# LIIEAR 

## DESCRIPTIO

DemonstrationcircuitDC1969Ais akit of:theDC1967A-A/B LTC ${ }^{\circledR} 4120 E U D$ demonstration board, the DC1968A basic wireless transmitter, a 35 mm receiver ferrite disk, and an assortment of different length standoffs. The basic transmitter can deliver 2 W to the receive board with up to 10 mm spacing between the transmit and the receive
coils. The basic transmitter does not support foreign object detection, i.e. coins or other metallic objects.
Design files for this circuit board are available at http://www.linear.com/demo/DC1969A
$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

## CONTEATS

- 1X DC1967A-A/B (LTC4120EUD) Demo Board
- 1X DC1968A (Wireless Basic Transmitter) Demo Board
- 1X 35mm Ferrite Bead
- 4X 6.25 mm (0.25") Nylon Standoffs
- 4X 12.5 mm ( 0.50 ") Nylon Standoffs
- $4 \mathrm{X} 15.875 \mathrm{~mm}\left(0.6255^{\prime}\right)$ Nylon Standoffs

| Kit Build Options |
| :--- |
| KIT NUMBER |
| DC1969A-A |
| DC1969A-B |
| DC1968A |
| DC1968A |

Receiver Board Build Options

| Rx BOARD | PART NUMBER | FUNCTION |
| :---: | :---: | :---: |
| DC1967A-A | LTC4120EUD-4.2 | Fixed 4.2V Float Voltage |
| DC1967A-B | LTC4120EUD | Adjustable Float Voltage |

## PERFORMANCE SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: |
| HVIN | DC1968A High Voltage Input Voltage Range | IHVIN $\leq 500 \mathrm{~mA}$ at $\mathrm{HVIN}=8 \mathrm{~V}$ | 8 | 38 | UNITS |
| V $_{\text {CC }}$ | DC1968A $V_{\text {CC }}$ Input Range | $\mathrm{IV}_{\text {CC }}=0 \mathrm{~mA}$ to 700 mA | 4.75 | 5.25 | V |
| V $_{\text {BAT }}$ | DC1967A BAT Pin Voltage | $\mathrm{R} 9=1.40 \mathrm{M} \Omega, \mathrm{R} 10=1.05 \mathrm{M} \Omega$ | 2.5 | 4.25 | V |
| $I_{\text {BAT }}$ | DC1967A BAT Pin Current | $\mathrm{V}_{\text {BAT }}=3.7 \mathrm{~V}, \mathrm{DC} 1967 \mathrm{~A}(\mathrm{R} 5)=3.01 \mathrm{k} \Omega$ | 370 | 385 | 400 |



Figure 1. DC1968A Basic Transmitter Board


Figure 2. DC1967A-B LTC4120 Receiver Board

## DEMO BOARD PROCEDURE

Refer to Figure 7 for the proper measurement equipment setup and jumper settings and follow the procedure beIow. Please test DC1968A first, by itself.

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $V_{C C}$ or $\mathrm{V}_{\text {IN }}$ and GND terminals. See Figure 8 for proper scope probe technique.

1. Set PS1 $=36 \mathrm{~V}$, observe $\mathrm{V}_{C C}(\mathrm{VM} 1)$ and $\mathrm{I}_{\text {HVIN }}$ AM1. The DC1968A can be powered by 5 V on the $\mathrm{V}_{C C}$ pin or up to 38 V on the HVIN pins. The HVIN pins are connected to an LT3480 buck regulator that makes 5 V at the $\mathrm{V}_{C C}$ pins. Standby power in the DC1968A basic transmitter varies between 0.5 W and 0.6 W , for a $\mathrm{V}_{\text {CC }}$ current at 5 V of $100 \mathrm{~mA} \sim 130 \mathrm{~mA}$. If the DC1968A is powered via the HVIN pins then this current is scaled by the ratio $5 \mathrm{~V} /$ [ $\mathrm{V}_{\mathrm{HVIN}} \times 0.92$ ], where 0.92 is efficiency of the regulator. So the standby HVIN current is approximately $5.5 /$ [ $V_{\text {HVIN }} \times(100 \mathrm{~mA} \sim 130 \mathrm{~mA})$ ].
2. Remove PS1, VM1 and AM1. Attach PS2 and AM2.
3. Set PS2 to 5 V , and observe AM2. The transmitter is being powered directly with no intervening buck regulator, so the standby current should be between 100 mA $\sim 130 \mathrm{~mA}$.
4. Connect a bipolar ${ }^{1}$ supply (PS3) to the DC1967A demo board BAT pin. Set the supply to 3.7 V and turn on. Observe AM3.
5. Place the DC1967A board atop the DC1968A board, by aligning:
DC1967A Mounting Hole DC1968A Mounting Hole

