

MS-0082

Semiconductor Magnetoresistive Element

Semiconductor Magnetoresistive Element Composition

MS-0082 is used as rotation sensor for gear (module: M=0.8), combining bias magnet. MS-0082 generates A/B phase analog outputs, rotating the gear.

Absolute Maximum Ratings

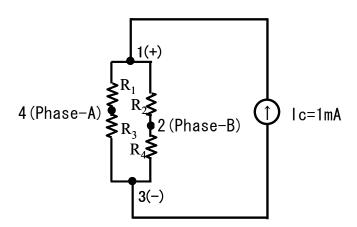
Parameter	Symbol	Min.	Max.	Unit	Notes
Junction Temperature	Tj	-40	150	°C	
Storage Temperature	Tstg	-40	150	°C	

Note) Stresses beyond these listed values may cause permanent damage to the device.

Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Max. Input Power	PD			470	mW	Ta=25°C
Operating Temperature	Та	-40		125	°C	

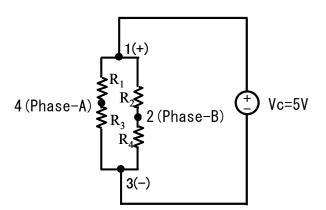
Note) Stresses beyond these listed values may cause permanent damage to the device.


Magnetic & Electrical Characteristics

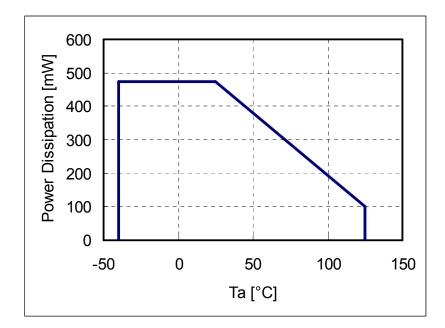
Condition: Ta =25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Input Resistance	Rin(0)	Ic=1mA B=0T	465		755	Ω	*1
Output Resistance	Rout(0)	Ic=1mA B=0T	465		755	Ω	*1
Input Resistance Change Ratio	ΔRin /Rin	Ic=1mA B=0/0.45T	130			%	*2
Output Resistance Change Ratio	∆Rout ∕Rout	Ic=1mA B=0/0.45T	130			%	*2
Phase-A Voltage	V _A (0)	Vc=5V, B=0T	2.46		2.54	V	*3
Phase-B Voltage	V _B (0)	Vc=5V, B=0T	2.46		2.54	V	*3
Phase-A Voltage	V _A (B)	Vc=5V, B=0.45T	2.46		2.54	V	*4
Phase-B Voltage	V _B (B)	Vc=5V, B=0.45T	2.46		2.54	V	*4

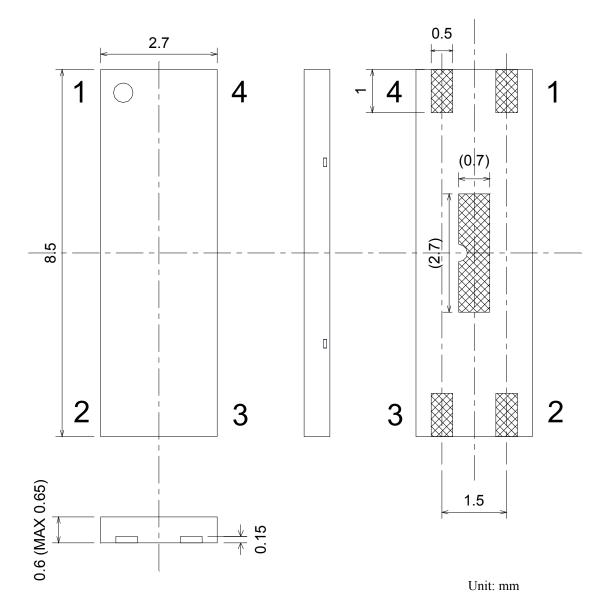
(1T=10kGauss)


