

Low voltage 0.5 Ω single SPDT switch with break-before-make feature and 15 kV contact ESD protection

Datasheet - production data

Features

- Wide operating voltage range:
 V_{CC} (opr.) = 1.65 to 4.8 V
- Low power dissipation:
 I_{CC} = 0.2 μA (max.) at T_A = 85 °C
- · Low on-resistance:
 - R_{ON} = 0.75 Ω (T_A = 25 °C) at V_{CC} = 2.25 V
 - R_{ON} = 0.50 Ω (T_A = 25 °C) at V_{CC} = 3.0 V
 - R_{ON} = 0.40 Ω (T_A = 25 °C) at V_{CC} = 4.3 V
- Separate supply voltage for switch and control pins
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD performance tested on common pin (D pin):
 - 15 kV IEC 61000-4-2 ESD, contact discharge
 - 8 kV HBM JESD22 A114-B Class II
- ESD performance tested on S1 and S2 pin: 8 kV IEC 61000-4-2 ESD, contact discharge
- ESD performance test on all other pins:
 - 4 kV HBM (JESD22 A114-B Class II)
 - 400 V machine model (JESD22 A115-A)
 - 1500 V charged-device model (JESD22 C101)

Applications

Mobile phones

Description

The STG4160 device is a high-speed CMOS low voltage single analog SPDT (single pole dual throw) switch or 2:1 multiplexer/demultiplexer switch fabricated in silicon gate $C^2 MOS$ technology. It is designed to operate from 1.65 to 4.8 V, making this device ideal for portable applications. It offers low on-resistance (0.40 Ω typ.) at V $_{CC}$ = 4.3 V. The SEL inputs are provided to control the switches.

The switch S1 is ON (connected to the common port D) when the SEL input is held high and OFF (high impedance state exists between the two ports) when the SEL is held low. The switch S2 is ON (connected to the common port D) when the SEL input is held low and OFF (high impedance state exist between the two ports) when the SEL is held high.

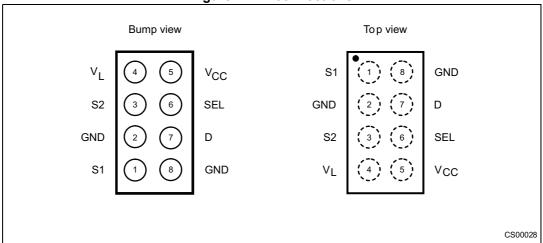
Additional key features are fast switching speed, break-before-make delay time and ultra power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing	
STG4160BJR	Flip Chip 8	Tape and reel	

Contents STG4160

Contents


1	Pin settings	3
	1.1 Pin connections	
	1.2 Pin description	3
2	Logic diagram	4
3	Maximum ratings	5
4	Electrical characteristics	6
5	Test circuits	9
6	Package mechanical data	3
7	Package marking information	7
8	Revision history	В

STG4160 Pin settings

1 Pin settings

1.1 Pin connections

Figure 1. Pin connections

1.2 Pin description

Table 2. Pin assignment

Pin number	Symbol	Name and function		
1	S1	Independent channel		
2	GND	Ground (0 V)		
3	S2	Independent channel		
4	V _L	Logic supply voltage		
5	V _{CC}	Positive supply voltage		
6	SEL	Control		
7	D	Common channel		
8	GND	Ground (0 V)		

