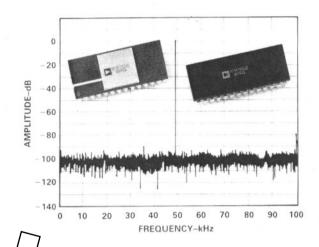


# 12-Bit 200KSPS Sampling ADC

#### **FEATURES**

AC Characterized and Specified 200k Conversions per Second 1MHz Full Power Bandwidth 500kHz Full Linear Bandwidth 72dB S/N+D (K Grade) Twos Complement Data Format (Bipolar Mode) Straight Binary Data Format (Unipolar Mode) 10MΩ Input Impedance

8 Bit or 16 Bit Bus Interface On Board Reference and Clock 10V Unipolar of Bipolar Input Range


PRODUCT DESCRIPTION

The AD1678 is a 12-bit monolithic analog-to-digital converter, consisting of a sample-hold amplifier (SHA), a microprocessor compatible bus interface, a voltage reference and clock generation circuitry.

This product is fabricated on Analog Devices' BiMOS process, combining low power CMOS logic with high precision, low noise bipolar circuits; laser-trimmed thin-film resistors provide high accuracy. The converter utilizes a recursive subranging algorithm which includes error correction and flash converter circuitry to achieve high speed and resolution.

The AD1678 is specified for ac (or "dynamic") parameters such as S/N+D ratio, THD and IMD. These parameters are important in signal processing applications as they indicate the AD1678's effect on the spectral content of the input signal. The AD1678 offers a choice of digital interface formats; the 12 data bits can be accessed by a 16-bit bus in a single read operation or by an 8-bit bus in two read operations (8+4), with right or left justification. Data format is straight binary for unipolar mode and twos complement binary for bipolar mode. The input has a full-scale range of 10V with a full power bandwidth of 1 MHz and a full linear bandwidth of 500kHz. High input impedance (10M $\Omega$ ) allows direct connection to unbuffered sources without signal degradation.

The AD1678 operates from +5V and  $\pm 12V$  supplies and dissipates 600mW. A 28-pin plastic DIP and a 0.6" wide ceramic DIP are available. Contact factory for surface-mount package options.



PRODUCT HIGHLIGHTS

RFORMAN provides a throughput of ns per second. VN+D is 72dB (K grade) at 0k conversion OkHz and re beyond the Nyquis mains flat to AD1678 minimizes externa by combining high speed sample-hold nent requirement 5V reference, clock and digital inter-ADC, amplifier (SHA) face on a single chip. This provides a fully st pecified sampling A/D function unattainable with discrete designs

- 3. EASE OF USE: The pinout is designed for easy board layout, and the choice of single or two read cycle output provides compatibility with 16- or 8-bit buses. Factory trimming eliminates the need for calibration modes or external trimming to achieve rated performance.
- 4. RELIABILITY: The AD1678 utilizes Analog Devices' monolithic low power BiMOS technology. This ensures long term reliability compared to multichip and hybrid designs.

# $\textbf{AC SPECIFICATIONS} \; (\textbf{T}_{min} \; \text{to} \; \textbf{T}_{max}, \; \textbf{V}_{\text{CC}} = +12 \textbf{V}, \; \textbf{V}_{\text{EE}} = -12 \textbf{V}, \; \textbf{V}_{\text{DD}} = +5 \textbf{V}, \; \textbf{f}_{\text{SAMPLE}} = 200 \text{KSPS}, \; \textbf{f}_{\text{IN}} = 10.06 \text{kHz})^{1}$

