TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

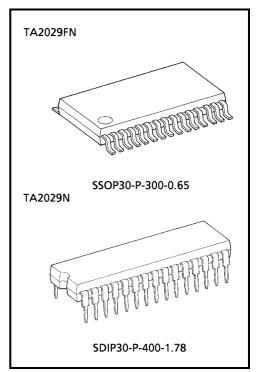
TA2029FN,TA2029N

FM F / E + AM / FM IF + PW IC For Digital Tuning System

The TA2029FN / N are AM / FM single chip radio system ICs which are designed for monaural radio.

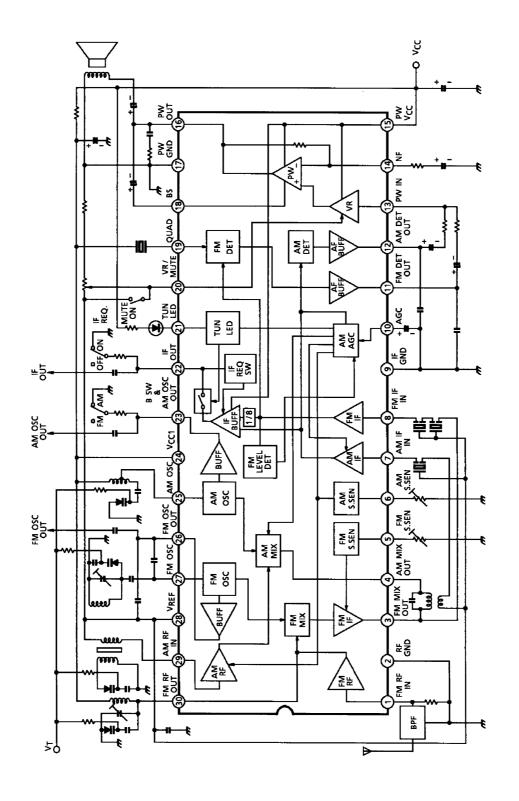
These ICs have many functions and can be used for digital tuning system.

Features


- Built-in FM F / E, AM / FM IF, electronic volume and power amplifier.
- Suitable for combination with digital tuning system which has IF counter.
 - AM / FM IF output for IF counter.

FM: 1.3375MHz (1 / 8 IF)

AM: 450kHz


- AM / FM oscillation buffer outputs.
- Auto stop sensitivity at the searching mode is adjustable by external resistances. (pin (5), pin(6))
- Adjustment-free type FM detector.
- Built-in AF power amplifier, electronic volume and audio muting circuits.
- Detector outputs FM / AM are independent each other.
- P₀ = 100mW (typ.), THD = 10% (FN: 3V / 8Ω) P₀ = 500mW (typ.), THD = 10% (N: 6V / 8Ω)
- Operating supply voltage range

 $V_{CC} = 1.8 - 8V \text{ (Ta = 25°C)}$

Weight: SSOP30-P-300-0.65: 0.17g (typ.) SDIP30-P-400-1.78: 2.2g (typ.)

BLOCK DIAGRAM

Explanation Of Terminal (Note: Ta = 25°C, V_{CC} = 3V, at no signal)

Pin	Characteristic	Internal Circuit	DC Voltage (V) (typ.)		
No.	ond dotonous	internal circuit	AM	FM	
1	FM RF in FM RF input terminal	FM-RF OUT 30	0	0.7	
2	RF GND (GND of RF stage)	_	0	0	
3	FM mix out Ceramic filter is connected. Recommendation SFE10.7MA5L (murata MFG. Co., LTD)	V _{CC1} (24) (300 Ω (270 Ω) (3) (270 Ω) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2.3	1.8	
4	AM mix out	VCC1 24 WIX RF GND 2	2.3	1.8	
5	FM S. SEN Adjustable for FM IF output sensitivity by external resistor.	VCC1 24	0	0.3	
6	AM S. SEN Adjustable for AM IF output sensitivity by external resistor.	VCC1 24	0.3	0	

Pin	Characteristic	Internal Circuit	DC Voltage (V) (typ.)		
No.	Characteristic	mondi enedit	AM	FM	
7	AM IF in	V _{ref} 28 3 kΩ 7 RF GND 2	1.22	1.2	
8	FM IF in	V _{CC1} 24	3.0	3.0	
9	IF GDN (GDN of AM / FM IF)	_	0	0	
10	AGC (AM AGC) Capacitor is connected.	VCC1 24 IF AGC RF AGC IF GND 9	0	0	
11	FM DET out FM detector output terminal.	QUAD QUAD QUAD 9 IF GND	I	1.2	
12	AM DET out AM detector output terminal.	V _{ref} V _{CC1} 9 IF GND	0.5	1.2	