| MH1 | => | MH1 |
| :--- | :--- | :--- |
| MH2 | => | MH2 |
| MH3 | => | MH3 |
| MH4 | (> | MH4 |

This should result in the transmit antenna being directly above the receive antenna, with the centers aligned. Observe AM2 and AM3. All the charge LEDs on the DC1967A should now be lit. AM2 should have increased from $100 \mathrm{~mA} \sim 130 \mathrm{~mA}$ to about 600 mA . AM3 should be reading $380 \mathrm{~mA} \sim 400 \mathrm{~mA}$ of charge current into the battery emulator.

Figure 6 shows the approximate full power ( 400 mA of charge current into $4.15 \mathrm{~V} \approx 1.7 \mathrm{~W}$ ) and half powercontours.
${ }^{1}$ A bipolar supply can both sink and source current to maintain the correct output voltage. A unipolar supply can be converted into a suitable bipolar supply by putting a $3.6 \Omega, 10 \mathrm{~W}$, resistor across the output.

## THEORY OF OPGRATION

The DC1969A kit demonstrates operation of a double tuned magnetically coupled resonant power transfer circuit.

## DC1968A - Basic Transmitter

The DC1968A Basic Transmitter is used to transmit wireless power and is used in conjunction with the DC1967A wireless power receiver board featuring the LTC4120.

The DC1968A is configured as a current fed astable multivibrator, with oscillation frequency set by a resonant tank.

The DC1968A basic transmitter is set to 130 kHz operation and the DC1967A LTC4120 demonstration board resonant frequency is 127 kHz with DHC enabled and 140 kHz with DHC disabled. For the DC1968A basic transmitter the resonant components are the $2 \mathrm{X} 0.15 \mu \mathrm{~F}$ PPE film capacitors (Cx1 and Cx2) and the 5.0 H (Lx) transmit coil. This gives a resonant frequency of 129.95 kHz . The tolerance on the transmit coil and resonant capacitors is $\pm 2 \%$, or 2.6 kHz . Inductors L 1 and L 2 are used to make the resonant structure current fed.

# DEMO MANUAL <br> DC1969A-A/DC1969A-B 

## THEORY OF OPERATION



Figure 3. DC1968A Basic Transmitter
The current fed topology makes the peak-to-peak voltage on the resonant tank equal to $2 \pi \mathrm{~V}_{\mathrm{CC}} . \mathrm{V}_{C C}$ is 5 V , so the peak-to-peak tank voltage is 31.5 V , see Figure 3 .

The blue and green traces are the drains of the transmitter MOSFETs M1 and M2 (see Figure 12), respectively. The red trace is the difference ( $\mathrm{V}_{C X}-\mathrm{V}_{C Y}$ ) of those two nodes, and shows that the resonant tank is producing a sine wave. The peak-to-peak voltage of $2 \pi \mathrm{~V}$ CC $=31.5 \mathrm{~V}$, results from the current fed topology. This in turn determines the breakdown of the MOSFETS and diodes D2 and D3. To increase transmit power by raising $V_{C C}$, you must also change $\mathrm{M} 1, \mathrm{M} 2$, D 2 and D 3 , to reflect the higher voltages on the $C_{X}$ and $C_{Y}$ nodes.

The magnitude of the magnetic field is directly proportional to the current in the transmit coil. For a resonant system this current is $Q$ times the input current. So the higher the Q the larger the magnetic field. Therefore the transmit coil is constructed with Litz wire, and the resonant capacitors are very low dissipation PPS film capacitors. This leads to a $Q$ of approximately 10 at 130 kHz , and a circulating current of approximately 6Ap-p, at full load.

## DC1967A - Wireless Power Receiver Board Featuring the LTC4120

The LTC4120 wireless power receiver IC implements dynamic harmonization control (DHC), which tunes or detunes the receive circuit to receive more or less power as needed. The primary receive tank is composed of Lr , and C2S, although it must be noted that C2S is ac grounded through C5, the LTC4120 decoupling capacitor, to be in parallel with Lr. C2S also serves to tap power off the resonant circuit and send it to the LTC4120, see Figure 4.