| \$5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD1678J                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | AD1678K    |                                                          |                                         |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------------------------------------------------------|-----------------------------------------|-------|
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min                             | Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max             | Min        | Typ                                                      | Max                                     | Units |
| SIGNAL-TO-NOISE AND DISTORTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N (S/N+D) RATIO <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                                                          |                                         |       |
| @ +25° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 72         | 73                                                       |                                         | dB    |
| $T_{\min}$ to $T_{\max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 71         | 73                                                       |                                         | dB    |
| TOTAL HARMONIC DISTORTION (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'HD) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                                                          |                                         |       |
| @ +25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | -88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -80             |            | -88                                                      | -80                                     | dB    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010           |            | 0.004                                                    | 0.010                                   | %     |
| $T_{\min}$ to $T_{\max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | -85<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -78             |            | -85<br>0.005                                             | -78<br>0.012                            | dB    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.012           | -          | 0.005                                                    | 0.012                                   | %     |
| PEAK SPURIOUS OR PEAK HARMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IIC COMPONENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | -87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -80             |            | -87                                                      | -80                                     | dB    |
| FULL POWER BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            | 1                                                        |                                         | MHz   |
| FULL LINEAR BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 500        |                                                          |                                         | kHz   |
| INTERMODULATION DISTORTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (IMD) <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                                                          | *************************************** | T     |
| 2nd Order Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | -85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -80             | ĺ          | -85                                                      | -80                                     | dB    |
| 3rd Order Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -80             |            | -90                                                      | -80                                     | dB    |
| NOTES $f_{\rm IN}$ implitude = $-0.5$ dB (9.44V p-p) bipolar mo (9.97V p-p) input signal.  See Figure 1 and 7 for higher frequencies and of see Figure 1 for other conditions. $^4f_A = 9.08$ kHz, $f_B = 1.58$ kHz, with $f_{\rm SAMPLE} = 2.58$ kHz, with the substitution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ons section.    | ed to a 0d | В                                                        |                                         |       |
| $f_{\rm IN}$ implitude = $-0.5$ dB (9.44V p-p) bipolar mo (9.997V p-p) input fignal. <sup>2</sup> Lee Figures 2 and 7 for higher frequencies and of 3Sec Figure 1 for other conditions. <sup>4</sup> $f_{\rm A} = 9.08$ kHz, $f_{\rm B} = 9.58$ kHz, with $f_{\rm SAMPLR} = 2.58$ k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the input amplitudes 208KSPS. See Figure and Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nition of                       | Specificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |            |                                                          | 5V ±10%)                                |       |
| $f_{\rm IN}$ implitude = $-0.5$ dB (9.44V p-p) bipolar mo (9.997V p-p) input fignal.  2 see Figure 2 and 7 for higher frequencies and of 3Sec Figure 1 for other conditions.  4 $f_A = 9.08$ kHz, $f_B = 1.58$ kHz, with $f_{SAMPLE} = 2.58$ kHz, with the subject to change without notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the input amplitudes 200KSPS. See Figure 7 and Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nition of                       | Specificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ions section.   |            |                                                          | 5V ±10%)                                |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input fignal.  2 see Figures 2 and 3 for higher frequencies and of 3sec Figure 1 for other conditions.  4f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 1.58kHz, with f <sub>SAMPL</sub> = 2.58kHz, with f <sub>SAMPL</sub> = 2.59kHz, with f <sub>SAMPL</sub> = 2.59kHz | ONS (for all grades T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nition of to T <sub>r</sub>     | Specificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ions section.   |            | $V_{DD} = \int_{-\infty}^{\infty} V_{DD} dx$             | 5V ± 10%)                               |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input signal.  2 ce Figures and for higher frequencies and of see Figure 1 for other conditions.  4 f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 9.58kHz with f <sub>SANPL</sub> = 2  Specifications subject to change without notice.  DIGITAL SPECIFICATI  Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ONS (for all grades T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nition of to T <sub>r</sub>     | Specification of the specifica | ions section.   |            | $V_{DD} = \int_{-\infty}^{\infty} V_{DD} dx$             | 5V ±10%)                                |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignal.  2 ce Figures and for higher frequencies and of 3 See Figure 1 for other conditions.  4 f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 9.58kHz with f <sub>SANPL</sub> = 2  Specifications subject to change without notice.  DIGITAL SPECIFICATI  Specification  LOGIC INPUTS  V <sub>IH</sub> High Level Input Voltage  V <sub>IL</sub> Low Level Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ONS (for all grades T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nition of min to T <sub>r</sub> | Specification of the specifica | ions section.   |            | V <sub>DD</sub> =                                        | 5V ±10%)                                |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignal.  The Figure 1 and 1 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 2 and 2 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 2 and 3 for higher frequencies and of 3sec Figure 1 for other conditions.  Specification subject to change without notice.  The Figure 2 and 3 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 2 for high frequencies and of 3sec Figure 2 fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the input amplitudes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nition of min to T <sub>r</sub> | Specification of the specifica | ons section.    |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA             | 5V ±10%)                                |       |
| f <sub>IN</sub> implitude = -0.5dP (9.44V p-p) bipolar mo (9.997V p-p) input rignal.  *Ace Figure 1 for other conditions.  *f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 9.58kHz with f <sub>SANPL</sub> = 2  Specifications subject to change without notice.  *DIGITAL SPECIFICATI  *Specification  *LOGIC INPUTS  *V <sub>IH</sub> High Level Input Voltage  *V <sub>IL</sub> Low Level Input Voltage  *I <sub>IH</sub> High Level Input Current  *I <sub>IL</sub> Low Level Input Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONS (for all grades T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nition of min to T <sub>r</sub> | Specification of the specifica | 0.8<br>10       |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA<br>μA       | 5V ± 10%)                               |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignal.  The Figure 1 and 1 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 2 and 2 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 2 and 3 for higher frequencies and of 3sec Figure 1 for other conditions.  Specification subject to change without notice.  The Figure 2 and 3 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 1 for other conditions.  The Figure 3 and 4 for higher frequencies and of 3sec Figure 2 for high frequencies and of 3sec Figure 2 fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the input amplitudes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nition of min to T <sub>r</sub> | Specification of the specifica | Max  0.8        |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA             | 5V ± 10%)                               |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignd.  2 ce Figure 2 and 3 for higher frequences and of 3sec Figure 1 for other conditions.  4 f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 1.58kHz with f <sub>SAMPL</sub> = 2  Specifications subject to change without notice.  DIGITAL SPECIFICATI  Specification  LOGIC INPUTS  V <sub>IH</sub> High Level Input Voltage  V <sub>IL</sub> Low Level Input Voltage  V <sub>IH</sub> High Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Linput Capacitance  LOGIC OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the input amplitudes to the input amplitudes of the i | nition of min to T <sub>r</sub> | Specification of the specifica | 0.8<br>10       |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA<br>μA<br>pF | 5V ±10%)                                |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignd.  2 ce Figure 2 and 3 for higher frequences and of 3sec Figure 1 for other conditions.  4 f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 1.58kHz with f <sub>SAMPL</sub> = 2  Specifications subject to change without notice.  DIGITAL SPECIFICATI  Specification  LOGIC INPUTS  V <sub>IH</sub> High Level Input Voltage  V <sub>IL</sub> Low Level Input Voltage  V <sub>IH</sub> High Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  C <sub>IN</sub> Input Capacitance  LOGIC OUTPUTS  V <sub>OH</sub> High Level Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the input amplitudes Took SPS. See Figure and Design Took SPS | nition of min to T <sub>r</sub> | Specification of the specifica | 0.8<br>10<br>10 |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA<br>μA<br>pF | 5V ± 10%)                               |       |
| f <sub>IN</sub> implitude = -0.5dB (9.44V p-p) bipolar mo (9.997V p-p) input rignd.  2 ce Figure 2 and 3 for higher frequences and of 3sec Figure 1 for other conditions.  4 f <sub>A</sub> = 9.08kHz, f <sub>B</sub> = 1.58kHz with f <sub>SAMPL</sub> = 2  Specifications subject to change without notice.  DIGITAL SPECIFICATI  Specification  LOGIC INPUTS  V <sub>IH</sub> High Level Input Voltage  V <sub>IL</sub> Low Level Input Voltage  V <sub>IH</sub> High Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Low Level Input Current  I <sub>IL</sub> Linput Capacitance  LOGIC OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the input amplitudes to the input amplitudes of the i | min to T <sub>r</sub> Mi  2.0   | Specification of the specifica | 0.8<br>10       |            | V <sub>DD</sub> = V<br>Units<br>V<br>V<br>μA<br>μA<br>pF | 5V ±10%)                                |       |

#### NOTE

Specifications shown in **boldface** are tested on all devices at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested.

Specifications subject to change without notice.