Logic diagram STG4160

2 Logic diagram

Figure 2. Functional diagram

Figure 3. Circuit equivalent logic

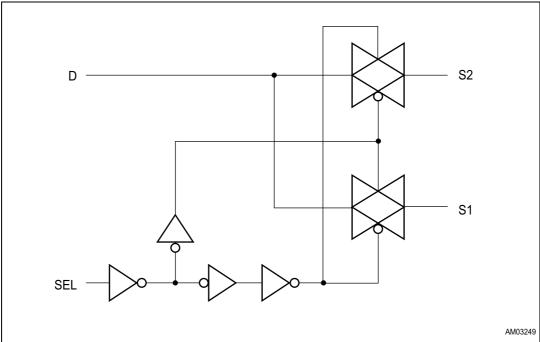


Table 3. Truth table

SEL	Switch S1	Switch S2
Н	ON	OFF ⁽¹⁾
L	OFF ⁽¹⁾	ON

1. High impedance.

STG4160 Maximum ratings

3 Maximum ratings

Stressing the device above the rating listed in *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in *Table 5* of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics[®] SURE program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to 5.5	V
V_{L}	Logic supply voltage	-0.5 to 5.5	V
V _I	DC input voltage	-0.5 to V _{CC} + 0.5	V
V _{IC}	DC control input voltage	-0.5 to V _L + 5.5	V
V _O	DC output voltage	-0.5 to V _{CC} + 0.5	V
I _{IKC}	DC input diode current on control pin (V _{SEL} < 0 V)	- 50	mA
I _{IK}	DC input diode current (V _{SEL} < 0 V)	± 50	mA
I _{OK}	DC output diode current	± 20	mA
I _O	DC output current	± 300	mA
I _{OP}	DC output current peak (pulse at 1 ms, 10% duty cycle)	± 500	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current	± 100	mA
P _D	Power dissipation at T _A = 70 °C ⁽¹⁾	500	mW
T _{stg}	Storage temperature	-65 to 150	°C
T _L	Lead temperature (10 sec.)	260	°C

^{1.} Derate above 70 °C by 18.5 mW/C.

Table 5. Recommended operating conditions

Symbol	Parameter		Value	Unit	
V _{CC}	Supply voltage		1.65 to 4.8	V	
V _L	Logic supply voltage ⁽¹⁾		1.65 to V _{CC}	٧	
V _I	Input voltage		0 to V _{CC}	٧	
V _{IC}	Control input voltage		0 to V _L	V	
Vo	Output voltage		0 to V _{CC}	٧	
T _{op}	Operating temperature		-40 to 85	°C	
dt/dv	Input rise and fall time control input	V _L = 1.65 to 2.7 V	0 to 20	ns/V	
ui/uv	input noe and ian time control input	V _L = 3.0 to 4.8 V	0 to 10	115/V	

^{1.} V_L pin should not be left floating.

Electrical characteristics STG4160

4 Electrical characteristics

Table 6. DC specifications

							Value	1						
Symbol	Parameter	V _{CC} (V)	V _L (V)	Test conditions	T	T _A = 25 °C			-40 to 85 °C					
					Min.	Тур.	Max.	Min.	Max.					
			1.65 – 1.95		1.25			1.25						
	High level input	1.65 – 4.3	2.3 – 2.7		1.75			1.75		.,				
V _{IH}		voltage		voltage		1.05 – 4.3	3.0 – 3.6		2.34			2.34		V
			4.3		2.80			2.80						
			1.65 – 1.95				0.6		0.6					
.,,	Low level input	1.65 – 4.3	2.3 – 2.7				0.8		0.8	.,				
V_{IL}	voltage	1.65 – 4.3	3.0 – 3.6				1.05		1.05	V				
			4.3				1.5		1.5					
		1.8				1.5	2.5		3.7					
		2.25	1.65 – 4.3			0.75	1.0		1.3	Ω				
R _{ON}	On-resistance	3		$V_S = 0 \text{ V to } V_{CC}$		0.50	0.65		0.8					
		3.7		100 1111		0.45	0.55		0.7					
		4.3				0.40	0.5		0.65					
		1.8	2.25			40								
	On-resistance	2.25		1.65 – 4.3	1.65 – 4.3 $V_S = I_S = $	1.65 – 4.3 $V_S = 0 \text{ V to } V_{CC}$ $I_S = 100 \text{ mA}$				20				
ΔR _{ON}	match between	3					$V_S = 0 \text{ V to } V_{CC}$		10				mΩ	
	channels ⁽¹⁾	3.7					IS - 100 IIIA		10				-	
		4.3				10								
		1.8				1.0	1.7		2.0					
		2.25				300	430		550					
R _{FLAT}	On-resistance flatness ⁽²⁾	3	1.65 – 4.3	$V_S = 0 \text{ V to } V_{CC}$ $I_S = 100 \text{ mA}$		150	190		270	mΩ				
	natrices	3.7		IS - 100 IIIA		140	180		230					
		4.3				140	180		220	1				
I _{OFF}	Sn OFF state leakage current	4.3	4.3	$V_S = 0.3 \text{ to } 4.0$ $V_D = 0.3 \text{ to } 4.0$	-30		30	-300	300	nA				
I _{ON}	Sn ON state leakage current	4.3	4.3	$V_S = 0.3 \text{ to } 4.0$ $V_D = \text{ open}$	-30		30	-300	300	nA				
I _D	D ON state leakage current	4.3	4.3	V_S = open V_D = 0 to 4.0	-30		30	-300	300	nA				