Figure 4. DC1967A Receiver
The waveforms in Figure 4 were captured at a transmit to receive gap of 8 mm . The blue trace is the waveform at the $C_{x}$ pin of the receiver board (Figure 10), and the red trace is the charge current into the battery. Although the transmit waveform is a sine wave, the series-parallel connection of the secondary resonant circuit does not yield a sine wave, and this waveform is correct. The charge current into the battery has an average of $\approx 400 \mathrm{~mA}$, for a delivered power of $1.5 \mathrm{~W}\left(\mathrm{~V}_{\text {BAT }}=3.7 \mathrm{~V}\right)$. However, 20mA has been diverted to the charge LEDs, for a net battery charge current of 380 mA . The ripple on the charge current is synchronous to the transmit waveform.

## DHC

When $\mathrm{V}_{\text {IN }}$ is above 14 V , the DHC pin is open and C2P doesn't enhance the energy transfer; this is the detuned state, and the resonant frequency of the receive tank is 142 kHz . When $\mathrm{V}_{\text {IN }}$ falls below 14 V , the DHC pin is grounded putting C2P in parallel with both C2S and Lr thus changing the resonant frequency to 127.4 kHz . When the receiver is tuned at 127.4 kHz and drawing significant power, the transmit frequency is pulled down to 127 kHz . So, at full power the system is now a double-tuned resonant circuit. Figure 6 shows approximate power transfer vs distance between transmitter and receiver. Note the minimum clearance. The minimum is needed to avoid exceeding the maximum input voltage.

## Summary

The LTC4120 wireless power receiver IC adjusts the receiver resonant frequency to keep the system from transferring too much power when the coupling is high between transmit

## theory of operation

and receive coils. The LTC4120 wireless power receiver IC increases power transfer when power transfer is insufficient. This is accomplished by switching capacitors into the resonant circuit using the DHC pin. This gives a much wider operating transmit distance, see Figure 5.


Figure 5. DC1967A Receiver
The blue trace is the charge current into the battery, and the red trace is the voltage at $\mathrm{V}_{\text {IN }}$ on the receiver board. $\mathrm{V}_{\text {IN }}$ is about 25 V , while the LTC4120 delivers 1.5 W at a
distance of 8 mm , to the battery. There is negligible transmit frequency ripple on $\mathrm{V}_{\text {IN }}$, and the voltage is well above the 14V DHC voltage. This indicates that the input rectifiers are operating in peak detect mode, and that DHC is inactive.

## 35mm Ferrite Disk

The DC1969A-A/DC1969A-B kit includes a 35mm ferrite disk. The purpose of this disk is to increase the power received by the DC1967A-A/DC1967A-B receiver board. The 25 mm ferrite disk that is shipped and attached to the DC1967A-A/DC1967A-B board is attached with doublesided tape, and is likely to break if removed. Laying the 35 mm ferrite on top of the shipped 25 mm ferrite disc will increase received power approximately $30 \%$. Removing the 25 mm ferrite disk and attaching the 35 mm disk will increase received power approximately $20 \%$. In both cases the minimum clearance distance will increase to approximately 3 mm . Since the 25 mm ferrite disk shipped on the DC1967A-A/DC1967A-B board is likely to break, exchanging disks can only be done once.


Figure 6. Power Transfer vs Axial Distance and Misalignment

# DEMO MANUAL 

## THEORY OF OPERATION



Figure 7a. Using High Voltage Input


Figure 7c. Receive Board with Battery Emulator
Figure 7
Note: All connections from equipment should be Kelvin connected directly to the board pins which they are connected on this diagram and any input or output leads should be twisted pair.

5

# DEMO MANUAL <br> DC1969A-A/DC1969A-B 

## THEORY OF OPGRATION



Figure 8. Measuring Input or Output Ripple


Figure 9. LTC4120 (DC1968A and DC1967A-B) Radiated Emissions

## Radiated Emissions

Radiated emissions information was gathered using a gigahertz transverse electromagnetic (GTEM) cell. The GTEM cell dimensions were $0.2 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.15 \mathrm{~m}$. The data was normalized to a 10 m semi-anechoic chamber (SAC) per IEC61000-4-20 using peak hold detection.