# $\begin{tabular}{ll} \textbf{DC SPECIFICATIONS} & (@+25^{\circ}\text{C}, V_{\text{CC}}=+12\text{V}, V_{\text{EE}}=-12\text{V}, V_{\text{DD}}=+5\text{V} unless otherwise indicated}) \\ \end{tabular}$

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AD1678J      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD1678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| Model                                                   | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Тур          | Max     | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max   | Units           |
| ACCURACY                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| Resolution                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Bits            |
| Differential Linearity                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| T <sub>min</sub> to T <sub>max</sub> (No Missing Codes) | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Bits            |
| Unipolar Zero Error <sup>1</sup>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 4$      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | LSB             |
| Bipolar Zero Error <sup>1</sup>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 4$      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | LSB             |
| Unipolar Gain Error <sup>1,2</sup>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 3$      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | LSB             |
| Bipolar Gain Error <sup>1,2</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 3$      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | LSB             |
| Temperature Drift (Coefficients) <sup>3</sup>           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| Unipolar Zero                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 2 (10)$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 2 (10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )     | LSB (ppm/°C     |
| Bipolar Zero                                            | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 2 (10)$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 2 (10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )     | LSB (ppm/°C     |
| Unipolar Gain                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 4 (20)$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\pm 4 (20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )     | LSB (ppm/°C     |
| Bipolar Gain                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 4 (20)$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±4 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )     | LSB (ppm/°C     |
| ANALOG INPUT                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| Input Ranges                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Of Allenda      |
| Unipolar Mode                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | +10     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +10   | V               |
| Bipolar Mode                                            | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | +5      | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +5    | V               |
| Input Resistance                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | $M\Omega$       |
| Input Capacitance (f <sub>IN</sub> =100kHz)             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | pF              |
| Input Settling Time                                     | $\sqrt{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | μs              |
| Aperture Delay                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 20      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20    | ns              |
| Aperture Jitter                                         | <b>\ \ \ /</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150          | )       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | ps              |
| INTERNAL REFERENCE VOLVAGE                              | <i>)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| Output Voltage <sup>4</sup>                             | 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 105     | 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 505   | $\perp_{\rm v}$ |
| External Load                                           | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | P.4     | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,   |                 |
| Unipolar Mode                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | +1.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +1.5  |                 |
| Bipolar Mode                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | +0.5    | $\supset$ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.5  | m/A             |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 10.5    | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.9  | THE A           |
| POWER SUPPLIES (T <sub>min</sub> to T <sub>max</sub> )  | a.<br>All the second secon |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' / / |                 |
| Operating Voltages                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 10.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |
| $V_{CC}$                                                | +11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +12          | +12.6   | +11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +12.6 |                 |
| $V_{EE}$                                                | -12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12          | -11.4   | -12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11.4 |                 |
| $V_{\mathrm{DD}}$                                       | +4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +5           | +5.5    | +4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +5.5  | v               |
| Operating Current                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7          | 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    |                 |
| $I_{CC}$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17           | 19      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19    | mA              |
| $I_{\rm EE}$                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24           | 26      | Mart Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26    | mA              |
| $I_{DD}$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5            | 10      | - Control of the Cont | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10    | mA              |
| Power Consumption                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 600     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second s | 600   | mW              |

#### NOTES

Specifications shown in **boldface** are tested on all devices at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested.

Specifications subject to change without notice.

<sup>&</sup>lt;sup>1</sup>Adjustable to zero; see Figures 8 and 9.

<sup>&</sup>lt;sup>2</sup>Includes internal voltage reference error.

<sup>&</sup>lt;sup>3</sup>Includes internal voltage reference drift. <sup>4</sup> With maximum external load applied.

# **Dynamic Performance**

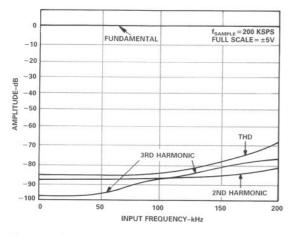



Figure 1. Harmonic Distortion vs. Input Frequency

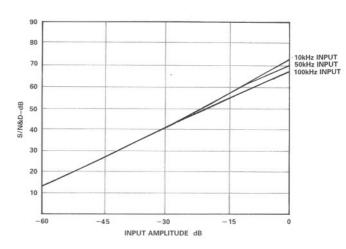



Figure 2. S/N&D vs. Input Amplitude (f<sub>SAMPLE</sub>=200KSPS)

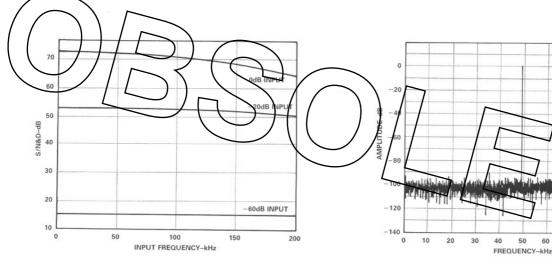



Figure 3. S/N&D vs. Input Frequency and Amplitude

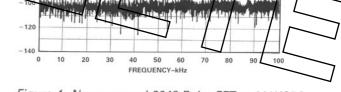



Figure 4. Nonaveraged 2048 Point FFT at 200KSPS,  $F_{\rm IN}$ =49.902kHz

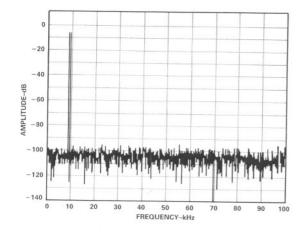



Figure 5. IMD Plot for  $F_{IN} = 9.08 kHz$  (fa), 9.58 kHz (fb)

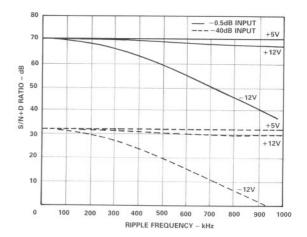



Figure 6. Power Supply Rejection ( $f_{IN} = 10 \text{kHz}$ ,  $f_{SAMPLE} = 200 \text{KSPS}$ ,  $V_{RIPPLE} = 0.1 \text{V p-p}$ )

### FREQUENCY DOMAIN TESTING

The AD1678 is tested dynamically using a sine wave input and a 2048 point Fast Fourier Transform (FFT) to analyze the resulting output. Coherent sampling is used, wherein the ADC sampling frequency and the analog input frequency are related to each other by a ratio of integers. This ensures that an integral multiple of input cycles is captured, allowing direct FFT processing without windowing or digital filtering which could mask some of the dynamic characteristics of the device. In addition, the frequencies are chosen to be "relatively prime" (no common factors) to maximize the number of different ADC codes that are present in a sample sequence. The result, called Prime Coherent Sampling, is a highly accurate and repeatable measure of the actual frequency domain response of the converter.

NYQUIST FREQUENCY

An implication of the Nyquist sampling theorem, the "Nyquist Frequency" of a converter, is that input frequency which is one-half the sampling frequency of the converter.

SIGNAL-TO-NOISE AND DISTORTION (S/N+D) RATIO S/N+D is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding to. The value for S/N+D is expressed in decibels.

# TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels. For input signals or harmonics that are above the Nyquist frequency, the aliased component is used.

