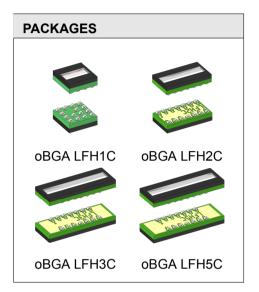
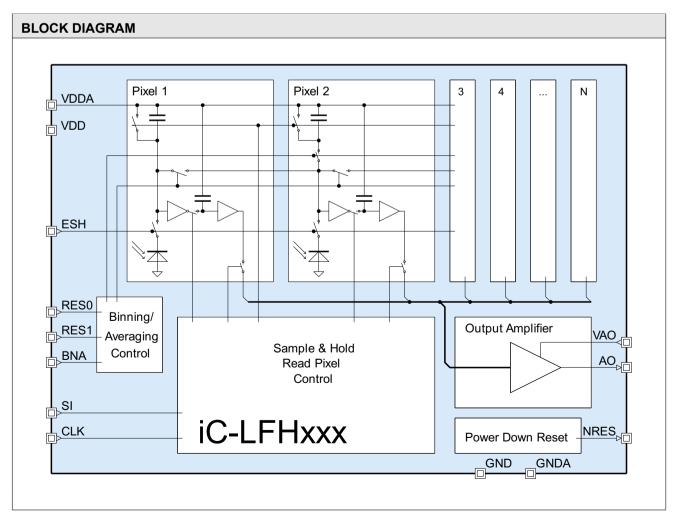
preliminary

HIGH-RESOLUTION LINEAR IMAGE SENSORS


Rev B1, Page 1/14


FEATURES

- 1024/960/640/320 active photo pixels with 12.7 μm x 600 μm (2000 DPI)
- ♦ Pin-selectable resolution of 2000, 1000, 500 and 250 DPI (binning or averaging selectable)
- ♦ Integrating L-V conversion followed by a sample & hold circuit
- ♦ High sensitivity and uniformity over wavelength
- ♦ High pixel clock rate of up to 5 MHz
- ♦ Asynchronous, global shutter enables flexible integration times
- ♦ 3 V capable analogue output with separate supply pin
- ♦ Push-pull output amplifier

APPLICATIONS

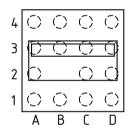
- ♦ Triangulation sensors
- Contact image sensors
- ♦ CCD replacement

preliminary HIGH-RESOLUTION LINEAR IMAGE SENSORS

Rev B1, Page 2/14

DESCRIPTION

iC-LFH Series are integrating light-to-voltage converters with 1024/960/640/320 pixels pitched at 12.7 µm (center-to-center distance). Each pixel consists of a 12.7 µm x 600 µm photodiode, an integration capacitor, and a sample-and-hold circuit.


The control logic makes operation very easy, with only a start and clock signal necessary. A third input (ESH) optionally controls the asynchronous, global shutter.

When the start signal is given, a new integration phase is initiated. Nine clocks are requiered to sample the current integration value and to reset the integration capacitor. After further 7 clocks, while the internal dark level voltage (VMIN) is output at AO, the value of the pixel #1 can be read out. With further clocks the following pixel voltages are output. The complete line sensor is read out after 1040/976/656/336 clock pulses respectively.

iC-LFHxxx is suitable for high pixel clock rates of up to 5 MHz.

