩ
			V _{ID} = 5 V	1,2EN, 3,4EN at 0 V			32	μΑ
I _{CC}	Supply current	urrent		1,2EN, 3,4EN at V _{CC}		11	16	mA

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C.

6.6 Switching Characteristics

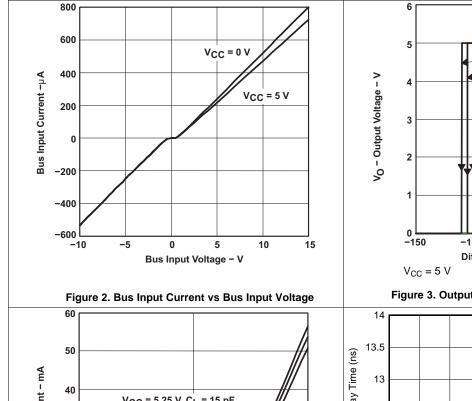
Over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Output rise time			2	7	ns
t _f	Output fall time	$V_{ID} = -3 \text{ V to } 3 \text{ V},$		2	7	ns
t _{PLH}	Propagation delay time, low-to-high level output	See Figure 7	8	12	18	ns
t _{PHL}	Propagation delay time, high-to-low level output		8	12	18	ns
t _{PZH}	Propagation delay time, high-impedance to high-level output	Con Figure 0		27	39	ns
t _{PHZ}	Propagation delay time, high-level-output to high-impedance	See Figure 8		7	24	ns
t _{PZL}	Propagation delay time, high-impedance to low-level output	Con Figure 0		29	39	ns
t _{PLZ}	Propagation delay time, low-level-output to high-impedance	See Figure 9		12	18	ns
t _{sk(p)}	Pulse skew (t _{PLH} - t _{PHL})			0.2	2	ns
t _{sk(o)}	Output skew ⁽¹⁾				3	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				3	ns


⁽¹⁾ Output skew (t_{sk(o)}) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.

Product Folder Links: SN65LBC175A-EP

⁽²⁾ Part-to-part skew (t_{sk(pp)}) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.



- (1) See data sheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) Enhanced plastic product disclaimer applies.

Figure 1. SN65LBC175A-EP Wirebond Life Derating Chart

6.7 Typical Characteristics

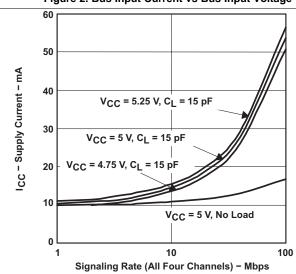


Figure 4. Supply Current vs Signaling Rate (All Four Channels)