# PEAK SPURIOUS OR PEAK HARMONIC COMPONENT

The peak spurious or peak harmonic component is the largest spectral component excluding the input signal and dc. This value is expressed in decibels relative to the measured input signal.

# INTERMODULATION DISTORTION (IMD)

With inputs consisting of sine waves at two frequencies, fa and fb, any device with nonlinearities will create distortion products, of order (m+n), at sum and difference frequencies of  $mfa\pm nfb$ , where m, n=0,1,2,3. . . Intermodulation terms are those for which m or m is not equal to zero. For example, the second order terms are (fa+fb) and (fa-fb) and the third order terms are (2fa+fb), (2fa-fb), (fa+2fb) and (fa-2fb). The IMD products are expressed as the decibel ratio of the RMS sum of the measured input signals to the RMS sum of the distortion terms. The two signals applied to the converter are of equal amplitude and the peak value of their sum is -0.5dB from full scale (9.44V p-p). The IMD products are normalized to a 0dB input signal.

## **BANDWIDTH**

The full-power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full-scale input.

The full-linear bandwidth is the input frequency at which the slew rate limit of the sample-hold-amplifier (SHA) is reached. At this point, the full-scale fundamental has degraded by less than -0.1 dB. Beyond this frequency, distortion of the sampled input signal increases significantly.

The AD1678 has been designed to optimize input bandwidth, allowing the AD1678 to undersample input signals with frequencies significantly above the converter's Nyquist frequency. If the input signal is suitably band-limited, the spectral content of the input signal can be recovered. Examples of applications in which this technique is used include direct digitization of audiomodulated IF signals and doppler-shift measurements.

#### APERTURE DELAY

Aperture delay is a measure of the SHA's performance and is measured from the falling edge of the Start Convert  $(\overline{SC})$  to when the input signal is held for conversion. In synchronous mode, Chip Select  $(\overline{CS})$  should be LOW before  $\overline{SC}$  to minimize aperture delay.

#### APERTURE JITTER

Aperture jitter is the variation in aperture delay for successive samples and is manifested as noise on the input to the A/D.

# INPUT SETTLING TIME

Settling time is a function of the SHA's ability to track fast slewing signals. This is specified as the maximum time required in track mode after a full-scale step input to guarantee rated conversion accuracy.

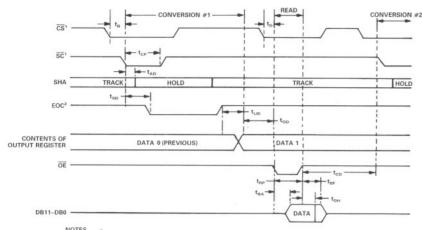
# DIFFERENTIAL NONLINEARITY (DNL)

In an ideal ADC, code transitions are LLSB apart. Differential nonlinearity is the deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

For the AD1678, this specification is 12 bits from  $T_{\rm min}$  to  $T_{\rm max}$ , which guarantees that all 4096 codes are present over temperature.

#### UNIPOLAR ZERO ERROR

In unipolar mode, the first transition should occur at a level 1/2 LSB above analog ground. Unipolar zero error is the deviation of the actual transition form that point. This error can be adjusted as discussed in the Input Connections and Calibration Section.


#### BIPOLAR ZERO ERROR

In the bipolar mode, the major carry transition (1111 1111 1111 to 0000 0000 0000 ) should occur at an analog value 1/2 LSB below analog ground. Bipolar zero error is the deviation of the actual transition from that point. This error can be adjusted as discussed in the Input Connections and Calibration Section.

#### **GAIN ERROR**

The last transition should occur at an analog value 1 1/2 LSB below the nominal full scale (9.9963 volts for a 0–10V range, 4.9963 volts for a  $\pm 5$ V range). The gain error is the deviation of the actual level at the last transition from the ideal level with the zero error trimmed out. This error can be adjusted as shown in the Input Connections and Calibration Section.

# **Timing**



1. IF SYNC = LOW, STATE OF CS DOES NOT AFFECT CONVERT OPERATION, IF SYNC = HIGH, CS SHOULD BE BROUGHT LOW BEFORE SC TO START A CONVERSION. SEE THE START CONVERSION TRUTH TABLE FOR DETAILS.

2. EOC IS TRUSTATE OUTPUT. SEE CONVERSION STATUS TRUTH TABLE FOR DETAILS.

Figure 7. AD1678 Conversion Start & Output Enable

Mode)

CONVERSION CONTROL

Bit Read

Timi

na

In synchronous mode (SYNC HIGH) both Chip Select  $(\overline{CS})$  and Start Convert  $(\overline{SC})$  must be bought LOW to start a conversion.  $\overline{CS}$  should be LOW 50nsec  $(t_B)$  before  $\overline{SC}$  is brought LOW. In asynchronous mode (SYNC = LOW), a conversion is started by bringing  $\overline{SC}$  low, regardless of the state of  $\overline{CS}$ .

In Figure 7, the Conversion Start and Output Enable Timing diagram illustrates the read-after-convert configuration. For the maximum throughput rate, see the Applications section, Figures 10a, 10b.

Before a conversion is started, End-of-Convert (EOC) is HIGH, and the sample-hold is in track mode. After a conversion is started, the sample-hold goes into hold mode and EOC goes LOW, signifying that a conversion is in progress. During the conversion, the sample-hold will go back into track mode and start acquiring the next sample.

When the conversion is finished, EOC goes HIGH and the result is loaded into the output register after a period of time  $t_{\rm UD}$ . Bringing  $\overline{\rm OE}$  LOW 20 nsec  $(t_{\rm D})$  after  $\overline{\rm CS}$  goes LOW makes the output register contents available on the output data bits (DB11–DB0). A period of time,  $t_{\rm CD}$ , is required after  $\overline{\rm OE}$  is brought HIGH before the next  $\overline{\rm SC}$  instruction is issued. This is to allow internal logic states to reset and to guarantee minimum aperture jitter for the next conversion.

In track mode, the sample-hold will settle to  $\pm 0.01\%$  (12 bits) in  $1\mu s$  maximum. The acquisition time does not affect the throughput rate as the AD1678 goes back into track mode more than  $1\mu s$  before the next conversion. In multichannel systems, the input channel can be switched as soon as EOC goes LOW if the maximum throughput rate is needed.

If  $\overline{SC}$  is held LOW, the AD1678 will convert continuously and the circuit of Figure 10a should be utilized.