rabio di 20 optomicatione (commutati)										
					Value					
Symbol	Parameter	V _{CC} (V)	V _L (V)	V _L (V) Test conditions		= 25 °	C	-40 to	85 °C	Unit
					Min.	Тур.	Max.	Min.	Max.	ı
I _{CC}	Quiescent supply current	1.65 – 4.3	1.65 – 4.3	V _{SEL} = V _{CC} or GND	-0.05		0.05	-0.2	0.2	μА
I _{SEL}	SEL leakage current	1.65 – 4.3	1.65 – 4.3	V _{SEL} = 4.3V or GND	-0.2		0.2	-2	2	μА

Table 6. DC specifications (continued)

Table 7. AC electrical characteristics (C_L = 35 pF, R_L = 50 Ω , t_r = $t_f \le 5$ ns)

		Test conditions			Value						
Symbol	Parameter	V 00	V 00		T _A = 25 °C		С	-40 to 85 °C		Unit	
		V _{CC} (V)	V _L (V)		Min.	Тур.	Max.	Min.	Max.		
		1.65 – 1.95				0.18					
t _{PLH} ,	Propagation	2.3 – 2.7	1.65 – 4.3			0.14				ns	
t _{PHL}	delay	3.0 – 3.3	1.05 – 4.5			0.12				115	
		3.6 – 4.3				0.12					
		1.65 – 1.95				70	123		160		
	Turn-on time	2.3 – 2.7	165 /3	$V_S = V_{CC}$ $R_L = 50 \Omega$ $C_1 = 30 \text{ pF}$		48	62		80	- ns	
t _{ON}	rum-on ume	3 – 3.6	1.05 – 4.3			33	43		56		
		4.3				29	38		49		
		1.65 – 1.95 2.3 – 2.7				36	45		60		
.	Turn-off time		165 /3	$V_S = V_{CC}$ $R_L = 50 \Omega$		35	47		62	ns	
t _{OFF}	rum-on ume	3 – 3.6	1.05 – 4.3		$C_1 = 30 \text{ pF}$		30	40		51	115
		4.3				29	38		50		
		1.65 – 1.95			10	42					
+	Break-before- make time	2.3 – 2.7	165 /3	$C_L = 35 \text{ pF}$ $R_L = 50 \Omega$	10	22				ne	
t _D	delay	3 – 3.6	1.05 – 4.5	$V_S = V_{CC}/2$	5	15				- ns	
		4.3		0 00	5	12					
		1.65 – 1.95				75					
Q	Charge	2.3 – 2.7	165 42	C _L = 1 nF		98				200	
٧	injection	3.0 – 3.3	1.65 – 4.3	V _{GEN} = 0 V		133				pC	
		3.6 – 4.3				162					

^{1.} $\Delta R_{ON} = R_{ON(Max)} - R_{ON(Min)}$

Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Electrical characteristics STG4160

Table 7. AC electrical characteristics (C $_{L}$ = 35 pF, R_{L} = 50 $\Omega,\,t_{r}$ = $t_{f}\leq\,5$ ns) (continued)

		Т	est condition	ons		, I	Value					
Symbol	Parameter	V 00			1	A = 25 °	С	-40 to 85 °C		Unit		
		V _{CC} (V)	V _L (V)		Min.	Тур.	Max.	Min.	Max.			
				$V_S = 1 V_{RMS}$ f = 100 kHz		77						
OIRR	OFF-isolation ⁽¹⁾	1.65 – 4.3	4.3	$V_S = 1 V_{RMS}$ f = 1 MHz		67				dB		
						$V_S = 1 V_{RMS}$ f = 5 MHz		50				
					V _S = 1 V _{RMS} f = 100 kHz		80					
Xtalk	Crosstalk	1.65 – 4.3	4.3	$V_S = 1 V_{RMS}$ f = 1 MHz		67				dB		
				$V_S = 1 V_{RMS}$ f = 5 MHz		50						
THD	Total harmonic distortion	2.3 – 4.3	4.3	$R_{L} = 600 \Omega$ $C_{L} = 50 \text{ pF}$ $V_{S} = V_{CC}$ $f = 600 \text{ Hz to}$ 20 kHz		0.01				%		
BW	-3 dB Bandwidth (switch ON)	1.65 – 4.3	4.3	R _L = 50 Ω		50				MHz		

^{1.} OFF-isolation = 20 \log_{10} (V_D/V_S), V_D = output, V_S = input to off switch.