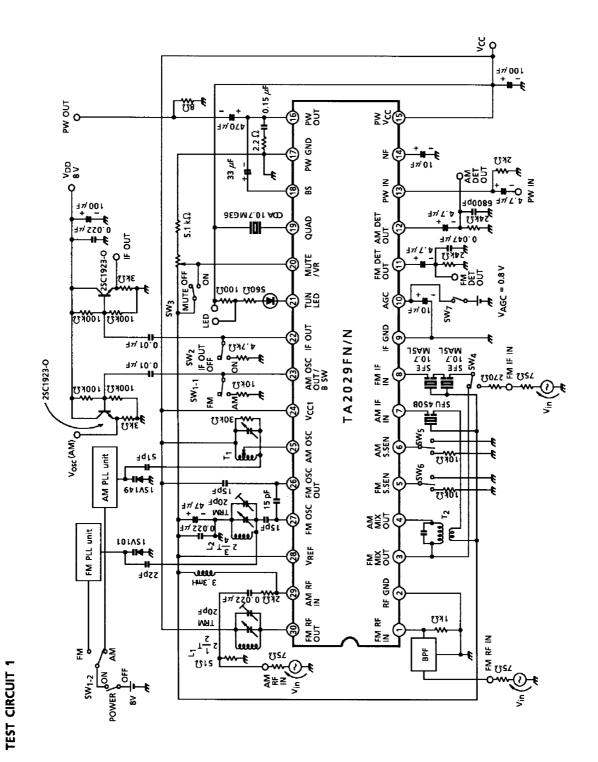
Pin	Characteristic	Internal Circuit	DC Voltage (V) (typ.)		
No.			AM	FM	
13	PW in	3 ^{20 kΩ} (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0	0	
14	NF Capacitor is connected.	PW VCC	0.8	0.8	
15	PW V _{CC} (V _{CC} of PW and buffer amplifier for IF counter)		3.0	3.0	
16	PW out	30 kΩ 10 (10 (10 (10 (10 (10 (10 (10 (10 (10	1.6	1.6	
17	PW GND (GND of PW)		0	0	
18	BS Capacitor is connected.	IF GND 9 14 PW GND	3.0	3.0	
19	QUAD FM QUAD detector ceramic discriminator is connected recommendation CDA10.7MG36. (Murat MFG. Co., LTD)	VCC1 24 19 IF GND 9	2.5	2.3	
20	MUTE / VR • Variable resistor for electronic volume control is connected. • Mute terminal V ₂₀ : V _{ref} → mute on	PW V _{CC} (15) 20 PW PW	_	-	
21	Tun LED	24 VCC1 21 9 IF GND	-	-	

Pin	Characteristic	Internal Circuit	DC Voltage (V) (typ.)		
No.			AM	FM	
22	IF out IF output terminal pin (22) connects with GND by resistor → come out pin (22): Open → non output	PW V _{CC} (15) (24) V _{CC} 1	2.5	2.5	
23	AM OSC out / band SW AM oscillation buffer output terminal. Bias terminal for AM / FM switch circuit. Pin (23) connects with GND by resistor → AM mode pin (23): Open → FM mode	24 VCC1 AM / FM 23 2 RF GND	1.7	2.5	
24	V _{CC1} (V _{CC} of RF stage)	_	3.0	3.0	
25	AM OSC AM OSC tank circuit is connected.	24 VCC1 25 Pre GND	3.0	3.0	
26	FM OSC out Capacitor is connected between pin (26) and pin (27) shown in the right figure.	A STATE OF THE STA	0.7	0.5	
27	FM OSC FM OSC tank circuit is connected shown in the right figure.	RF GND 2	1.22	1.15	
28	V _{ref} regulator voltage output terminal V _{ref} = 1.2V (typ.): FM mode 1.22V (typ.): AM mode	VCC1 22 (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1.22	1.2	

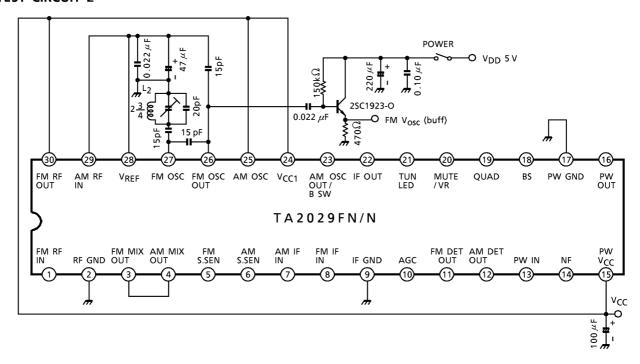
Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (typ.)		
NO.			AM	FM	
29	AM RF in AM RF input terminal.	Vref 28 29 RF GND 2	1.22	1.2	
30	FM RF out FM RF tank circuit is connected.	Cf. pin (1)	3.0	3.0	