# CONVERSION TIMING (Tmin to Tmax)

| Spec         | ification                     | Min | Max | Units |
|--------------|-------------------------------|-----|-----|-------|
| $t_{CP}$     | Convert Pulse Width           | 150 |     | ns    |
| $t_{SD}$     | Status Delay                  | 0   | 1   | μs    |
| $t_{\rm UD}$ | Update Delay                  |     | 200 | ns    |
| $t_{OD}$     | Output Delay                  | 0   |     | ns    |
| $t_{CD}$     | CD Conversion Delay           |     |     | ns    |
| $t_{RP}$     | Read Pulse Width <sup>1</sup> | 100 |     | ns    |
| $t_{BA}$     | Access Time <sup>2</sup>      |     | 100 | ns    |
| $t_{DH}$     | Data Hold                     | 10  |     | ns    |
| $t_{BF}$     | Float Delay <sup>3</sup>      |     | 80  | ns    |
| $t_{AD}$     | Aperture Delay                | 5   | 20  | ns    |
| $t_B$        | SC Delay                      | 50  | 0   | ns    |
| $t_D$        | OE Delay                      | 20  |     | ns    |

NOTES

12-bit read mode.

<sup>2</sup>Measured from the falling edge of OE (1.4V) to the time at which the data lines cross 2.4V or 0.4V.

<sup>3</sup>Measured from the rising edge of OE (1.4V) to the time at which the output voltage changes by 0.5V.

START CONVERSION TRUTH TABLE

| \ / /                                                                                                          | /IN  | PUTS      | P04349*********************************** | and recovering the second seco |
|----------------------------------------------------------------------------------------------------------------|------|-----------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ]                                                                                                              | SYNC | CS        | SC                                        | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Synchronous                                                                                                    |      | 1         | X<br>₹<br>0                               | No Conversion<br>Start Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ESPECIO DE SISSEMENTA DE SERVICIO SE ANTIGOS DE SERVICIO DE SERVICIO DE SERVICIO DE SERVICIO DE SERVICIO DE SE | 1    | $\sqrt{}$ | 0                                         | (Not Recommended) Continuous Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                | 0    | X         | 1                                         | No Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Asynchronous<br>Mode                                                                                           | 0    | X         | 7                                         | Start Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mode                                                                                                           | 0    | X         | 0                                         | Continuous Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

NOTES

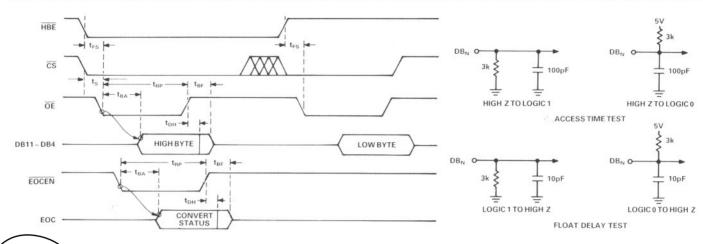
1 = HIGH voltage level.

0 = LOW voltage level.

X = Don't care.

HIGH to LOW transition. Must stay low for t = t<sub>CP</sub>.

# CONVERSION STATUS TRUTH TABLE


|                      | INPUTS |    |       | OUTPUT |                |
|----------------------|--------|----|-------|--------|----------------|
|                      | SYNC   | CS | EOCEN | EOC    | STATUS         |
|                      | 1      | 0  | 0     | 0      | Converting     |
|                      | 1      | 0  | 0     | 1      | Not Converting |
| Synchronous          | 1      | 1  | X     | High Z | Either         |
| Mode                 | 1      | X  | 1     | High Z | Either         |
|                      | 0      | X  | 0     | 0      | Converting     |
| Asynchronous<br>Mode | 0      | X  | 0     | 1      | Not Converting |
| MOUC                 | 0      | Χ  | 1     | High Z | Either         |

NOTES

1 - HIGH voltage level.

0 = LOW voltage level.

X - Don't care.



AD1678 Output Timing (8-Bit Read Mode)

Load Circuits for Bus Timing Specifications

OUTPUT FNABLE OPERATION

DBM e trist e enabled and C it Enat should LOW 20ns (ts) before OE DB1 (R/L)and DB0 (HBE) are bidir ctiona the are data mo output bits. In 8-bit mode they are inputs that define the forma of the output register.

In 12-bit mode ( $12/\overline{8} = \text{HIGH}$ ), a single READ operation accesses all 12 output bits on DB11–DB0 for interface to a 16-bit bus.

In 8-bit mode ( $12/\overline{8} = LOW$ ), only DB11–DB4 are used as output lines onto an 8-bit bus. The output is read in two steps, with the high byte read first, followed by the low byte. High Byte Enable ( $\overline{HBE}$ ) controls the output sequence. The 12-bit result can be right or left justified depending on the state of  $R/\overline{L}$ .

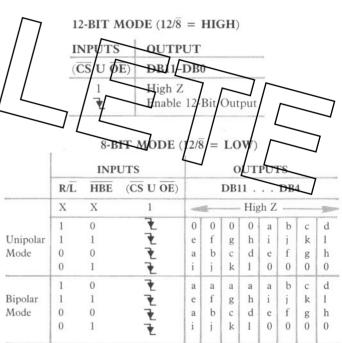
In unipolar mode (BIPOFF tied to AGND), the output coding is straight binary. In bipolar mode (BIPOFF tied to REF<sub>OUT</sub>), output coding is twos complement binary.

End-Of-Convert (EOC) is a tristate output which is enabled by End-Of-Convert  $\overline{ENable}$  ( $\overline{EOCEN}$ ) in asynchronous mode, and by  $\overline{EOCEN}$  and  $\overline{CS}$  in synchronous mode.

Output Enable  $(\overline{\mbox{OE}})$  must be toggled to update data in the output register.

# OUTPUT ENABLE TIMING (Tmin to Tmax)

| Specification     |                          | Min | Max | Units |
|-------------------|--------------------------|-----|-----|-------|
| t <sub>FS</sub>   | Format Setup             | 60  |     | ns    |
| t <sub>RP</sub>   | Read Pulse Width1        | 150 |     | ns    |
| $t_{BA}$          | 4 m: 7                   |     | 100 | ns    |
| t <sub>BF</sub>   | Float Delay <sup>3</sup> |     | 80  | ns    |
| $t_{\mathrm{DH}}$ | Data Hold                | 10  |     | ns    |
| $t_S$             | OE Delay                 | 20  |     | ns    |


NOTES

18-bit read mode.

<sup>2</sup>Measured from the falling edge of OE (1.4V) to the time at which the data lines cross 2.4V or 0.4V.

