ADL5541

FEATURES

Fixed gain of 15 dB
Operation up to $6 \mathbf{G H z}$
Input/output internally matched to 50Ω
Integrated bias control circuit
Output IP3
44 dBm at 500 MHz
40 dBm at 900 MHz
Output 1 dB compression: 19.7 dBm at $900 \mathbf{~ M H z}$
Noise figure of $\mathbf{3 . 5 \mathrm { dB }}$ at 900 MHz
Single 5 V power supply
Small footprint 8-lead LFCSP
Pin compatible with $\mathbf{2 0}$ dB gain ADL5542
1 kV ESD (Class 1C)

GENERAL DESCRIPTION

The ADL5541 is a broadband 15 dB linear amplifier that operates at frequencies up to 6 GHz . The device can be used in a wide variety of CATV, cellular, and instrumentation equipment.

The ADL5541 provides a gain of 15 dB , which is stable over frequency, temperature, power supply, and from device to device. The device is internally matched to 50Ω with an input return loss of 10 dB or better up to 6 GHz . Only input/output ac coupling capacitors, power supply decoupling capacitors, and an external inductor are required for operation.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADL5541 is fabricated on an InGaP HBT process and has an ESD rating of 1 kV (Class 1C). The device is packaged in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP that uses an exposed paddle for excellent thermal impedance.
The ADL5541 consumes 90 mA on a single 5 V supply and is fully specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

A fully populated RoHS-compliant evaluation board is available.

The ADL5542 is a companion part that offers a gain of 20 dB in a pin-compatible package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2007-2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

ADL5541

TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Typical Scattering Parameters 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
REVISION HISTORY
11/13-Rev. 0 to Rev. A
Changes to Figure 2 7
Added Figure 13, Renumbered Sequentially 9
Added Exposed Pad Notation to Outline Dimensions 12
7/07—Revision 0: Initial Version

SPECIFICATIONS

VPOS $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
OVERALL FUNCTION \\
Frequency Range \\
Gain (S21) \\
Input Return Loss (S11) \\
Output Return Loss (S22) \\
Reverse Isolation (S12)
\end{tabular} \& \begin{tabular}{l}
900 MHz \\
Frequency 500 MHz to 5 GHz Frequency 500 MHz to 5 GHz
\end{tabular} \& 50 \& \[
\begin{aligned}
\& 15.2 \\
\& -12 \\
\& -10 \\
\& -19
\end{aligned}
\] \& 6000 \& \begin{tabular}{l}
MHz \\
dB \\
dB \\
dB \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=100 \mathrm{MHz}\) \\
Gain \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& \(\Delta \mathrm{f}=1 \mathrm{MHz}\), output power (Pout) \(=0 \mathrm{dBm}\) per tone \& \& \[
\begin{aligned}
\& 15.7 \\
\& 19 \\
\& 38 \\
\& 3.5
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=500 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=3 \mathrm{dBm} \text { per tone }
\end{aligned}
\] \& 14.7 \& \[
\begin{aligned}
\& 15.1 \\
\& \pm 0.15 \\
\& \pm 0.1 \\
\& \pm 0.01 \\
\& 19.9 \\
\& 44 \\
\& 3.5
\end{aligned}
\] \& 15.5

3.7 \& | dB |
| :--- |
| dB |
| dB |
| dB |
| dBm |
| dBm |
| dB |

\hline | FREQUENCY $=900 \mathrm{MHz}$ |
| :--- |
| Gain |
| vs. Frequency |
| vs. Temperature |
| vs. Supply |
| Output 1 dB Compression Point |
| Output Third-Order Intercept |
| Noise Figure | \& \[

$$
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone }
\end{aligned}
$$

\] \& 14.9 \& \[

$$
\begin{aligned}
& 15.2 \\
& \pm 0.03 \\
& \pm 0.15 \\
& \pm 0.01 \\
& 19.7 \\
& 40.8 \\
& 3.5
\end{aligned}
$$
\] \& 15.4