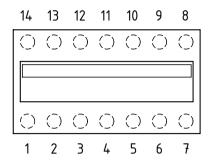
PACKAGING INFORMATION

PIN CONFIGURATION LFH1C

PIN FUNCTIONS

No.	Name	Function

Α1	RES0	Select Resolution Bit 0
A2	RES1	Select Resolution Bit 1
А3	VAO	Pixel Output Supply Voltage
A4	AO	Analog Pixel Output
В1	VDD	Digital Supply +5 V
B2	n/c	
B3	n/c	
В4	VDDA	Analog Supply +5 V
C1	ETP	Enable Test Mode*
C2	GND	Digital Ground
C3	GNDA	Analog Ground
C4	NRES	Power-Down Reset Output (low active)
D1	CLK	Clock
D2	SI	Start of Integration
D3	ESH	Enable Shutter
D4	BNA	Select Binning/Averaging


*ETP must be connected to GND/GNDA

preliminary

Rev B1, Page 3/14

PIN CONFIGURATION LFH2C

PIN FUNCTIONS

No	Name	Fund	tion
INO.	manne	runc	JUOH

1 RES0 Select Resolution Bit 0 Select Resolution Bit 1 2 RES1 Digital Supply +5 V 3 VDD 4 GND **Digital Ground** 5 ETP **Enable Test Mode*** 6 SI Start of Integration

7 CLK Clock

Select Binning/Averaging 8 BNA

9 ESH **Enable Shutter**

10 NRES Power-Down Reset Output (low active)

11 GNDA Analog Ground 12 VDDA Analog Supply +5 V

13 VAO Pixel Output Supply Voltage

14 AO **Analog Pixel Output**

*ETP must be connected to GND/GNDA

PIN CONFIGURATION LFH3C

14	13	12	11	10	9	8	
\bigcirc							
\bigcirc							
1	2	3	4	5	6	7	

PIN FUNCTIONS

No. Name Function

1 RES0 Select Resolution Bit 0 Select Resolution Bit 1 2 RES1 3 VDD Digital Supply +5 V 4 GND Digital Ground Enable Test Mode* 5 ETP 6 SI Start of Integration

7 CLK Clock

8 BNA Select Binning/Averaging

9 ESH **Enable Shutter**

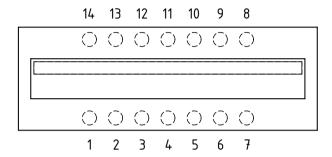
10 NRES Power-Down Reset Output (low active)

11 GNDA Analog Ground 12 VDDA Analog Supply +5 V

Pixel Output Supply Voltage 13 VAO

14 AO **Analog Pixel Output**

*ETP must be connected to GND/GNDA


preliminary

HIGH-RESOLUTION LINEAR IMAGE SENSORS

Rev B1, Page 4/14

PIN CONFIGURATION LFH5C

PIN FUNCTIONS

No. Name Function

1	RES0	Select Resolution Bit 0
2	RES1	Select Resolution Bit 1
3	VDD	Digital Supply +5 V
4	GND	Digital Ground
5	ETP	Enable Test Mode*
6	SI	Start of Integration
7	CLK	Clock
8	BNA	Select Binning/Averaging

9 ESH Enable Shutter

10 NRES Power-Down Reset Output (low active)

11 GNDA Analog Ground 12 VDDA Analog Supply +5 V

Pixel Output Supply Voltage 13 VAO

Analog Pixel Output 14 AO

*ETP must be connected to GND/GNDA

preliminary

Rev B1, Page 5/14

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

HIGH-RESOLUTION LINEAR IMAGE SENSORS

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD	Digital Supply Voltage		-0.3	6	V
G002	VDDA	Analog Supply Voltage		-0.3	6	V
G003	VAO	Analog Output AO Supply Voltage		-0.3	6	
G004	V()	Voltage at SI, CLK, ESH, RES0, RES1, BNA, ETP		-0.3	VDD + 0.3	V
G005	I()	Current in AO		-10	10	mA
G006	Vd()	ESD Susceptibility at all pins	HBM 100 pF, discharged through 1.5 kΩ		4	kV
G007	Tj	Junction Temperature		-40	150	°C
G008	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

Operating Conditions: VDDA = VDD = $5 V \pm 10 \%$

ltem	Symbol	Parameter	Conditions					
No.				Min.	Тур.	Max.		
T01	Та	Operating Ambient Temperature	See the relevant package specifications					