 $^{3}$ Measured from the rising edge of  $\overline{OE}$  (1.4V) to the time at which the output voltage changes by 0.5V.

# **OUTPUT ENABLE TRUTH TABLES**



# NOTES

1 = HIGH voltage level.

a = MSB.

0 = LOW voltage level.

1 = LSB.

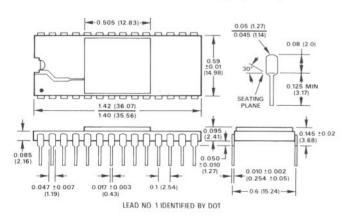
X = Don't care.

▼ = HIGH to LOW transition. Must stay low for t= t<sub>RP</sub>.

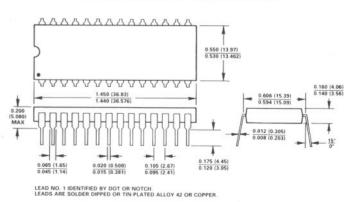
U = Logical OR.

# 12-BIT MODE CODING FORMAT (1 LSB=2.44mV)

| Unipolar Coding<br>(Straight Binary) |             | Bipolar Coding<br>(Twos Complement) |             |  |
|--------------------------------------|-------------|-------------------------------------|-------------|--|
| V <sub>IN</sub>                      | Output Code | V <sub>IN</sub>                     | Output code |  |
| 0                                    | 0000        | -5.000V                             | 1000        |  |
| 5.000V                               | 1000        | -0.002V                             | 1111        |  |
| 9.9964V                              | 1111        | 0                                   | 0000        |  |
|                                      |             | +2.500V                             | 0100        |  |
| 9                                    |             | +4.9964                             | 0111        |  |


## AD1678 PIN DESCRIPTION

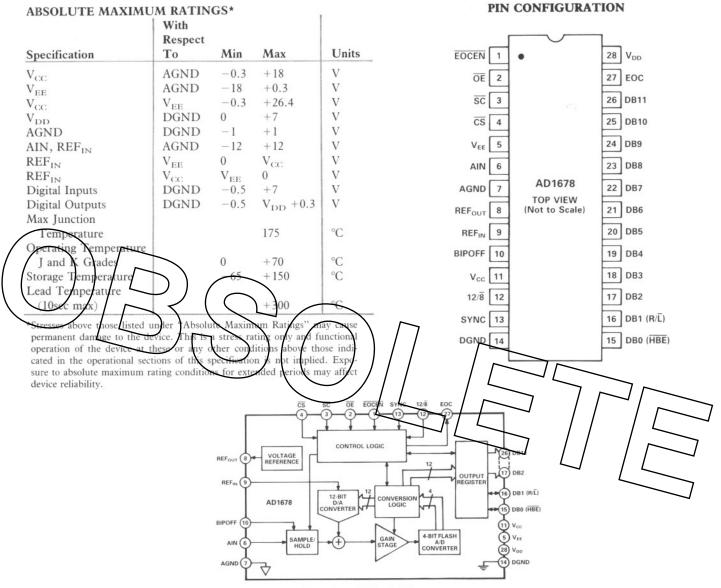
| Symbol                 | Pin No.  | Type     | Name and Function                                                                                                                                                                                   |
|------------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGND                   | 7        | P        | Analog Ground.                                                                                                                                                                                      |
| AIN                    | 6        | A1       | Analog Signal Input.                                                                                                                                                                                |
| BIPOFF                 | 10       | A1       | Bipolar Offset. Connect to AGND for +10V input unipolar mode and straight binary output coding. Connect to REF <sub>OUT</sub> through 50Ω resistor for ±5V input bipolar mode and twos              |
| CS                     | 4        | D1       | complement binary output coding. See Figures 8 and 9. Chip Select. Active LOW.                                                                                                                      |
| DGND                   | 14       | P        | Digital Ground                                                                                                                                                                                      |
| DB11-DB4               | 26–19    | DO       | Data Bits 11 through 4. In 12-bit format (see $12/\overline{8}$ pin), these pins provide the upper 8 bits of                                                                                        |
|                        |          |          | data. In 8-bit format, these pins provide all 12 bits in two bytes (see R/L pin). Active HIGH.                                                                                                      |
| DB3, DB2               | 18, 17   | DO       | Data Bits 3 and 2. In 12-bit format, these pins provide Data Bit 3 and Data Bit 2. Active HIGH. In 8-bit format they are undefined and should be tied to $V_{\rm DD}$ .                             |
| $DB1 (R/\overline{L})$ | 16       | DO       | In 12-bit format, Data Bit 1. Active HIGH.                                                                                                                                                          |
| $DB0(\overline{HBE})$  | 15       | DO       | In 12-bit format, Data Bit 0. Active HIGH.                                                                                                                                                          |
| EOC                    | 27       | DO       | End-of-Convert. EOC goes LOW when a conversion starts and goes HIGH when the                                                                                                                        |
|                        |          |          | conversion is finished. In asynchronous mode, EOC is an open drain output and requires an external $3k\Omega$ pull-up resistor. See $\overline{EOCEN}$ and SYNC pins for information on EOC gating. |
| EOCEN                  | 1        | DI       | End-Of-Convert Enable. Enables EOC pin. Active LOW.                                                                                                                                                 |
| HBE(DB0)               | 15       | DI       | In 8-bit format, High Byte Enable. If LOW, output contains high byte. If HIGH, output                                                                                                               |
|                        | \\\\     |          | contains low byte.                                                                                                                                                                                  |
| DE/                    | 2        | DI       | Output Enable. The falling edge of $\overline{OE}$ enables DB11–DB0 in 12-bit format and                                                                                                            |
|                        | 1 1 /    | /        | DB11-DB4 in 8-bit format. Gated with $\overline{CS}$ . Active LOW.                                                                                                                                  |
| REFIN                  | 9        | AI       | Reference Input. 5V input gives 10V full scale range.                                                                                                                                               |
| EFOUL                  | <i>y</i> | AQ       | $+5V$ Reference Output. Tied to REF <sub>IN</sub> through $50\Omega$ resistor for normal operation.                                                                                                 |
| VE(DB1)                | 16 / L   | DI       | in 8-bit format, Right Left justified. Sets atignment of 12-bit result within 16-bit field. Tied to                                                                                                 |
|                        |          | $\smile$ | V <sub>IDD</sub> for right-justified output and tied to DGND for left-justified output.                                                                                                             |
| SC                     | 3        | DI       | Start Convert Active LOW. See SYNC pin for gating.                                                                                                                                                  |
| SYNC                   | 13       | DI       | Sync Control. If tied to V <sub>DD</sub> (synchronous mode), SC, LOC and EOCEN are gated by CS. If                                                                                                  |
|                        |          |          | tied to DGND (asynchronous mode), $\overline{SE}$ and $\overline{EOCEN}$ are independent of $\overline{CS}$ , and $\overline{EOC}$ is an                                                            |
|                        |          |          | open drain output. EOS requires an external 3kΩ pull-up resistor in asynchronous mode.                                                                                                              |
| CC                     | 11       | P        | +12V Analog Power.                                                                                                                                                                                  |
| EE                     | 5        | P        | -12V Analog Power.                                                                                                                                                                                  |
| DD                     | 28       | P        | +5V Digital Power.                                                                                                                                                                                  |
| 2/8                    | 12       | DI       | Twelve/eight bit format. If tied HIGH, sets output format to 12-bit parallel. If tied LOW, sets output format to 8-bit multiplexed.                                                                 |