3.7 \& | dB |
| :--- |
| dB |
| dB |
| dB |
| dBm |
| dBm |
| dB |

\hline ```
FREQUENCY = 2000 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure

``` & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 13.9 & \[
\begin{aligned}
& 14.7 \\
& \pm 0.03 \\
& \pm 0.17 \\
& \pm 0.01 \\
& 16.3 \\
& 39.2 \\
& 3.8
\end{aligned}
\] & 15.4

4.0 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=2400 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 13.9 & \[
\begin{aligned}
& 14.5 \\
& \pm 0.03 \\
& \pm 0.19 \\
& \pm 0.02 \\
& 14.9 \\
& 38.6 \\
& 4.0
\end{aligned}
\] & 15.1


4.2 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline
\end{tabular}

\section*{ADL5541}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline ```
FREQUENCY = 3500 MHz
    Gain
        vs. Frequency
        vs. Temperature
        vs. Supply
    Output 1 dB Compression Point
    Output Third-Order Intercept
    Noise Figure
``` & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 13.6 & \[
\begin{aligned}
& 14.3 \\
& \pm 0.03 \\
& \pm 0.19 \\
& \pm 0.02 \\
& 12.1 \\
& 30.7 \\
& 4.2
\end{aligned}
\] & 14.9

4.5 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=5800 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power (Pout) }=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 9.1 & \[
\begin{aligned}
& 11.2 \\
& \pm 0.15 \\
& \pm 0.9 \\
& \pm 0.02 \\
& 5.8 \\
& 21.9 \\
& 6.0
\end{aligned}
\] & 13.5

7.0 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
POWER INTERFACE \\
Supply Voltage (VPOS) \\
Supply Current vs. Temperature \\
Power Dissipation
\end{tabular} & Pin VPOS
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& \text { VPOS }=5 \mathrm{~V}
\end{aligned}
\] & 4.5 & \[
\begin{aligned}
& 5 \\
& 90 \\
& \pm 12 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~mA} \\
& \mathrm{~mA} \\
& \mathrm{~W}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{TYPICAL SCATTERING PARAMETERS}

VPOS \(=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freq. (MHz)} & \multicolumn{2}{|l|}{S11} & \multicolumn{2}{|l|}{S21} & \multicolumn{2}{|l|}{S12} & \multicolumn{2}{|l|}{S22} \\
\hline & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) \\
\hline 50 & -18.11 & -134.53 & 16.29 & +166.36 & -19.15 & +3.84 & -17.89 & -134.08 \\
\hline 100 & -20.84 & -161.29 & 15.93 & +168.53 & -18.82 & +2.26 & -22.24 & -155.22 \\
\hline 500 & -27.69 & +115.36 & 15.58 & +154.53 & -18.70 & -13.59 & -24.96 & +176.64 \\
\hline 900 & -27.48 & +101.79 & 15.52 & +136.22 & -18.70 & -26.33 & -22.38 & +173.92 \\
\hline 1000 & -26.87 & +91.91 & 15.56 & +131.64 & -18.64 & -29.43 & -23.15 & +174.28 \\
\hline 1500 & -29.18 & -107.74 & 15.50 & +108.03 & -18.64 & -44.69 & -19.35 & +167.80 \\
\hline 2000 & -17.88 & -153.68 & 15.51 & +84.72 & -18.43 & -60.42 & -14.13 & +176.19 \\
\hline 2500 & -9.87 & +169.30 & 15.57 & +59.74 & -18.32 & -75.48 & -9.89 & +161.55 \\
\hline 3000 & -7.92 & +142.75 & 15.49 & +35.05 & -17.93 & -92.29 & -8.69 & +138.18 \\
\hline 3500 & -7.74 & +117.57 & 15.21 & +9.15 & -18.14 & -110.62 & -11.02 & +100.39 \\
\hline 4000 & -10.85 & +116.84 & 14.82 & -16.13 & -18.11 & -125.08 & -15.70 & +6.37 \\
\hline 4500 & -13.25 & +136.93 & 15.23 & -41.75 & -17.54 & -142.99 & -7.83 & -80.59 \\
\hline 5000 & -13.97 & +143.02 & 14.56 & -68.15 & -17.64 & -161.24 & -6.87 & -112.39 \\
\hline 5500 & -13.68 & -121.08 & 13.89 & -96.10 & -17.47 & +178.77 & -11.66 & -102.32 \\
\hline 6000 & -4.52 & -138.62 & 12.07 & -123.56 & -18.61 & +157.35 & -7.66 & -54.40 \\
\hline
\end{tabular}