Rev B1, Page 6/14

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDDA = VDD = 5 V ± 10 %, Tj = -25...110 °C unless otherwise noted

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total [Device						
001	VDD	Digital Supply Voltage Range		4.5		5.5	V
002	VDDA	Analog Supply Voltage Range		4.5		5.5	V
003	I(VDD)	Supply Current in VDD	f(CLK) = 1 MHz			300	μA
004	I(VDDA)	Supply Current in VDDA	N = 320 N = 640 N = 960 N = 1024		11 20 26 28	15 25 30 32	mA mA mA mA
005	Vc()hi	Clamp Voltage hi at SI, CLK, ESH, RES0, RES1, BNA, ETP, NRES	Vc()hi = V() - V(VDD), I() = 1 mA	0.3		1.8	V
006	Vc()lo	Clamp Voltage Io at SI, CLK, ESH, RES0, RES1, BNA, ETP, NRES	Vc()hi = V() - V(GNDA), I() = -1 mA	-1.5		-0.3	V
007	Vc()hi	Clamp Voltage hi at AO	Vc()hi = V(AO) - V(VAO), I(AO) = 1 mA	0.3		1.5	V
800	Vc()lo	Clamp Voltage lo at AO, VDDA, VDD, GND	Vc()lo = V() - V(GNDA), I() = -1 mA	-1.5		-0.3	V
Photo	diode Array						
201	A()	Radiant Sensitive Area	600 μm x 12.70 μm, per Pixel		0.00762		mm ²
203	λ ar	Spectral Application Range	$S(\lambda ar) = 0.25 \times S(\lambda) max$	420		980	nm
Analo	gue Output	AO, VAO					
		Permissible Input Voltage	G(AO) = 1 G(AO) = 1.67	3 4.5	3.3 5.0	3.6 5.5	V
302	I(VAO)	Supply Current in VAO	10 pF load at AO, f(CLK) = 5 MHz; V(VAO) = 33.6 V V(VAO) = 4.55.5 V			2.5 3	mA mA
303	G(AO)	Gain	VAO < th(VAO) VAO > th(VAO)	0.9 1.3	1 1.67	1.1 1.8	
304	Vt(VAO)hi	Threshold Voltage Gain Switch hi		3.7		4.6	V
305	Vt(VAO)lo	Threshold Voltage Gain Switch lo		3.5		4.4	V
306	Vt(VAO)hys	Hysteresis Gain Switch		100		350	mV
308	Vs(AO)hi	Saturation Voltage hi	Vs(AO)hi = VAO - V(AO), I(AO) = -2 mA		120	250	mV
311	KR	Sensitivity Sensitivity Ratio	RES1/0 = 00, λ = 775 nm; G(AO) = 1 G(AO) = 1.67 K(Binning * 2) / K K(Binning * 4) / K K(Binning * 8) / K K(Averaging * X) / K; X = 2, 4, 8		0.9 1.5 1.8 3.3 4.7		V/pWs V/pWs
312	V0(AO)	Offset Voltage	Integration time 1 ms, no illumination	100	200	500	mV
313	ΔV0(AO)	Offset Voltage Deviation during integration mode	Δ V0(AO) = V(AO)t1 - V(AO)t2, Δ t = t2 - t1 = 1 ms	-150		150	mV
314	∆V(AO)	Signal Deviation during hold mode	$\Delta V(AO) = V(AO)t1 - V(AO)t2,$ $\Delta t = t2 - t1 = 1 \text{ ms}$	-150		150	mV
315	tp(CLK-AO)	Settling Time	CI(AO) = 10 pF, $CLK \text{ Io} \rightarrow \text{hi until V(AO)} = 0.95 * Vs(AO)\text{hi}$			200*	ns
316	PRNU	Pixel Response Nonuniformity	V(AO) = 2.5 V		±10	±15	%
317	INL	Integral Nonlinearity	G(AO) = 1: V(AO) = 0.53.0 V, G(AO) = 1.67: V(AO) = 0.54.5 V		±1.5*		%
318	V _{noise} (AO)	Output Noise Voltage	V(AO) = 2.5 V		1.5*		mV_{RMS}
319	DR	Dynamic Range [†]	V(VAO) = 5.0 V; V(AO) _{max} = 5 V V(VAO) = 3.3 V; V(AO) _{max} = 3.3 V		70 66		dB dB
320	V(AO)min	Output Reference Voltage		150	200	280	mV
	-Down Rese				I	1	П
801	VDDon	Power-On Release by VDD			4.0	4.4	V