The limits shown on the graph are for CISPR 11 class A (yellow) and class B (red). The CISPR 11 limits are applicable to industrial commercial and medical equipment. The emissions detection method was peak hold of the square root of the sum of the emissions from each face, $X, Y, Z$, squared. As the emissions are always at least 6 dB from the regulatory limits, the use of quasi-peak detection was not necessary. Data was gathered on a single representative system.

The blue line shape is data gathered from a DC1968A basic transmitter operating alone and powered at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ from a bench supply. The yellow line shape is data gathered from a DC1968A basic transmitter powered at $\mathrm{V}_{C C}=5 \mathrm{~V}$ from a bench supply, and energizing a DC1967A LTC4120 wireless power receive board with no battery. And the green line shape is data gathered from a DC1968A basic transmitter powered at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ from a bench supply, and energizing a DC1967A LTC4120 wireless power receive board charging a Li-Ion battery at 400 mA .

The LTC4120 wireless power system is intended to be a part of a complete end product. Only the complete end product needs to be FCC certified. The data presented here on the wireless power system is for end product design purposes only, not to obtain FCC certification.

# DEMO MANUAL DC1969A-A/DC1969A-B 

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| DC1967A Required Circuit Components |  |  |  |  |
| 1 | 2 | C2S1, C2P1 | CAP, CHIP, COG, 0.0047 $\mu \mathrm{F}, \pm 5 \%, 50 \mathrm{~V}, 0805$ | MURATA, GRM2165C1H472JA01D |
| 2 | 1 | C2P2 | CAP, CHIP, COG, $0.0018 \mu \mathrm{~F}, \pm 5 \%, 50 \mathrm{~V}, 0603$ | KEMET, C0603C182J5GAC7533 |
| 3 | 1 | C2S2 | CAP, CHIP, COG, $0.022 \mu \mathrm{~F}, \pm 5 \%, 50 \mathrm{~V}, 0805$ | MURATA, GRM21B5C1H223JA01L |
| 4 | 1 | C1 |  | TDK, C2012X5R1C106K |
| 5 | 1 | C2 | CAP, CHIP, X5R, 47 $4 \mathrm{~F}, \pm 10 \%, 16 \mathrm{~V}, 1210$ | MURATA, GRM32ER61C476KE15L |
| 6 | 1 | C3 | CAP, CHIP, X7R, $0.01 \mu \mathrm{~F}, \pm 10 \%, 50 \mathrm{~V}, 0603$ | TDK, C1608X7R1H103K |
| 7 | 1 | C4 | CAP, CHIP, X5R, 2.2 $2 \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 0402$ | MURATA, GRM155R60J225ME15D |
| 8 | 1 | C5 | CAP, CHIP, X7S, 10 $0 \mathrm{~F}, \pm 20 \%, 50 \mathrm{~V}, 1210$ | TDK, C3225X7S1H106M |
| 9 | 3 | D1, D2, D3 | DIODE, SCHOTTKY, 40V, 2A, PowerDI123 | DIODES, DFLS240L |
| 10 | 1 | D4 | DIODE, Zener, 39V, $\pm 5 \%$, 1W, PowerDI123 | DIODES, DFLZ39 |
| 11 | 1 | FB1 | 25 mm Ferrite Bead | ADAMS MAGNETICS, B67410-A0223-X195 |
| 12 | 0 | Lr | IND, EMBEDDED, $47 \mu \mathrm{H}, 43$ turns | EMBEDDED |
| 13 | 1 | L1 | IND, SMT, $15 \mu \mathrm{H}, 260 \mathrm{~m} \Omega, \pm 20 \%, 0.86 \mathrm{~A}, 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ | LPS4018-153ML |
| 14 | 1 | R1 | RES, CHIP, 1.40M, $\pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04021M40FKED |
| 15 | 1 | R2 | RES, CHIP, 412k $\Omega$, $\pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402412KFKED |
| 16 | 2 | R3, R7 | RES, CHIP, $10 \mathrm{k} \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040210KOFKED |
| 17 | 1 | R5 | RES, CHIP, $3.01 \mathrm{k} \Omega, \pm 1,1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04023K01FKED |
| 18 | 2 | R6, R8 | RES, CHIP, $0 \Omega$ JUMPER, 1/16W, 0402 | VISHAY, CRCW04020000Z0ED |