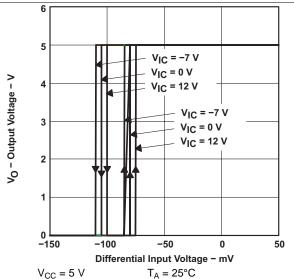


Figure 3. Output Voltage vs Differential Input Voltage

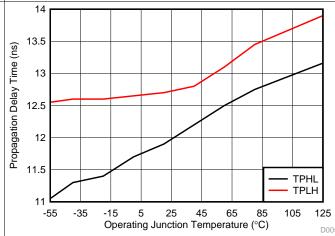


Figure 5. Propagation Delay Time vs Free-Air Temperature

TEXAS INSTRUMENTS

7 Parameter Measurement Information

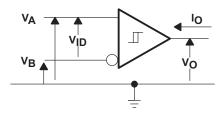


Figure 6. Voltage and Current Definitions

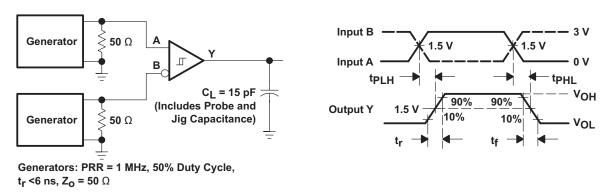


Figure 7. Switching Test Circuit and Waveforms

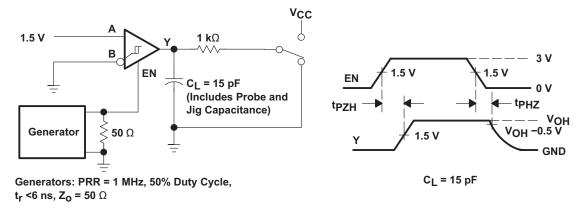


Figure 8. Test Circuit Waveforms – t_{PZH} and t_{PHZ}

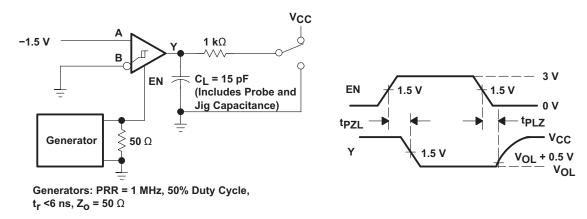


Figure 9. Test Circuit Waveforms - t_{PZL} and t_{PLZ}

Parameter Measurement Information (continued)



Figure 10. Test Circuit and Waveform - Transient Overvoltage Test

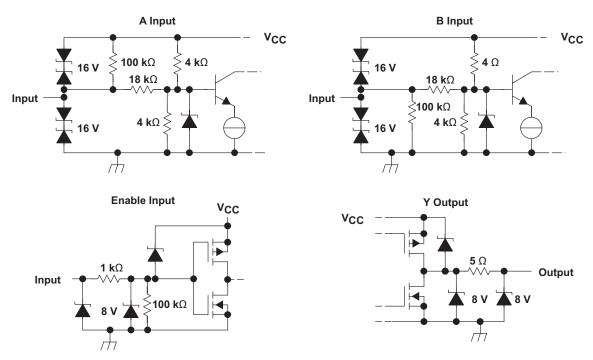
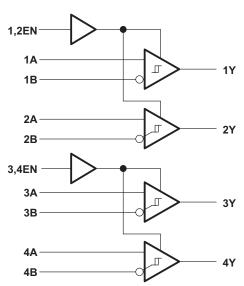


Figure 11. Equivalent Input and Output Schematic Diagrams

8 Detailed Description


8.1 Overview

The SN65LBC175A-EP is a quadruple differential line receiver with tri-state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 (Euro RS-485) applications. This device is optimized for balanced multipoint bus communication at data rates up to and exceeding 50 million bits per second. The transmission media may be twisted-pair cables, printed-circuit board traces, or backplanes. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The receiver operates over a wide range of positive and negative common-mode input voltages, and features ESD protection to 6 kV, making it suitable for high-speed multipoint data transmission applications in harsh environments. These devices are designed using LinBiCMOS®, facilitating low-power consumption and robustness.

Two EN inputs provide pair-wise enable control, or these can be tied together externally to enable all four drivers with the same signal.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

The device can be configured using the enable inputs to select receiver output. The high voltage or logic 1 on the EN pin allows the device to operate on an active-high, and having a low voltage or logic 0 on the EN enables active-low operation. These are simple ways to configure the logic to match the receiving or transmitting controller or microprocessor.

8.4 Device Functional Modes

The receivers implemented in the RS-485 device can be configured using the EN logic pins set to enabled or disabled. This allows users to ignore or filter out transmissions as desired.

Table 1. Function Table⁽¹⁾

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A - B (V _{ID})	EN	Y
V _{ID} ≤ -0.2 V	Н	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.01 \text{ V}$	Н	?
-0.01 V ≤ V _{ID}	Н	Н
X	L	Z
X	OPEN	Z
Short circuit	Н	Н
Open circuit	Н	Н

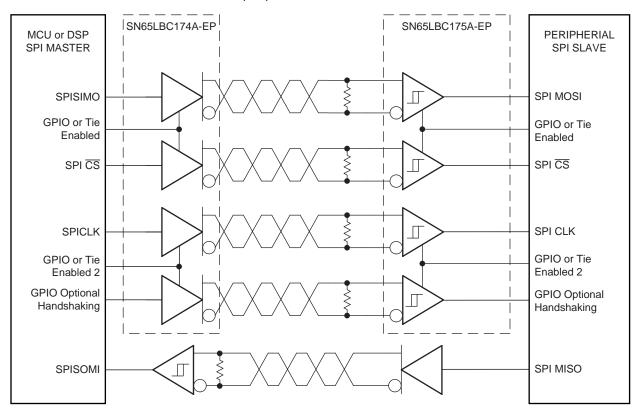
⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate

SLLSEU5 – DECEMBER 2016 www.ti.com

TEXAS INSTRUMENTS

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Extending SPI operation over RS-485 link.