Table 8. Capacitive characteristics

		Test conditions			Value					
Symbol	Parameter	V _{CC} (V)			T _A = 25 °C		С	-40 to 85 °C		Unit
			V _L (V)		Min.	Тур.	Max.	Min.	Max.	
C _{SEL}	Control pin input capacitance	1.8 – 4.3	1.8 – 4.3	V _L = V _{CC}		30				pF
C _{SN}	Sn port capacitance	1.8 – 4.3	1.8 – 4.3	V _L = V _{CC}		94				pF
C _D	D port capacitance when the switch is enabled	1.8 – 4.3	1.8 – 4.3	V _L = V _{CC}		227				pF

STG4160 Test circuits

5 Test circuits

Figure 4. On-resistance

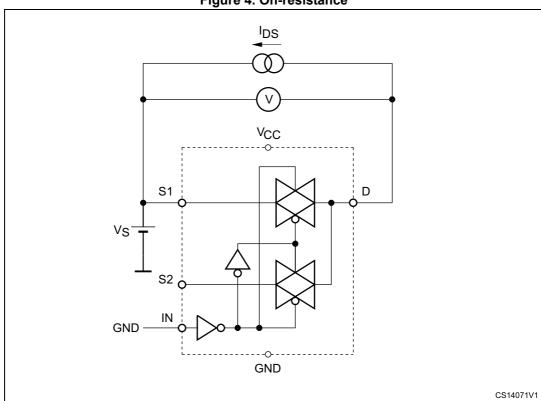
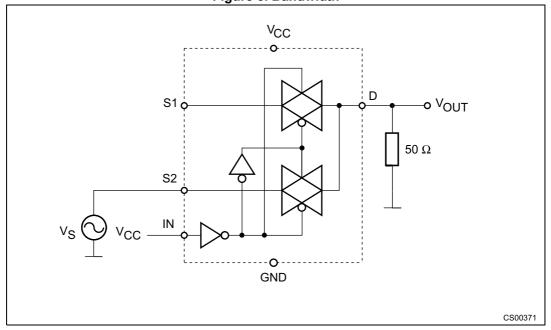



Figure 5. Bandwidth

Test circuits STG4160

Figure 6. OFF-leakage

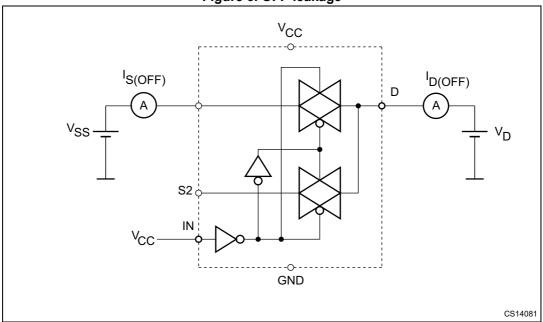
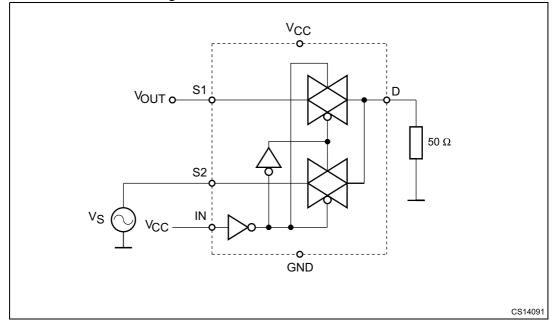