Maximum Ratings (Ta = 25°C)

Characte	ristic	Symbol	Rating	Unit	
Supply voltage		V _{CC}	9	V	
Power dissipation	TA2029FN	P _D	500	mW	
Fower dissipation	TA2029N	(Note)	1500		
Operating temperatur	e	T _{opr}	-25~75	°C	
Storage temperature		T _{stg}	−55~150	°C	


(Note): Derated above 25°C in the proportion of 4.8mW / °C for TA2029FN and 12mW / °C for TA2029N.

Electrical Characteristics Unless Otherwise Specified, Ta = 25°C, V_{CC} = 3V, SW_2 : Off, SW_3 : Off, SW_7 = Off F / E: f = 83MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz Δf = 1005kHz, MOD = 30%, f_m = 1kHz


Characteristic		Symbol	Test Cir– cuit	Test (Condition	Min.	Тур.	Max.	Unit		
		I _{CCQ} (FM)		1		Power amp: Off	_	11.5	16.0		
Supply current			I _{CC} (FM)	1	FM mode V _{in} = 0	Power amp: On SW ₂ : On, SW ₇ : On	_	18.0	25.0		
Suppl	y current		I _{CCQ} (AM)	1	AM mode	Power amp: Off	_	7.5	11.0	mA	
			I _{CC} (AM)	1	V _{in} = 0	Power amp: On SW ₂ : On, SW ₇ : On		17.0	24.0		
	Input limiting voltage	9	V _{in (lim)}	1	-3dB limiting		1	12		dBµV EMF	
F/E	Quiescent sensitivity		QS		S / N = 30dB		-	15	_	dBµV EMF	
	Local OSC s	stop	V _{stop} (FM)	2	V _{in} = 0		_	1.35	_	V	
	Local OSC loutput voltage		V _{osc (buff)}	2	f _{osc} = 108MHz		-	130	_	mV _{rms}	
	Input limiting voltage		V _{in (lim)} IF	1	-3dB limiting		39	44	49	dBµV EMF	
	Recovered output voltage		V _{OD}	1	V _{in} = 80dBμV EMF		55	80	110	mV _{rms}	
	Signal to noise ratio		S/N	1	V _{in} = 80dBμV EMF		_	70	_	dB	
	Total harmonic distortion		THD	1	V _{in} = 80dBµV EMF		_	0.4	_	%	
	AM rejection	n ratio	AMR	1	V _{in} = 80dBμV EMF			48	_	dB	
FM	LED on sens	sitivity	VL	1	I _L = 1mA		40	45	50	dBµV EMF	
	IF count output frequency	1 / 8 IF	f1 / 8 IF (FM)	1	SW ₂ : On, V _{in} = 80dBµV I	EMF	1.3373	1.3375	1.3377	MHz	
	IF count output voltage	1 / 8 IF	V1 / 8 IF (FM)	1	SW ₂ : On, V _{in} = 80dBµV I	SW ₂ : On, V _{in} = 80dBµV EMF		200		mV _{rms}	
	IF count out	put	IF _{sens} (FM)1	1	SW ₆ : 10kΩ		_	48	_	dΒμV	
	sensitivity		IF _{sens} (FM)2	1	SW ₆ : 0Ω			68	_	EMF	
	Pin (11) out resistance	put	R ₁₁	1		_	_	1	_	kΩ	

	Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
	Gain	G _V	1	V _{in} = 26dBμV EMF	20	45	80	mV_{rms}
	Recovered output voltage	V _{OD}	1	V _{in} = 60dBμV EMF	50	75	100	mV _{rms}
	Signal to noise ratio	S/N	1	V _{in} = 60dBμV EMF	_	42	_	dB
	Total harmonic distortion	THD	1	V _{in} = 60dBμV EMF	1	1.0	1	%
AM	LED on sensitivity	VL	1	I _L = 1mA	24	29	34	dΒμV EMF
	Local OSC buff. Output voltage	V _{osc} (AM)	1	f _{osc} = 1455kHz	80	140	_	mV _{rms}
	IF count output voltage	V _{IF} (AM)	1	SW ₂ : On, V _{in} = 60dBµV EMF	110	200	_	mV _{rms}
	IF count output sensitivity	IF _{SENS} (AM) 1	1	SW ₅ : 10kΩ	-	29	-	dΒμV
		IF _{SENS} (AM) 2	'	SW ₅ : 0Ω	_	45 EN		
	Pin (12) output resistance	R ₁₂	1	_		5		kΩ
	Voltage gain	G _V	1	f = 1kHz, R _L = 8Ω, V _o = 0.775V _{rms} , SW ₇ : On	27	30	33	dB
		P _{o1}	1	f = 1kHz, R_L = 8 Ω , THD = 10%, SW $_7$: On	70	100	_	
PW	Output power	P _{o2}	1	$V_{CC} = 6V, f = 1kHz,$ $R_L = 8\Omega, THD = 10\%,$ SW_7 : On	350	500	ı	mW
FVV	Total harmonic distortion	THD	1	$f = 1kHz$, $R_L = 8\Omega$, $P_0 = 50mW$, SW_7 : On	_	0.6	1.5	%
	Output noise voltage	V _{no}	1	R_g = 10k Ω , R_L = 8 Ω , SW ₇ : On BPF = 30Hz~20kHz	_	0.45		mV _{rms}
	Muting attenuation	ATT	1	$V_0 = 0.775V_{rms}$ SW ₃ : Off \rightarrow on, SW ₇ : On	65	77		dB

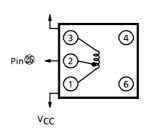
9 2002-10-30

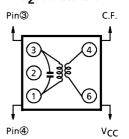
TEST CIRCUIT 2

Coil Data

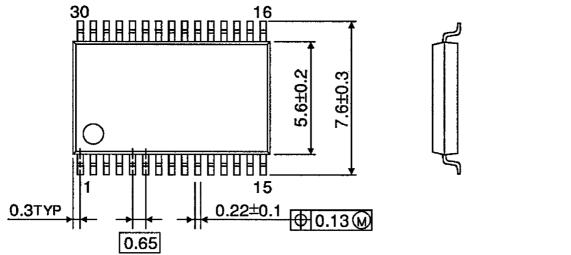
0 1111	Test L		Co		Turns					Wire	5.6
Coil No.	Frequency	(µH)	(pF)	Qo	1–2	2–3	1–3	1-4	4–6	(mmþ)	Ref.
L ₁ FM RF	100MHz	_	_	100	_	_	_	$2\frac{1}{2}$	_	0.5 UEW	(S) 53T-037-202
L ₂ FM OSC	100MHz	ı	-	100	ı	-	$2\frac{3}{4}$	_	-	0.5 UEW	(S) 0258–244
T ₁ AM OSC	796kHz	288	_	115	13	73	_	_	_	0.08 UEW	(S) 4147-1356-038
T ₂ AM IFT	455kHz		180	120	_	_	180	_	15	0.08 UEW	(S) 2150-2162-165

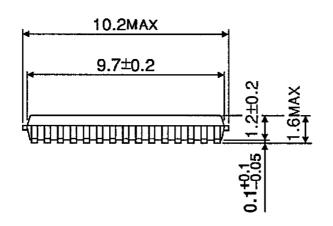
(S) Sumida electric co., LTD

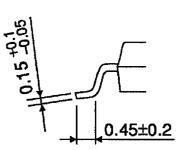



L₂: FM OSC

T₁: AM OSC

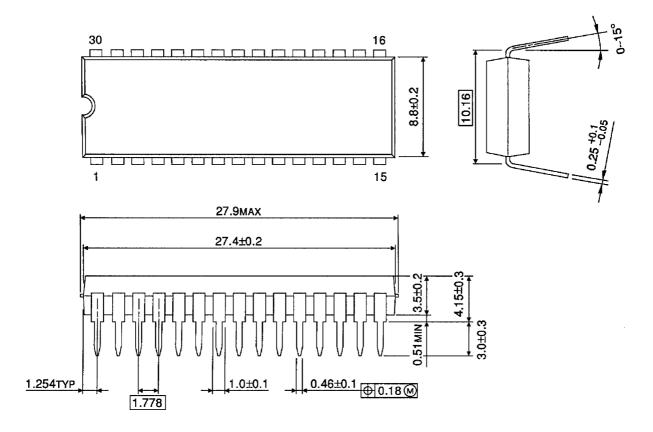



T₂: AM IFT



PACKAGE DIMENSIONS

SSOP30-P-300-0.65 Unit: mm 30



Weight: 0.17g (typ.)

PACKAGE DIMENSIONS

SDIP30-P-400-1.78

Unit: mm

Weight: 2.2g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.