9.2 Typical Application

The following block diagram shows an MCU host connected via RS-485 to a SPI slave device. This device can be an ADC, DAC, MCU, or other SPI slave peripheral.

Copyright © 2016, Texas Instruments Incorporated

Figure 12. DSP-to-DSP Link via Serial Peripheral Interface

9.2.1 Design Requirements

This application can be implemented using standard SPI protocol on DSP or MCU devices. The interface is independent of the specific frame or data requirements of the host or slave device. An additional but not required handshake bit is provided that can be used for customer purposes.

9.2.2 Detailed Design Procedure

The interface design requirements are fairly straight forward in this single source/destination scenario. Trace lengths and cable lengths need to be matched to maximize SPI timing. If there is a benefit to put the interface to sleep, GPIOs can be used to control the enable signals of the transmitter and receiver. If GPIOs are not available, or constant uptime needed, both the enables on transmit and receive can be hard tied enabled.

Typical Application (continued)

The link shown can operate at up to 50 Mbps, well within the capability of most SPI links.

9.2.3 Application Curve

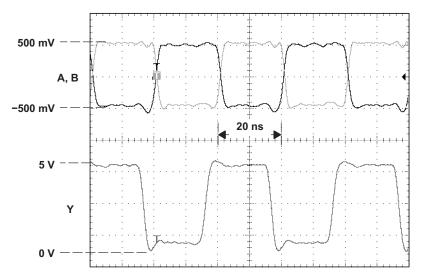


Figure 13. Receiver Inputs and Outputs, 50-Mbps Signaling Rate

TEXAS INSTRUMENTS

10 Power Supply Recommendations

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
- Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible.
- Place termination resistor as close as possible to the input pins (if end point node).
- Keep trace lengths from input pins to bus as short as possible to reduce stub lengths and reflections on any nodes that are not end points of bus.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
 it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
 opposed to in parallel with the noisy trace.

11.2 Layout Example

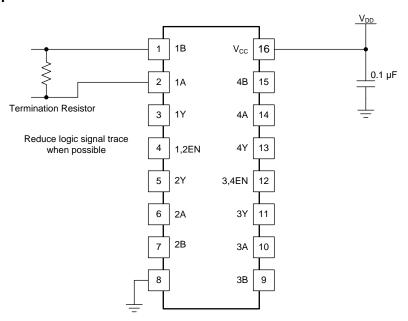


Figure 14. Layout with PCB Recommendations

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. LinBiCMOS is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

SLLSEU5 – DECEMBER 2016 www.ti.com

TEXAS INSTRUMENTS

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

21-Dec-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65LBC175AMDREP	PREVIEW	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	LBC175AEP	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

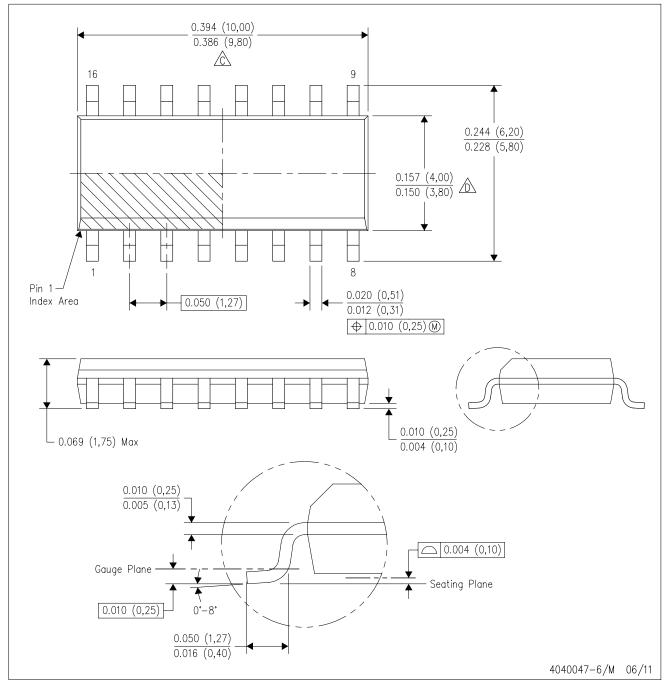
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

21-Dec-2016

OTHER QUALIFIED VERSIONS OF SN65LBC175A-EP:


● Catalog: SN65LBC175A

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity www.ti.com/wirelessconnectivity