Figure 7. Channel-to-channel crosstalk

STG4160 Test circuits

Figure 8. OFF-isolation

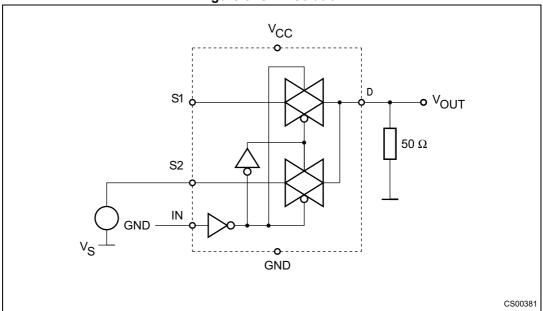
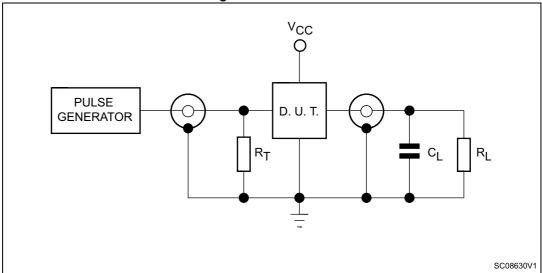



Figure 9. Test circuit

- 1. $C_L = 5/35 \text{ pF}$ or equivalent (includes jig capacitance).
- 2. $R_L = 50 \Omega$ or equivalent.
- 3. $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω).

Test circuits STG4160

Figure 10. Break-before-make time delay

Figure 11. Switching time and charge injection (V_{GEN} = 0 V, R_{GEN} = 0 Ω , R_L = 1 M Ω , C_L = 100 pF)

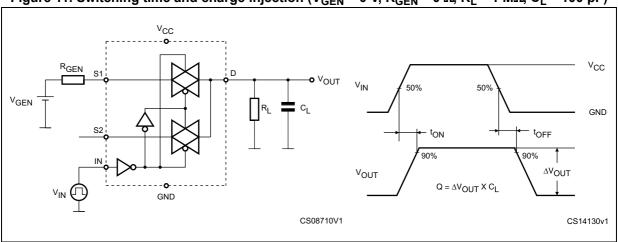
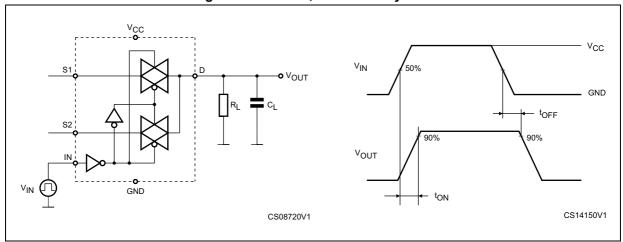
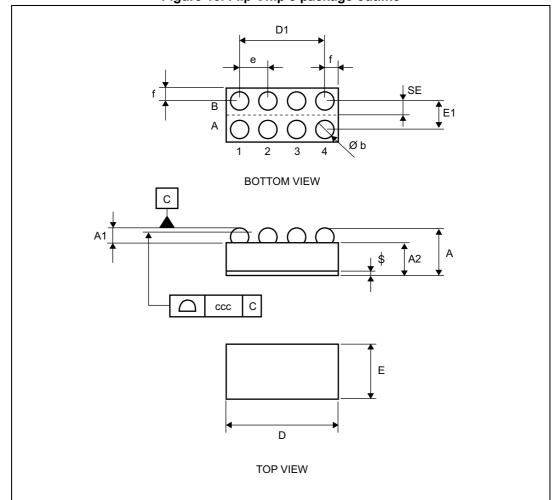
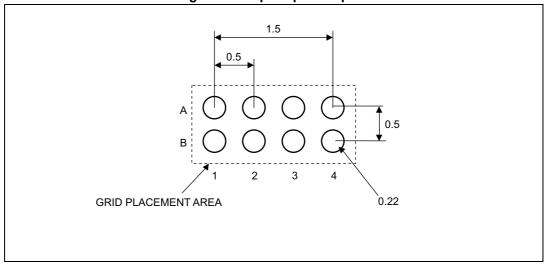