preliminary

Rev B1, Page 7/14

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -25...110 °C unless otherwise noted

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
802	VDDoff	Power-Down Reset by VDD		3.0	3.5		V
803	VDDhys	Hysteresis	VDDhys = VDDon - VDDoff	350	460	800	mV
804	Vs()lo	Saturation Voltage lo	I() = 1.6 mA	0		0.3	V
805	Vs()hi	Saturation Voltage hi	I() = -1.6 mA, Vs()hi = VDD - V()	0		0.3	V
806	Isc()lo	Short Current lo	V() = lo and pin shorted with VDD	5		70	mA
807	Isc()hi	Short Current hi	V() = hi and pin shorted with GND	-70		-5	mA
TTL In	put Interfac	e BNA, CLK, ESH, ETP, RES0, R	ES1, SI				
I01	Vt()hi	Threshold Voltage hi				2.0	V
102	Vt()lo	Threshold Voltage lo		0.8			V
103	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	200		500	mV
104	l()pd	Pull-Down Current		5	30	70	μA
105	fclk	Permissible Clock Frequency	Reset integration and digital control Read Pixel and S&H			10	MHz
			N = 320	(0.3)‡		5	MHz
			N = 640	$(0.6)^{\ddagger}$		5	MHz
			N = 960, 1024	(1)‡		5	MHz

OPTICAL CHARACTERISTICS: Diagrams

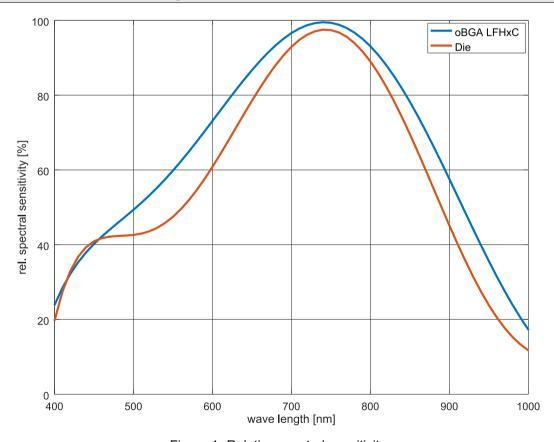


Figure 1: Relative spectral sensitivity

^{*} Projected values by sample characterization † $DR = 20 \times log \frac{V(AO)_{max} - V0(AO)_{max}}{V_{noise}(AO)}$

[‡] Relates to a 1 ms hold time; cf. Electrcal Characteristics Nos. 313 and 314.

preliminary (

Rev B1, Page 8/14

OPERATING REQUIREMENTS: Integration and Read Control

Operating conditions: VDDA = VDD = 4.5...5.5 V, GNDA = GND = 0 V, Tj = -25...110 °C

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
Integra	ntegration and Read Control					
1001	t _C	Permissible Clock Period CLK		100		ns
1002	t _{L1}	Clock Signal CLK Hi-Level Duration		50		ns
1003	t _{L2}	Clock Signal CLK Lo-Level Duration		50		ns
1004	t _{S1}	Setup Time: SI stable before CLK lo \rightarrow hi		50		ns
1005	t _{H1}	Hold Time: SI stable after CLK lo \rightarrow hi		50		ns
1006	t _{L3}	Shutter Signal ESH Lo-Level Duration		100		ns