\section*{ADL5541}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 3.
\begin{tabular}{l|l}
\hline Parameter & Rating \\
\hline Supply Voltage, VPOS & 6.5 V \\
Input Power (re: \(50 \Omega\)) & 10 dBm \\
Internal Power Dissipation (Paddle Soldered) & 650 mW \\
\(\theta_{\mathrm{JC}}\) (Junction to Paddle) & \(28.5^{\circ} \mathrm{C} / \mathrm{W}\) \\
Maximum Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline & \begin{tabular}{l}
ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular} \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

Table 4. Pin Function Descriptions
\begin{tabular}{l|l|l}
\hline Pin No. & Mnemonic & Description \\
\hline 1 & RFIN & RF Input. Requires a dc blocking capacitor. \\
\(2,3,6,7\) & GND & Ground. Connect these pins to a low impedance ground plane. \\
4 & GB & Low Frequency Bypass. A \(1 \mu\) F capacitor should be connected between this pin and ground. \\
5 & VPOS & Power Supply for Bias Controller. Connect directly to external power supply. \\
8 & RFOUT & RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is tied to the \\
external power supply. RF path requires a dc blocking capacitor. \\
Exposed Paddle & & Exposed Paddle. Internally connected to GND. Solder to a low impedance ground plane. \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Figure 3. Gain, P1dB, OIP3, and Noise Figure vs. Frequency

Figure 4. Gain vs. Frequency and Temperature

Figure 5. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 6. OIP3 and P1dB vs. Frequency and Temperature

Figure 7. OIP3 vs. Output Power (Pout) and Frequency

Figure 8. Noise Figure vs. Frequency and Temperature

Figure 9. OIP3 Distribution at 900 MHz

Figure 10. P1dB Distribution at 900 MHz

Figure 11. Gain Distribution at 900 MHz

Figure 12. Noise Figure Distribution at 900 MHz

Figure 13. Supply Current vs. Pout and Temperature

\section*{BASIC CONNECTIONS}

The basic connections for operating the ADL5541 are shown in Figure 14. Recommended components are listed in Table 5. The input and output should be ac-coupled with appropriately sized capacitors (device characterization was performed with 33 pF capacitors). A 5 V dc bias is supplied to the amplifier via GND (Pin 6) and through a biasing inductor connected to RFOUT (Pin 8). The bias voltage should be decoupled using a \(1 \mu \mathrm{~F}\) capacitor, a 1.2 nF capacitor, and two 68 pF capacitors.

Figure 14. Basic Connections
For operation between 50 MHz and 500 MHz , a larger biasing choke and ac coupling capacitors are necessary (see Table 5). Figure 15 shows a plot of the input return loss, the output return loss and the gain with these components. At 100 MHz , the ADL5541 achieves an OIP3 of 38 dBm (Pout \(=0 \mathrm{dBm}\) per tone). The noise figure performance for operation from 50 MHz to 500 MHz is shown in Figure 16. When operating below 50 MHz , the ADL5541 exhibits gain peaking, and the input and output match degrade significantly.

Figure 15. Input Return Loss (S11), Output Return Loss (S22), and Gain (S21) vs. Frequency

Figure 16. Noise Figure vs. Frequency from 50 MHz to 500 MHz
SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN
Figure 17 shows the recommended land pattern for the ADL5541. To minimize thermal impedance, the exposed paddle on the package underside should be soldered down to a ground plane along with Pin 2, Pin 3, Pin 6, and Pin 7. If multiple ground layers exist, they should be stitched together using vias (a minimum of five vias is recommended). For more information on land pattern design and layout, refer to Application Note AN-772, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).

Figure 17. Recommended Land Pattern

Table 5. Recommended Components for Basic Connections
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline Frequency & C1 & C2 & C3 & L1 & C4 & C5 & C6 & C7 \\
\hline 50 MHz to 500 MHz & \(0.1 \mu \mathrm{~F}\) & \(0.1 \mu \mathrm{~F}\) & \(1 \mu \mathrm{~F}\) & 470 nH (Coilcraft 0603LS-471-NX or equivalent) & 68 pF & 1.2 nF & \(1 \mu \mathrm{~F}\) & 68 pF \\
500 MHz to 6000 MHz & 33 pF & 33 pF & \(1 \mu \mathrm{~F}\) & 47 nH (Coilcraft 0603CS-47-NX or equivalent) & 68 pF & 1.2 nF & \(1 \mu \mathrm{FF}\) & 68 pF \\
\hline
\end{tabular}

\section*{Data Sheet}

\section*{EVALUATION BOARD}

Figure 20 shows the schematic for the ADL5541 evaluation board. The board is powered by a single 5 V supply.
The components used on the board are listed in Table 6. Power can be applied to the board through clip-on leads (VCC and GND) or through a 2 -pin header (W1).

Figure 19. Evaluation Board Layout (Top)

Figure 18. Evaluation Board Layout (Bottom)

Figure 20. Evaluation Board Schematic

Table 6. Evaluation Board Configuration
\begin{tabular}{l|l|l}
\hline Component & Function & Default Value \\
\hline DUT1 & Gain block & ADL5541 \\
C1, C2 & AC coupling capacitors & \(33 \mathrm{pF}, 0402\) \\
C3 & Low frequency bypass capacitor & \(1 \mu \mathrm{~F}, 0805\) \\
C4, C5, C6, C7, C8, C9 & Power supply decoupling capacitors & \(\mathrm{C} 4 \mathrm{and} \mathrm{C7}=68 \mathrm{pF}, 0603\) \\
& & \(\mathrm{C} 5=1.2 \mathrm{nF}, 0603\) \\
& & \(\mathrm{C} 6=1 \mu \mathrm{~F}, 0805\) \\
L1 & & \(47 \mathrm{nnd} \mathrm{C9}=\mathrm{open}\) \\
VCC and GND 0603 (Coilcraft 0603CS-47-NX or equivalent) \\
W1 & DC bias inductor & \\
\hline
\end{tabular}

\section*{OUTLINE DIMENSIONS}

Figure 21. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] \(3 \mathrm{~mm} \times 3 \mathrm{~mm}\) Body, Very Thin, Dual Lead
(CP-8-2)
Dimensions shown in millimeters

\section*{ORDERING GUIDE}
\begin{tabular}{l|l|l|l|l}
\hline Model \(^{1}\) & Temperature Range & Package Description & Package Option & Branding \\
\hline ADL5541ACPZ-R7 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{l}
8-Lead LFCSP_VD, 7"Tape and Reel \\
Evaluation Board
\end{tabular} & CP-8-2 & Q13 \\
ADL5541-EVALZ & & & \\
\hline
\end{tabular}
\({ }^{1} Z=\) RoHS Compliant Part.

Visit www.analog.com/rfamps for the latest information on the Analog Devices, Inc., entire RF amplifier portfolio.
Visit www.analog.com/rf for the latest information on the Analog Devices entire RF portfolio.```