# **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

# 28-Pin Ceramic DIP Package (D-28A)




# 28-Lead Plastic DIP Package (N-28A)



AO = Analog Output.
DI = Digital Input (TTL and 5V CMOS compatible).

DO = Digital Output (TTL and 5V CMOS compatible). All DO pins are three-state drivers.

P = Power.



Functional Block Diagram

# ORDERING GUIDE

| Model    | Package            | Mimimum S/N+D @<br>10kHz, -0.5dB Input | Temperature<br>Range | Price (100s) |  |
|----------|--------------------|----------------------------------------|----------------------|--------------|--|
| AD1678JN | 28-Pin Plastic DIP | 70dB                                   | 0 to +70°C           | \$38.00      |  |
| AD1678KN | 28-Pin Plastic DIP | 72dB                                   | 0 to +70°C           | \$42.00      |  |
| AD1678JD | 28-Pin Ceramic DIP | 70dB                                   | 0 to +70°C           | \$45.00      |  |
| AD1678KD | 28-Pin Ceramic DIP | 72dB                                   | 0 to +70°C           | \$50.00      |  |

# ESD SENSITIVITY.

The AD1678 features input protection circuitry consisting of large "distributed" diodes and polysilicon series resistors to dissipate both high-energy discharges (Human Body Model) and fast, low energy pulses (Charged Device Model). Per Method 3015.2 of MIL-STD-883C, the AD1678 has been classified as a Category A device.

Proper ESD precautions are strongly recommended to avoid functional damage or performance degradation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and discharge without detection. Unused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before devices are removed. For further information on ESD precautions, refer to Analog Devices' ESD Prevention Manual.



# **Application Information**

#### INPUT CONNECTIONS AND CALIBRATION

The AD1678 is factory trimmed to minimize offset, gain and linearity errors. In unipolar mode, the only external component that is required is a  $500 \pm 1\%$  resistor. Two resistors are required in bipolar mode. If offset and gain are not critical, even these components can be eliminated.

In some applications, offset and gain errors need to be more precisely trimmed. The following sections describe the correct procedure for these various situations.

#### BIPOLAR RANGE INPUTS

The connections for the bipolar mode are shown in Figure 8. In this mode, data output coding will be twos complement binary. This circuit will allow approximately  $\pm 25$ mV of offset trim range ( $\pm 10$  LSB) and  $\pm 0.5\%$  of gain trim range ( $\pm 20$  LSB).

Either or both of the trim pots can be replaced with  $50\Omega \pm 1\%$  fixed resistors if the AD1678 accuracy limits are sufficient for application. If the pins are shorted together, the additional offset and gain errors will be approximately 20 LSB.

To trim bipolar zero to its nominal value, apply a signal 1/2 SB below midrange -1.22mV for a ±5V rang ) and adjust until the major carr transition is located 0000 0000 0000). To trim the gain. apply signal below full scale (-1.9963V for a nge) give the last positive transition (0111 1111). These trims are interactive so senecessary for convergence.

A single pass calibration can be done by substituting a bipolar offset trim (error at minus full scale) for the bipolar zero trim (error at midscale), using the same circuit. First, apply a signal 1/2 LSB above minus full scale (-4.9988V for a ±5V range) and adjust R1 until the minus full scale transition is located (1000 0000 0000 to 1000 0000 0001). Then perform the gain error trim as outlined above.

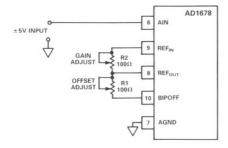



Figure 8. Bipolar Input Connections with Gain and Offset Trims

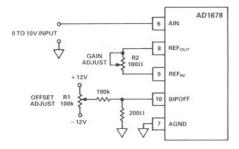



Figure 9. Unipolar Input Connections with Gain and Offset Trims

#### UNIPOLAR RANGE INPUTS

The connections for the unipolar mode are shown in Figure 9. In this mode, data output coding will be straight binary. This circuit will allow approximately  $\pm 25 \text{mV}$  of offset trim range ( $\pm 10 \text{ LSB}$ ) and  $\pm 0.5\%$  of gain trim range ( $\pm 20 \text{ LSB}$ ).

If the standard accuracy limits of the AD1678 are sufficient for the application, the gain adjust resistor (R2) can be replaced by a  $50\Omega \pm 1\%$  fixed resistor and BIPOFF can be connected to ground.

#### BOARD LAYOUT

Designing with high resolution data converters requires careful attention to board layout. Trace impedance is the first issue. A 5mA current through a  $0.5\Omega$  trace will develop a voltage drop of 2.5mV, which is 1 LSB at the 12-bit level for a 10V full scale span. In addition to ground drops, inductive and capacitive coupling need to be considered, especially when high accuracy analog signals share the same board with digital signals. Finally, power supplies need to be decoupled in order to filter out ac noise.

Analog and digital signals should not share a common path. Each signal should have an appropriate analog or digital return routed close to it. Using this approach, signal loops enclose a small area, minimizing the inductive coupling of noise. Wide PC tracks large gauge wirk, and ground planes are highly recommended to provide low impedance signal paths. Separate analog and digital ground planes are also desirable, with a single interconnection point to minimize ground loops. Analog signals should be routed as far as possible from digital signals and should cross them at right angles.