Figure 12. Turn-on, turn-off delay time

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

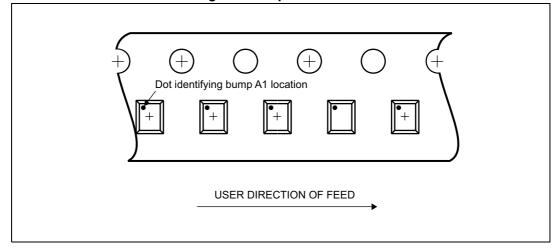



Figure 13. Flip Chip 8 package outline

1. Drawing is not to scale.

Table 9. Flip Chip 8 mechanical data

Cymbol	Dimensions (mm)								
Symbol	Min.	Тур.	Max.						
Α	0.535	0.58	0.625						
A1	0.18	0.205	0.23						
A2	0.355	0.375	0.395						
b	0.215	0.255	0.295						
D	1.85	1.9	1.95						
D1		1.5							
е	0.45	0.5	0.55						
E	0.85	0.9	0.95						
E1	0.45	0.5	0.55						
SE		0.25							
f	0.19	0.2	0.21						
ccc		0.08							


Figure 14. Flip Chip 8 footprint

2.00 ± 0.05 4.00 ± 0.10 \emptyset 1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10 (+)3.50 ± 0.05 8.00 + 0.30 - 0.10 0.20 ± 0.02 -0.20 45° MAX. 45° MAX. 1.04 ± 0.05 0.69 ± 0.05 1.96 ± 0.05 A_0 K_0 B_0

Figure 15. Flip Chip 8 tape and reel

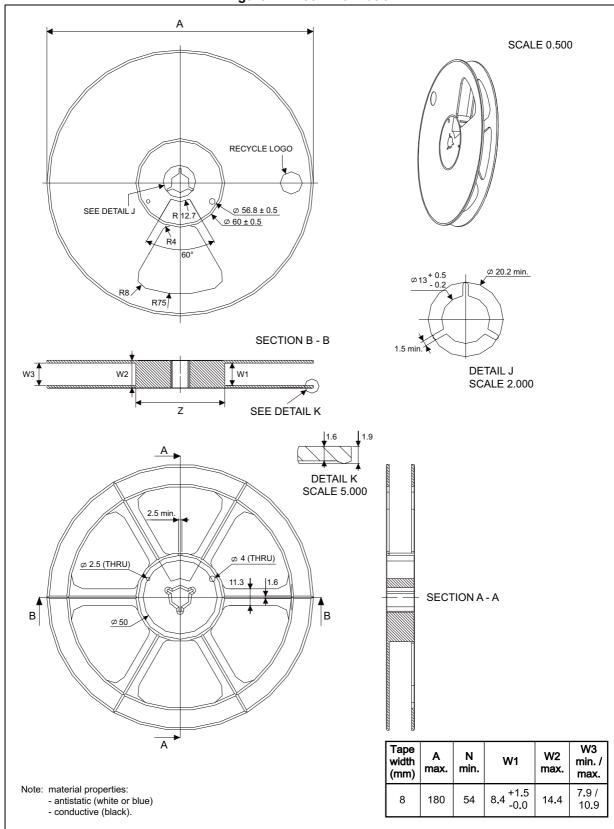
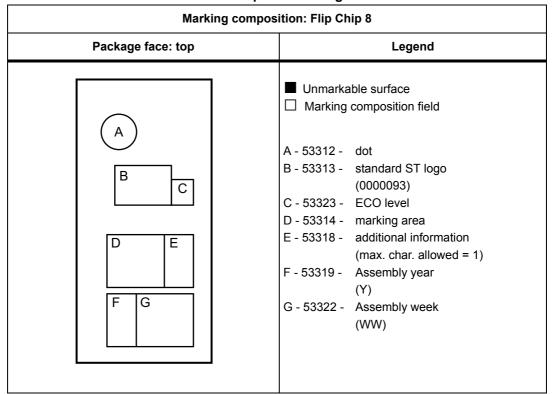



Figure 17. Reel information

7 Package marking information

Table 10. Device topside marking information

Revision history STG4160

8 Revision history

Table 11. Document revision history

Date	Revision	Changes
11-Sep-2008	1	Initial release.
19-Feb-2009	2	Updated: I _{ON} values in <i>Table 6: DC specifications</i> .
15-May-2013	3	Slightly redrawn Figure 3 to Figure 15 and Figure 17. Updated Figure 16 (added "Dot identifying bump A1 location"). Updated Section 3: Maximum ratings (added cross-references). Corrected units in Table 8. Updated Section 6: Package mechanical data (updated ECOPACK text). Added Section 7: Package marking information. Minor corrections throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