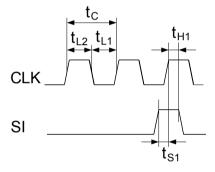


Figure 2: Timing diagram

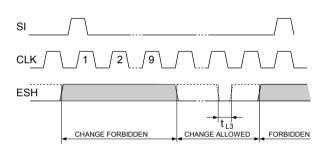


Figure 3: Timing diagram shutter

preliminary

Rev B1, Page 9/14

DESCRIPTION OF FUNCTIONS

Pixel structure and resolution

One pixel consist of a photodiode, an integration capacitor, and an S&H stage. For reducing the resolution, the pixels can be grouped together by means of pins RES1/0. Changing the resolution can be achieved in two ways, binning or averaging. Averaging does not change the sensitivity, whereas binning increases the sensitivity by the ratio given in the table on the right. Pin BNA selects the mode respectively.

PINS RES1	PINS RES1/0						
State	Pin BNA	Pixels	Resolution	Sensitivity ratio ¹			
0/0	-	N pixels	2000 dpi	1			
0/1	0	N/2 pixels	1000 dpi	1			
	1	N/2 pixels	1000 dpi	1.8			
1/0	0	N/4 pixels	500 dpi	1			
	1	N/4 pixels	500 dpi	3.3			
1/1	0	N/8 pixels	250 dpi	1			
	1	N/8 pixels	250 dpi	4.7			
	¹ all pixels uniformly illuminated						
	N = 320/640	/960/1024 pix	els				

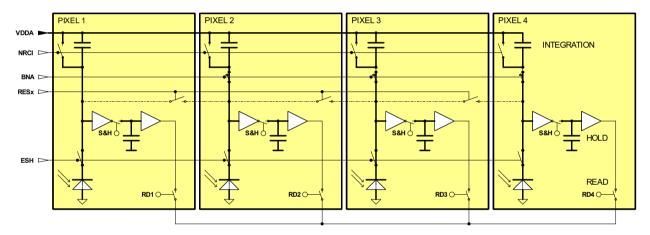


Figure 4: Pixel structure with RES1/0 = 00

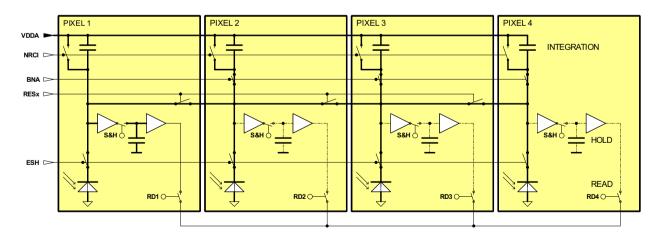


Figure 5: Pixel structure with resolution change and averaging mode

preliminary 624

HIGH-RESOLUTION LINEAR IMAGE SENSORS

Rev B1, Page 10/14

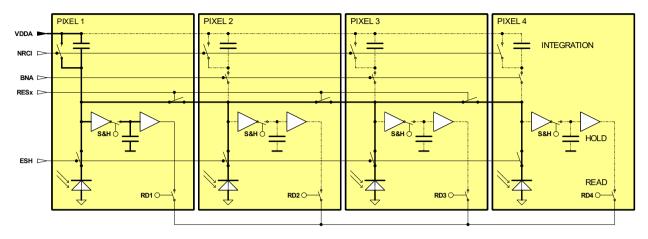


Figure 6: Pixel structure with resolution change and binning mode

Operation description

Following an internal power-on reset the integration and hold capacitors are discharged. A high signal at SI and a rising edge at CLK triggers a readout cycle and with it a new integration cycle. Six clocks later the internal reset is done and the device is in integration mode. The readout of the analog pixel values starts with the 17th clock pulse.