- *1 Rin(0): Resistance between 1pin(+) and 3pin(-) in B=0T Rout(0): Resistance between 4pin(A) and 2pin(B) in B=0T
- *2 $\Delta \text{Rin}/\text{Rin} = (\text{Rin}(B)-\text{Rin}(0))/\text{Rin}(0) \text{Rin}(B):B=0.45T$ $\Delta \text{Rout}/\text{Rout} = (\text{Rout}(B)-\text{Rout}(0))/\text{Rout}(0) \text{Rout}(B):B=0.45T$

Measurement circuit of Rin(0), Rout(0), ΔRin/Rin, ΔRout/Rout

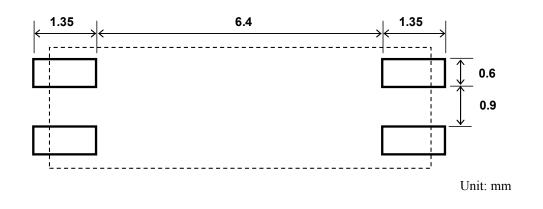

Asahi**KASEI**

- *3 V_A(0): The voltage at 4pin V_B(0): The voltage at 2pin <Measurement conditions> 1. Vc=5V between 1pin and 3pin 2. B=0T.
- *4 V_A(B): The voltage at 4pin V_B(B): The voltage at 2pin <Measurement conditions>
 - 1. Vc=5V between 1pin and 3pin
 - 2. B=0.45T.


Measurement circuit of $V_A(0)$, $V_B(0)$, $V_A(B)$, $V_B(B)$

Package Information

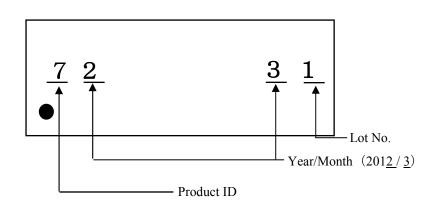
Dimensional Outline Drawing



Material of terminals: Copper alloy Material of plating: Sn 100%

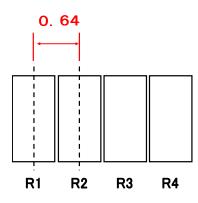
*The tolerances of dimensions with no mentions is ± 0.1 mm

Note) The metal portions on the package side (support lead) and the center metal area (2.7mm×0.7mm) behind the package are connected to the internal circuits. The support lead and the metal area should be isolated from the external circuit and the other support lead.


Recommended Land Pattern (reference)

Marking

Marking is performed by laser.


Ex.)

Product Distinction No		Year			Month		
Mark	Product ID	Mark	Corresponding YR.	Mark	Corresponding Mo.		
1		0~9	The end figure of the Christian era	1	January		
2				2	February		
3				3	March		
4				4	April		
5				5	May		
6				6	June		
7	MS-0082			7	July		
8				8	August		
9				9	September		
0				0	October		
				А	November		
				В	December		

Sensor Arrangement (reference)

Unit: mm

RoHS Compliance

MS-0082 is compliant with RoHS Directive 2002/95/EC.

Reliability Test

No.	Parameter	Test Condition		Time	Criteria (Ta=25°C)
1	Temperature Humidity Storage	Ta=85°C Relative Humidity=85%	22		 Rin(0) and Rout(0) are within ±20% of initial value. V_A(0),V_B(0),V_A(B) and V_B(B) are 2.50V +/-0.06V. ΔR/R is over 130%
2	Operating Life Test	Ta=125°C, Vc=5.0V	22	1000hr	Same as the Above
3	High Temperature Storage	Ta=150°C	22	1000hr	Same as the Above
4	Heat Cycle	$\begin{array}{c} -55^{\circ}\text{C} \rightarrow 25^{\circ}\text{C} \rightarrow 150^{\circ}\text{C} \\ 30\text{min.} \leftarrow 5\text{min.} \leftarrow 30\text{min.} \end{array}$	22	100Cycle	Same as the Above

Important Notice

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange
- approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may

reasonably be expected to result in loss of life or in significant injury or damage to person or property. It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.