Additional Demo Board Circuit Components

| 1 | 2 | C7, C10 | CAP, CHIP, X5R, $1 \mu \mathrm{~F}, \pm 10 \%, 16 \mathrm{~V}, 0402$ | TDK, C1005X5R1C105K |
| :---: | :---: | :--- | :--- | :--- |
| 2 | 3 | C6, C8, C9 | CAP, CHIP, X7R, $0.01 \mu \mathrm{~F}, \pm 10 \%, 25 \mathrm{~V}, 0402$ | TDK, C1005X7R1E103K |
| 3 | 8 | D5, D6, D7, D8, D9, D10, <br> D11, D12 | DIODE, LED, GREEN, 0603 | LITE-ON, LTST-C193KGKT-5A |
| 4 | 1 | R4 | RES, CHIP, 2k $\Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04022K00JNED |
| 5 | 2 | R11, R12 | RES, CHIP, 100k $\Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402100KJNED |
| 6 | 1 | R13 | RES, CHIP, $10 \mathrm{k} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040210K0JNED |
| 7 | 2 | R14, R35 | RES, CHIP, 432 $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402432RFKED |
| 8 | 2 | R15, R33 | RES, CHIP, 22.6k $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040222K6FKED |
| 9 | 1 | R16 | RES, CHIP, $34.8 \mathrm{k} \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040234K8FKED |
| 10 | 7 | R17, R18, R19, R20, <br> R21, R22, R23 | RES, CHIP, $100 \mathrm{k} \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402100KFKED |
| 11 | 1 | R24 | RES, CHIP, 49.9k $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040249K9FKED |
| 12 | 8 | R25, R26, R27, R28, <br> R29, R30, R31, R32 | RES, CHIP, 1k $\Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04021K00JNED |
| 13 | 1 | R34 | RES, CHIP, 787k $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402787KFKED |
| 14 | 2 | U2, U3 | UItralow Power Quad Comparators with Reference, <br> $5 m m \times 4 m m ~ D F N-16 ~$ | LINEAR TECH., LTC1445CDHD |

## Hardware For Demo Board Only

| 1 | 6 | E1, E2, E5, E6, E9, E10 | TURRET, 0.091" | MILL-MAX, 2501-2-00-80-00-00-07-0 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | E3, E4, E7, E8 | TURRET, 0.061" | MILL-MAX, 2308-2-00-80-00-00-07-0 |
| 3 | 0 | J1-OPT | CONN, 3 Pin Polarized | HIROSE, DF3-3P-2DSA |
| 4 | 4 | JP1, JP3-JP5 | HEADER, 3 Pin, SMT, 2mm | SAMTEC, TMM-103-01-L-S-SM |
| 5 | 1 | JP2 | HEADER, 4 Pin, SMT, $2 m m$ | SAMTEC, TMM-104-01-L-S-SM |
| 6 | 5 | JP1-JP5 | SHUNT, $2 m m$ | SAMTEC, 2SN-BK-G |
| 7 | 4 |  | CLEAR $0.085 " \times 0.335 "$ BUMPER | KEYSTONE, 784-C |

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :--- | :--- | :--- |
| 8 | 15 |  | $15 m m$ DOUBLE SIDED TAPE | $3 M, 34-8705-5578-5$ |
| 9 | 4 |  | STAND-OFF, NYLON, $0.3755^{\prime \prime}$ | KEYSTONE, 8832 |
| DC1967A-A Required Circuit Components |  |  |  |  |


| 1 | 0 | R9 | NO LOAD. SMD 0402 |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | R10 | RES, CHIP, 0 $\Omega$ JUMPER, $1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04020000Z0ED |
| 3 | 1 | U1 | 400 mA Wireless Synchronous Buck Battery Charger, <br> $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ QFN-16 | LINEAR TECH., LTC4120EUD-4.2 |