Operation with the shutter function

Integration can be suspended at any time via pin ESH (asynchronous, global shutter), i.e. the photodiodes are disconnected from their corresponding integration capacitor when ESH is high and the current integration capacitor voltages are maintained. If this pin is open or switched to GND, the pixel photocurrents are summed up by the integration capacitors until the next SI signal.

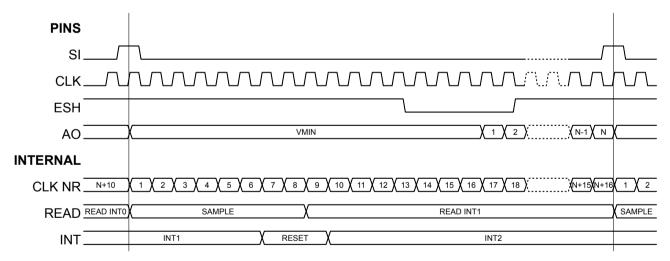


Figure 7: example integration and readout cycle

preliminary

Rev B1, Page 11/14

READ CONTROL

The readout of the analog pixel values is controlled by the following pins:

- Pin SI
- · Pin CLK

A rising CLK edge with a hi value at SI resets the internal read out circuit, initiating a readout of the previously sampled pixel values. While clocking more then N clocks the read out will restart with pixel #1 without sampling. Thus a non-destructive re-read is possible.

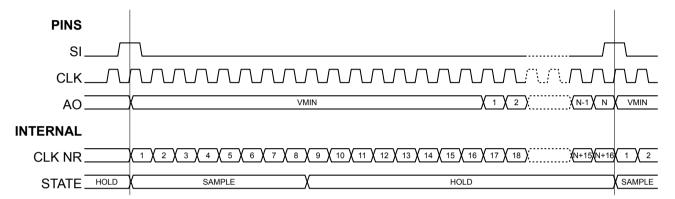


Figure 8: Complete readout cycle

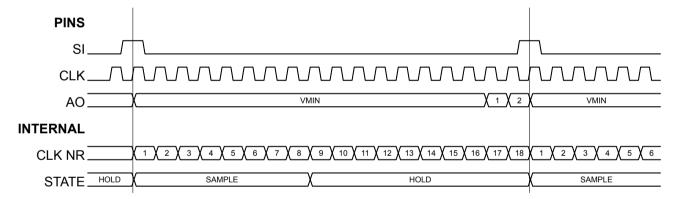


Figure 9: Interrupting the readout cycle

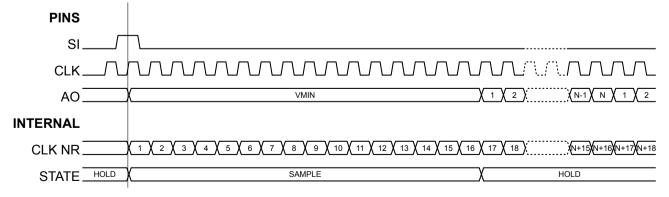


Figure 10: Non-destructive restart of readout cycle

preliminary

Rev B1, Page 12/14

INTEGRATION CONTROL

The integration is controlled by the signals:

- Pin SI
- Pin CLK
- Pin ESH

A new integration phase is started with a rising CLK edge and SI high. After 9 clocks a new integration cy-

cle is initiated. With pin ESH = lo all photodiodes are connected to the internal capacitors and the photodiode currents are integrated. The integration can be suspended by setting pin ESH to hi, disconnecting the photodiodes from their integration capacitors.