The AD1678 incorporates several features to help the user's layout. Analog pins ( $V_{\rm EE}$ , AIN, AGND, REF  $_{\rm DUT}$ , REF  $_{\rm IIN}$ , BIPOFF,  $V_{\rm CC}$ ) are adjacent to help isolate analog from digital signals. In addition, the  $10M\Omega$  input impedance of AIN minimizes input trace impedance errors. Finally, ground currents have been minimized by careful circuit architecture. Current through AGND is  $200\mu A$ , with no code dependent variation. The current through DGND is dominated by the return current for DB11–DB0 and EOC.

# SUPPLY DECOUPLING

The AD1678 power supplies should be well filtered, well regulated, and free from high frequency noise. Switching power supplies are not recommended due to their tendency to generate spikes which can induce noise in the analog system.

Decoupling capacitors should be used in very close layout proximity between all power supply pins and ground. A  $10\mu F$  tantalum capacitor in parallel with a  $0.1\mu F$  disk ceramic capacitor provides adequate decoupling over a wide range of frequencies.

An effort should be made to minimize the trace length between the capacitor leads and the respective converter power supply and common pins. The circuit layout should attempt to locate the AD1678, associated analog input circuitry and interconnections as far as possible from logic circuitry. A solid analog ground plane around the AD1678 will isolate large switching ground currents. For these reasons, the use of wire wrap circuit construction is not recommended; careful printed circuit construction is preferred.

#### GROUNDING

If a single AD1678 is used with separate analog and digital ground planes, connect the analog ground plane to AGND and the digital ground plane to DGND keeping lead lengths as short as possible. Then connect AGND and DGND together at the AD1678. If multiple AD1678s are used or the AD1678 shares analog supplies with other components, connect the analog and digital returns together once at the power supplies rather than at each chip. This prevents large ground loops which inductively couple noise and allow digital currents to flow through the analog system.

## 200KSPS READ APPLICATION

In applications requiring the maximum throughput of the AD1678, the read circuit of Figure 10a is recommended. The onverter is operated in its 12-bit, parallel-read mode with OE derived from EOC through an inverter. On the falling edge of OE, data from the previous conversion is latched in the cons available on the data bus 100ns output register and verter' external latch can then hold the data if retiming er. Note that in this configuration, is nec one-sample pipeline dela is introduced since the data d corresponds to evious conversion, rather than the mo st recent ( 10b). CONVERSION SC

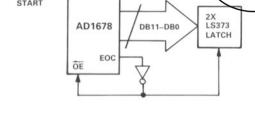



Figure 10a. 200KSPS Output Configuration

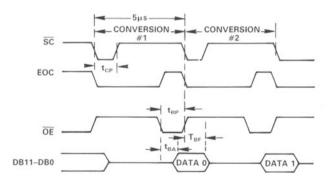
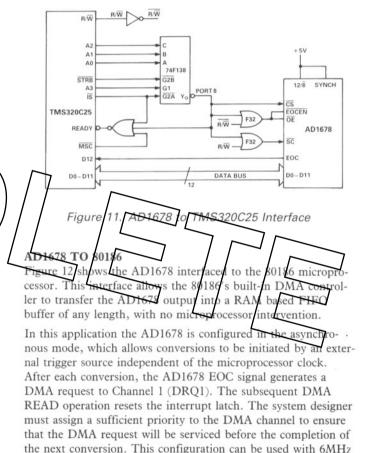



Figure 10b. 200KSPS 12-Bit Read Timing


#### INTERFACING THE AD1678 TO MICROPROCESSORS

The I/O capabilities of the AD1678 allow direct interfacing to general purpose and DSP microprocesor buses. The asynchronous conversion control feature allows complete flexibility and control with minimal external hardware.

The following examples illustrate typical AD1678 interface configurations.

#### AD1678 TO TMS320C25

In Figure 11 the AD1678 is mapped into the TMS320C25 I/O space. AD1678 conversions are initiated by issuing an OUT instruction to Port 8. EOC status and the conversion result are read in with an IN instruction to Port 8. A single wait state is inserted by generating the processor READY input from IS, Port 8 and MSC. This configuration supports processor clock speeds of 20MHz and is capable of supporting processor clock speeds of 40MHz if a NOP instruction follows each AD1678 read instruction.



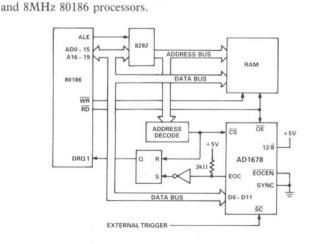
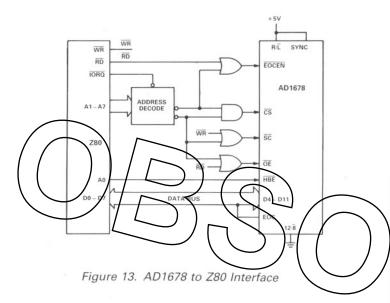




Figure 12. AD1678 to 80186 DMA Interface

#### AD1678 TO Z80

The AD1678 can be interfaced to the Z80 processor in an I/O or memory mapped configuration. Figure 13 illustrates an I/O configuration, where the AD1678 occupies several port addresses to allow separate polling of the EOC status and reading of the data. The lower address bit, A0, is used to select the high and low order bytes of the result. The AD1678 R/ $\overline{L}$  line is tied HIGH, resulting in right justified output data.

A useful feature of the Z80 is that a single wait state is automatically inserted during I/O operations, allowing the AD1678 to be used with Z80 processors having clock speeds up to 8MHz.



# AD1678 TO ANALOG DEVICES ADSP-2100

Figure 14 demonstrates the AD1678 interfaced to an ADSP-2100. With a clock frequency of 8MHz, and instruction execution in one 125ns cycle, the digital signal processor will support the AD1678 data memory interface with a single wait state.

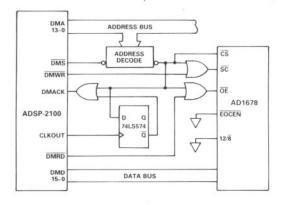



Figure 14. AD1678 to ADSP-2100 Interface

At the beginning of the data memory access cycle, the processor provides a 14-bit address on the DMA bus. The DMS signal is then asserted, enabling a LOW address decode and the AD1678 CS. The processor issues DMWR which is gated with the decoded address to start conversion. The LOW decoded address also OR'ed with the  $\overline{\mathbb{Q}}$  output of a D flip-flop to pull MACK LOW. This forces the ADSP-2100 into a wait state is DMA or 1 clock cycle. The rising edge of CLKOUT latch K HIGH. The conversion is completed in now start a data memory access of oringing DMACI data. For this cycle the DMRD and LOW decode OR'ed to generate OE for the converter. Once again, a single wait state is inserted allowing data to read from the bus.