## DC1967A-B Required Circuit Components

| 1 | 1 | R9 | RES, CHIP, $1.40 \mathrm{M}, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04021M40FKED |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | R10 | RES, CHIP, $1.05 \mathrm{M}, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW04021M05FKED |
| 3 | 1 | U1 | 400 mA Wireless Synchronous Buck Battery Charger, <br> $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ QFN- 16 | LINEAR TECH., LTC4120EUD |


| DC1968A Required Circuit Components |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | CX1, CX2 | CAP, CHIP, PPS, $0.15 \mu \mathrm{~F}, \pm 2 \%, 50 \mathrm{~V}, 6.0 \mathrm{~mm} \times 4.1 \mathrm{~mm}$ | PANASONIC, ECHU1H154GX9 |
| 2 | 2 | C4, C5 | CAP, CHIP, X7R, $0.01 \mu \mathrm{~F}, \pm 10 \%, 50 \mathrm{~V}, 0402$ | MURATA, GRM155R71H103KA88D |
| 3 | 1 | C6 | CAP, CHIP, X5R, 4.7山F, $\pm 10 \%, 50 \mathrm{~V}, 1206$ | MURATA,GRM31CR71H475KA12L |
| 4 | 1 | C7 | CAP, CHIP, X5R, $0.068 \mu \mathrm{~F}, \pm 10 \%, 50 \mathrm{~V}, 0603$ | MURATA, GRM188R71H683K |
| 5 | 1 | C8 | CAP, CHIP, COG, 330pF, $\pm 5 \%$, 50V, 0402 | TDK, C1005COG1H331J |
| 6 | 1 | C9 | CAP, CHIP, X7R, $0.47 \mu \mathrm{~F}, \pm 10 \%, 25 \mathrm{~V}, 0603$ | MURATA,GRM188R71E474K |
| 7 | 1 | C10 | CAP, CHIP, X5R, $22 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 0805$ | TAIYO-YUDEN,JMK212BJ226MG |
| 8 | 2 | D1, D4 | DIODE, ZENER, 16V, 350 mW , SOT23 | DIODES, BZX84C16 |
| 9 | 2 | D2, D3 | DIODE, SCHOTTKY, 40V, 1A, 2DSN | ON SEMICONDUCTOR, NSR10F40NXT5G |
| 10 | 1 | D5 | DIODE, SCHOTTKY, 40V, 2A, PowerDI123 | DIODES, DFLS240L |
| 11 | 2 | L1, L2 | IND, SMT, $68 \mu \mathrm{H}, 0.41 \mathrm{~A}, 0.40 \Omega, \pm 20 \%, 5 \mathrm{~mm} \times 5 \mathrm{~mm}$ | TDK, VLCF5028T-680MR40-2 |
| 12 | 1 | L3 | IND, SMT, $4.7 \mu \mathrm{H}, 1.6 \mathrm{~A}, 0.125 \Omega, \pm 20 \%, 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ | COILCRAFT, LPS4018-472M |
| 13 | 1 | Lx | TRANSMIT COIL | TDK, WT-505060-8K2-LT |
| 14 | 2 | M1, M2 | MOSFET, SMT, N-CHANNEL, 60V, $11 \mathrm{~m} \Omega$, S08 | VISHAY, Si4108DY-T1-GE3 |
| 15 | 1 | M3 | MOSFET, SMT, P-CHANNEL, -12V, $32 \mathrm{~m} \Omega$, SOT23 | VISHAY, Si2333DS |
| 16 | 1 | M4 | MOSFET, SMT, N-CHANNEL, 60V, $7.5 \Omega$, 115mA, SOT23 | ON SEMI, 2N7002L |
| 17 | 2 | R1, R2 | RES, CHIP, $100 \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402100RJNED |
| 18 | 2 | R3, R8 | RES, CHIP, 150k $, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402150JNED |
| 19 | 1 | R4 | RES, CHIP, $40.2 \mathrm{k} \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040240K2FKED |
| 20 | 1 | R5 | RES, CHIP, 20k , $\pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW040220K0FKED |
| 21 | 2 | R6, R10 | RES, CHIP, 100k $, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402100KFKED |
| 22 | 1 | R7 | RES, CHIP, 536k $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$ | VISHAY, CRCW0402536KFKED |
| 23 | 1 | U1 | LT3480EDD, PMIC 38V, 2A, 2.4MHz Step-Down Switching Regulator with $70 \mu \mathrm{~A}$ Quiescent Current | LINEAR TECH., LT3480EDD |

Additional Demo Board Circuit Components


## SCHEMATIC DIAGRAM



Figure 10. DC1967A Circuit Schematic

DEMO MANUAL
DC1969A-A/DC1969A-B

## sCHEmATIC DIAGRAM



Figure 11. DC1967A Circuit Schematic

## SCHEMATIC DIAGRAM



Figure 12. DC1968A Circuit Schematic

## DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology<br>1630 McCarthy Blvd.<br>Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