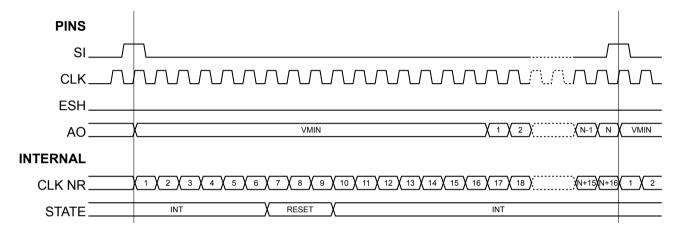


Figure 11: Integration cycle

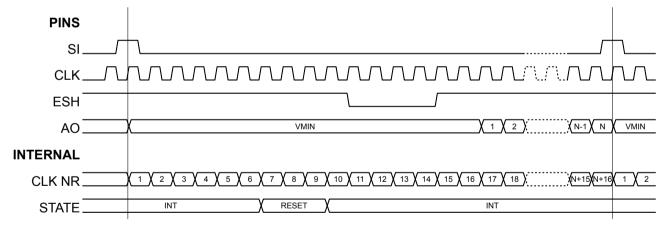


Figure 12: Integration cycle with shutter action

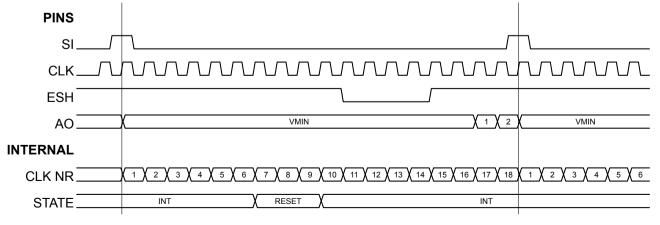


Figure 13: Integration cycle with shutter action and readout interrupt

preliminary

Rev B1, Page 13/14

DESIGN REVIEW: Function Notes

iC-LFHxxx 1		
No.	Function, parameter/code	Description and application notes
1	Sensitivity ratio with binning, Electrical Characteristics No. 309	Gain increase in binning is lower than stated
2	Settling time, Electrical Characteristics No. 314	Dips in the pixel voltage slow down settling time

Table 5: Notes on chip functions regarding iC-LFHxxx chip release 1

iC-LFHxxx Z		
No.	Function, parameter/code	Description and application notes
1	Binning/averaging	Binning/averaging cannot be used
2	Settling time, Electrical Characteristics No. 314	Dips in the pixel voltage slow down settling time

Table 6: Notes on chip functions regarding iC-LFHxxx chip release Z

iC-LFHxxx Z1			
No.	Function, parameter/code	Description and application notes	
1	Settling time, Electrical Characteristics No. 314	Dips in the pixel voltage slow down settling time	

Table 7: Notes on chip functions regarding iC-LFHxxx chip release Z1

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2017-09-01	ELECTRICAL CHARACTERISTICS	Operating conditions: Tj = -25110 °C	6-7
		ELECTRICAL CHARACTERISTICS	Item No. 302 added	6
		ELECTRICAL CHARACTERISTICS	Item Nos. 309, 311 corrected	6
		ELECTRICAL CHARACTERISTICS	OPTICAL CHARACTERISTICS: Diagrams updated	7
		OPERATING REQUIREMENTS	Operating conditions: Tj = -25110 °C	8
		DESCRIPTION OF FUNCTIONS	PINS RES1/0 table corrected	9

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

^{*} Release Date format: YYYY-MM-DD

preliminary HIGH-RESOLUTION LINEAR IMAGE SENSORS

Rev B1, Page 14/14

ORDERING INFORMATION

Туре	Package	Order Designation
iC-LFH320	oBGA LFH1C	iC-LFH320 oBGA LFH1C
iC-LFH640	oBGA LFH2C	iC-LFH640 oBGA LFH2C
iC-LFH960	oBGA LFH3C	iC-LFH960 oBGA LFH3C
iC-LFH1024	oBGA LFH5C	iC-LFH1024 oBGA LFH5C

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0 **Am Kuemmerling 18** Fax: +49 (0) 61 35 - 92 92 - 192 D-55294 Bodenheim Web: http://www.ichaus.com **GERMANY** E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners